
Chapter 19

Recursion

Goals

 Trace recursive algorithms

 Implement recursive algorithms

19.1 Simple Recursion
One day, an instructor was having difficulties with a classroom’s multimedia equipment. The

bell rang, and still there was no way to project the lecture notes for the day. To keep her

students occupied while waiting for the AV folks, she asked one of her favorite students,

Kelly, to take attendance. Since the topic of the day was recursion, the instructor proposed a

recursive solution: Instead of counting each student in the class, Kelly could count the number

of students in her row and remember that count. The instructor asked Kelly to ask another

student in the row behind her to do the same thing—count the number of students in their row,

remember the count, and ask the same question of the next row.

 By the time the question reached the last row of seats in the room, there was one person in

each row who knew the number of students in that particular row. Andy, who had just counted

eight students in the last row, asked his instructor what to do since there were no more rows of

seats behind him. The teacher responded that all he had to do was return the number of

students in his row to the person who asked him the question moments ago. So, Andy gave his

answer of eight to the person in the row in front of him.

The student in the second to last row added the number of people in her row (12) to the

number of students in the row behind her, which Andy had just told her (8). She returned the

sum of 20 to the person in the row in front of her.

 At that point the AV folks arrived and discovered a bent pin in a video jack. As they were

fixing this, the students continued to return the number of students in their row plus the

number of students behind them, until Kelly was informed that there were 50 students in all

the rows behind her. At that point, the lecture notes, entitled ―Recursion‖, were visible on the

screen. Kelly told her teacher that there were 50 students behind her, plus 12 students in her

first row, for a total of 62 students present.

 The teacher adapted her lecture. She began by writing the algorithm for the head count

problem. Every row got this same algorithm.

 if you have rows behind you

 return the number of students in your row plus the number behind you

 otherwise

 return the number of students in your row

220

Chapter 19: Recursion

Andy asked why Kelly couldn’t have just counted the students one by one. The teacher

responded, ―That would be an iterative solution. Instead, you just solved a problem using a

recursive solution. This is precisely how I intend to introduce recursion to you, by comparing

recursive solutions to problems that could also be solved with iteration. I will suggest to you

that some problems are better handled by a recursive solution.‖

 Recursive solutions have a final situation when nothing more needs to be done—this is the

base case—and situations when the same thing needs to be done again while bringing the

problem closer to a base case. Recursion involves partitioning problems into simpler

subproblems. It requires that each subproblem be identical in structure to the original problem.

 Before looking at some recursive Java methods, consider a few more examples of

recursive solutions and definitions. Recursive definitions define something by using that

something as part of the definition.

Recursion Example 1

Look up a word in a dictionary:

 find the word in the dictionary

 if there is a word in the definition that you do not understand

 look up that word in the dictionary

Example: Look up the term object

 Look up object, which is defined as ―an instance of a class.‖

 What is a class? Look up class to find ―a collection of methods and data.‖

What is a method? Look up method to find ―a method heading followed by a

collection of programming statements.‖

Example: Look up the term method heading

What is a method heading? Look up method heading to find ―the name of a

method, its return type, followed by a parameter list in parentheses.‖

What is a parameter list? Look up parameter list to find ―a list of parameters.‖

Look up list, look up parameters, and look up return type, and you finally get a

definition of all of the terms using the same method you used to look up the

original term. And then, when all new terms are defined, you have a definition

for object.

Recursion Example 2

A definition of a queue:

 empty

 or has one thing at the front of the queue followed by a queue

221

Recursion Example 3

An arithmetic expression is defined as one of these:

 a numeric constant such as 123 or –0.001

 or a numeric variable that stores a numeric constant

 or an arithmetic expression enclosed in parentheses

 or an arithmetic expression followed by a binary operator (+, -, /, %, or *)

 followed by an arithmetic expression

Characteristics of Recursion

A recursive definition is a definition that includes a simpler version of itself. One example of

a recursive definition is given next: the power method that raises an integer (x) to an integer

power (n). This definition is recursive because xn-1 is part of the definition itself. For

example,

 43 = 4 × 4(n-1) = 4 × 4(3-1) = 4 × 42

What is 42? Using the recursive definition above, 42 is defined as:

 42 = 4 × 4(n-1) = 4 × 4(2-1) = 4 × 41

and 41 is defined as

 41 = 4 × 4(n-1) = 4 × 4(1-1) = 4 × 40

and 40 is a base case defined as

 40 = 1

The recursive definition of 43 includes 3 recursive definitions. The base case is n==0:

xn = 1 if n = 0

To get the actual value of 43, work backward and let 1 replace 40, 4 * 1 replace 41, 4 * 41

replace 42, and 4 * 42 replace 43. Therefore, 43 is defined as 64.

 To be recursive, an algorithm or method requires at least one recursive case and at least

one base case. The recursive algorithm for power illustrates the characteristics of a recursive

solution to a problem.

 The problem can be decomposed into a simpler version of itself in order to bring the

problem closer to a base case.

 There is at least one base case that does not make a recursive call.

 The partial solutions are managed in such a way that all occurrences of the recursive and

base cases can communicate their partial solutions to the proper locations (values are

returned).

222

Chapter 19: Recursion

Comparing Iterative and Recursive Solutions

For many problems involving repetition, a recursive solution exists. For example, an iterative

solution is shown below along with a recursive solution in the TestPowFunctions class,

with the methods powLoop and powRecurse, respectively. First, a unit test shows calls to

both methods, with the same arguments and same expected results.

// File RecursiveMethodsTest.java
import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class RecursiveMethodsTest {

 @Test
 public void testPowLoop() {
 RecursiveMethods rf = new RecursiveMethods();
 assertEquals(1, rf.powLoop(4, 0));
 assertEquals(1, rf.powRecurse(4, 0));

 assertEquals(4, rf.powLoop(4, 1));
 assertEquals(4, rf.powRecurse(4, 1));

 assertEquals(16, rf.powLoop(2, 4));
 assertEquals(16, rf.powRecurse(2, 4));
 }
}

// File RecursiveMethods.java
public class RecursiveMethods {

 public int powLoop(int base, int power) {
 int result;
 if (power == 0)
 result = 1;
 else {
 result = base;
 for (int j = 2; j <= power; j++)
 result = result * base;
 }
 return result;
 }

 public int powRecurse(int base, int power) {
 if (power == 0)
 return 1;
 else
 // Make a recursive call \\
 return base * powRecurse(base, power - 1);
 }
}

In powRecurse, if n is 0 the base case the method call evaluates to 1. When n > 0 the

recursive case the method is invoked again with the argument reduced by one. For example,

powRecurse(4,1) calls powRecurse(4, 1-1), which immediately returns 1. For another

example, the original call powRecurse(2,4) calls powRecurse(2,3), which then calls

powRecurse(2,2), which then calls powRecurse(2,1), which then calls

powRecurse(2,0), which returns 1. Then, 2*powRecurse(2,0)evaluates to 2*1, or 2, so

223

2*powRecurse(2,1) evaluates to 4, 2*powRecurse(2,2) evaluates to 8,

2*powRecurse(2,3) evaluates to 16, and 2*powRecurse(2,4) evaluates to 32.

Tracing recursive methods requires diligence, but it can help you understand what is going on.

Consider tracing a call to the recursive power method to get 2
4
.

 assertEquals(16, rf.powRecurse(2, 4));

After the initial call to powRecurse(2,4), powRecurse calls another instance of itself until

the base case of power==0 is reached. The following picture illustrates a method that calls

instances of the same method. The arrows that go up indicate this. When an instance of the

method can return something, it returns that value to the method that called it. The arrows that

go down with the return values written to the right indicate this.

base case reached

8

1

4

2

powRecurse(2,0) = 1

2*powRecurse(2,1-1)=2*1

2*powRecurse(2,2-1)=2*2

2*powRecurse(2,3-1)=2*4

2*powRecurse(2,4-1)=2*8

16 replaces original method call
powRecurse(2,4)

The final value of 16 is returned to the main method, where the arguments of 2 and 4 were

passed to the first instance of powRecurse.

Self-Check

19-1 What is the value of rf.powRecurse(3, 0)?

19-2 What is the value of rf.powRecurse(3, 1)?

19-3 Fill in the blanks with a trace of the call rf.powRecurse(3, 4).

Tracing Recursive Methods

In order to fully understand how recursive tracing is done, consider a series of method calls

given the following method headers and the simple main method:

224

Chapter 19: Recursion

// A program to call some recursive methods

public class Call2RecursiveMethods {

 public static void main(String[] args) {
 Methods m = new Methods();
 System.out.println ("Hello");
 m.methodOne(3);
 m.methodTwo(6);
 }
}

// A class to help demonstrate recursive method calls
public class Methods {
 public void methodOne(int x) {
 System.out.println("In methodOne, argument is " + x);
 }

 public void methodTwo(int z) {
 System.out.println("In methodTwo, argument is " + z);
 }
}

Output

Hello
In methodOne, argument is 3
In methodTwo, argument is 6

This program begins by printing out "Hello". Then a method call is made to methodOne.

Program control transfers to methodOne, but not before remembering where to return to.

After pausing execution of main, it begins to execute the body of the methodOne method.

After methodOne has finished, the program flow of control goes back to the last place it was

and starts executing where it left off—in this case, in the main method, just after the call to

methodOne and just before the call to methodTwo. Similarly, the computer continues

executing main and again transfers control to another method: methodTwo. After it completes

execution of methodTwo, the program terminates.

 The above example shows that program control can go off to execute code in other

methods and then know the place to come back to. It is relatively easy to follow control if no

recursion is involved. However, it can be difficult to trace through code with recursive

methods. Without recursion, you can follow the code from the beginning of the method to the

end. In a recursive method, you must trace through the same method while trying to remember

how many times the method was called, where to continue tracing, and the values of the local

variables (such as the parameter values). Take for example the following code to print out a

list of numbers from 1 to n, given n as an input parameter.
 public void printSeries(int n) {
 if (n == 1)
 System.out.print(n + " ");
 else {
 printSeries(n - 1);
 // after recursive call \\
 System.out.print(n + " ");
 }
 }

A call to printSeries(5) generates this output:

1 2 3 4 5

225

Let’s examine step by step how the result is printed. Each time the method is called, it is

stacked with its argument. For each recursive case, the argument is an integer one less than the

previous call. This brings the method one step closer to the base case. When the base case is

reached (n==1) the value of n is printed. Then the previous method finishes up by returning to

the last line of code below /* after recursive call */.

print "2 "

print "3 "

print "4 "

print "5 "

print "1 "
printSeries(1)

printSeries (2)

printSeries (3)

printSeries(4)

printSeries(5)

main

Recursive execution of printSeries(5)

Notice that when a new recursive call is made, the current invocation of the method

printSeries(5) starts a completely new invocation of the same method

printSeries(4). The system pushes the new method invocation on the top of a stack.

Method invocations are pushed until the method finds a base case and finishes. Control returns

back to previous invocation printSeries(2) by popping the stack, and the value of n (2)

prints. Now consider a method that has multiple recursive calls within the recursive case.

 public void mystery(int n) {
 if (n == 1)
 System.out.print(" 1 ");
 else {
 mystery(n - 1);
 System.out.print("<" + n + ">");
 mystery(n - 1);
 }
 }

When the base case has not yet been reached, there is a recursive call, then a print statement,

and then another recursive call. With two recursive calls, it proves more insightful to approach

a trace from a graphical perspective. A method call tree for mystery(4) looks like this.

226

Chapter 19: Recursion

mystery(4)

mystery(1) mystery(1) mystery(1) mystery(1) mystery(1) mystery(1) mystery(1) mystery(1)

mystery(3)

mystery(2) mystery(2) mystery(2) mystery(2)

mystery(3)

Recursive execution of mystery(4)

As you can see, when there are multiple recursive calls in the same method, the number of

calls increases exponentially there are eight calls to mystery(1). The recursion reaches

the base case when at the lowest level of the structure (at the many calls to mystery(1)). At

that point " 1 " is printed out and control returns to the calling method. When the recursive

call returns, "<" + n + ">" is printed and the next recursive call is called. First consider the

left side of this tree. The branches that are numbered 1, 2, 3, and 4 represent the method calls

after mystery(4) is called. After the call #3 to mystery, n is 1 and the first output " 1 "

occurs.

3 4

2

1

B

mystery(4)

mystery(1) mystery(1)

mystery(3)

mystery(2)

A

The first part of mystery

Control returns to the previous call when n was 2. <2> is printed. The output so far:

1 <2>

Then a recursive call is a made as mystery(2-1) and " 1 " is printed again. The output so

far:

1 <2> 1

Control then returns to the first call to mystery(3) and <3> is printed. The output so far:

1 <2> 1 <3>

227

Then these method calls behind occur.

mystery(1) mystery(1)

mystery(2)

With n == 2, the base case is skipped and the recursive case is called once again. This means

another call to mystery(2-1), which is " 1 ", a printing of <2>, followed by another call

to mystery(2-1), which is yet another " 1 ". Add these three prints to the previous output

and the output so far is:

1 <2> 1 <3> 1 <2> 1

This represents the output from mystery(3). Control then returns to the original call

mystery(4) when <4> is printed. Then the cloud behind B prints the same output as

mystery(3), the output shown immediately above. The final output is mystery(3),

followed by printing n when n is 4, followed by another mystery(3).

1 <2> 1 <3> 1 <2> 1 <4> 1 <2> 1 <3> 1 <2> 1

Self-Check

19-4 Describe the output that would be generated by the message mystery(5); .

19-5 What does mystery2(4) return?
 public void mystery2(int n) {
 if (n > 1)
 mystery2(n - 1);

 System.out.print(n + " ");
 }

Infinite Recursion

Infinite recursion occurs when a method keeps calling other instances of the same method

without making progress towards the base case or when the base case can never be met.

 public int sum(int n) {
 if (n == 0)
 return 0;
 else
 return n + sum(n + 1);
 }

In this example, no progress is made towards the base case when n is a positive integer

because every time sum is called, it is called with a larger value, so the base condition will

never be met.

Recursion and Method Calls

Recursion can be implemented on computer systems by allowing each method call to create a

stack frame (also known as an activation record). This stack frame contains the information

A

228

Chapter 19: Recursion

necessary for the proper execution of the many methods that are active while programs run.

Stack frames contain information about the values of local variables, parameters, the return

value (for non-void methods), and the return address where the program should continue

executing after the method completes. This approach to handling recursive method calls

applies to all methods. A recursive method does not call itself; instead, a recursive call creates

an instance of a method that just happens to have the same name.

 With or without recursion, there may be one too many stack frames on the stack. Each

time a method is called, memory is allocated to create the stack frame. If there are many

method calls, the computer may not have enough memory. Your program could throw a

StackOverflowError. In fact you will get a StackOverflowError if your recursive case

does not get you closer to a base case.

 // Recursive case does not bring the problem closer to the base case.
 public int pow(int base, int power) {
 if (power == 0)
 return 1;
 else
 return base * pow(base, power + 1); // <- should be power - 1
 }

Output
java.lang.StackOverflowError

The exception name hints at the fact that the method calls are being pushed onto a stack (as

stack frames). At some point, the capacity of the stack used to store stack frames was

exceeded. pow, as written above, will never stop on its own.

Self-Check

19-6 Write the return value of each.
a. ____ mystery6(-5)

b. ____ mystery6(1)

c. ____ mystery6(2)

d. ____ mystery6(3)

e. ____ mystery6(4)

 public int mystery6(int n) {
 if (n < 1)
 return 0;
 else if (n == 1)
 return 1;
 else
 return 2 * mystery6(n - 1);
 }

19-7 Write the return value of each.
a. ____ mystery7(14, 7) b. ____ mystery7(3, 6) c. ____ mystery7(4, 8)

 public boolean mystery7(int a, int b) {
 if (a >= 10 || b <= 3)
 return false;
 if (a == b)
 return true;
 else
 return mystery7(a + 2, b - 2) || mystery7(a + 3, b - 4);
 }

229

19-8 Given the following definition of the Fibonacci sequence, write a recursive method to

compute the nth term in the sequence.

fibonacci(0) = 1;
fibonacci(1) = 1;
fibonacci(n) = fibonacci(n-1) + fibonacci(n-2); when n >= 2

19-9 Write recursive method howOften as if it were n class RecursiveMethods that will

compute how often a substring occurs in a string. Do not use a loop. Use recursion.

These assertions must pass:
 @Test
 public void testSequentialSearchWhenNotHere() {
 RecursiveMethods rm = new RecursiveMethods();
 assertEquals(5, rm.howOften("AAAAA", "A")) ;
 assertEquals(0, rm.howOften("AAAAA", "B")) ;
 assertEquals(2, rm.howOften("catdogcat", "cat")) ;
 assertEquals(1, rm.howOften("catdogcat", "dog")) ;
 assertEquals(2, rm.howOften("AAAAA", "AA")) ;
 }

19.2 Palindrome
Suppose that you had a word and you wanted the computer to check whether or not it was a

palindrome. A palindrome is a word that is the same whether read forward or backward;

radar, madam, and racecar, for example. To determine if a word is a palindrome, you could

put one finger under the first letter, and one finger under the last letter. If those letters match,

move your fingers one letter closer to each other, and check those letters. Repeat this until two

letters do not match or your fingers touch because there are no more letters to consider.

 The recursive solution is similar to this. To solve the problem using a simpler version of

the problem, you can check the two letters on the end. If they match, ask whether the String

with the end letters removed is a palindrome.

 The base case occurs when the method finds a String of length two with the same two

letters. A simpler case would be a String with only one letter, or a String with no letters.

Checking for a String with 0 or 1 letters is easier than comparing the ends of a String with

the same two letters. When thinking about a base case, ask yourself, ―Is this the simplest case?

Or can I get anything simpler?‖ Two base cases (the number of characters is 0 or 1) can be

handled like this (assume str is the String object being checked).

 if (str.length() <= 1)
 return true;

Another base case is the discovery that the two end letters are different when str has two or

more letters.

 else if (str.charAt(0) != str.charAt(str.length() - 1))
 return false; // The end characters do not match

So now the method can handle the base cases with Strings such as "", "A", and "no". The

first two are palindromes; "no" is not.

 If a String is two or more characters in length and the end characters match, no decision

can be made other than to keep trying. The same method can now be asked to solve a simpler

version of the problem. Take off the end characters and check to see if the smaller string is a

230

Chapter 19: Recursion

palindrome. String’s substring method will take the substring of a String like "abba" to

get "bb".

 // This is a substring of the original string
 // with both end characters removed.
 return isPalindrome(str.substring(1, str.length() - 1));

This message will not resolve on the next call. When str is "bb", the next call is

isPalindrome(""), which returns true. It has reached a base case—length is 0. Here is a

complete recursive palindrome method.

 // Return true if str is a palindrome or false if it is not
 public boolean isPalindrome(String str) {
 if (str.length() <= 1) {
 // Base case when this method knows to return true.
 return true;
 }
 else if (str.charAt(0) != str.charAt(str.length() - 1)) {
 // Base case when this method knows to return false

 // because the first and last characters do not match.
 return false;
 }
 else {
 // The first and last characters are equal so check if the shorter
 // string--a simpler version of this problem--is a palindrome.
 return isPalindrome(str.substring(1, str.length() - 1));
 }
 }

If the length of the string is greater than 1 and the end characters match, isPalindrome calls

another instance of isPalindrome with smaller and smaller String arguments until one base

case is reached. Either a String is found that has a length less than or equal to 1, or the

characters on the ends are not the same. The following trace of isPalindrome("racecar")

visualizes the calls that are made in this way.

isPalindrome Recursive Calls (true result)

true

true

isPalindrome("e")=true

isPalindrome("cec")=true

isPalindrome("aceca")=true

isPalindrome("racecar")=true

isPalindrome("racecar")
true

 base case

true

Since the fourth (topmost) call to isPalindrome is called with the String "e", a base case is

found—a String with length 1. This true value gets returned to its caller (argument was

231

"e"), which in turn returns true back to its caller (the argument was "cec"), until true gets

passed back to the first caller of isPalindrome, the method call with the original argument of

"racecar", which returns the value true. Now consider tracing the recursive calls for the

String "pooltop".

isPalindrome Recursive Calls (false result)

false

false

isPalindrome("olt")=false

isPalindrome("oolto")=false

isPalindrome("pooltop")=false

isPalindrome("pooltop")
false

base case

The base case is reached when the method compares the letters at the ends—"o" and "t" do

not match. That particular method call returns false back to its caller (whose argument was

"oolto"), which returns false to its caller. The original call to isPalindrome("pooltop") is

replaced with false to the method that originally asked if "pooltop" was a palindrome.

Self-Check
19-10 What value is returned from isPalindrome("yoy")?

19-11 What value is returned from isPalindrome("yoyo")?

19-12 Write the return value of each method call

 a. ________ huh("+abc+"));

 b. ________ huh("-abc-"));

 c. ________ huh("-a-b-c-"));

 d. ________ huh("------abc-----"));

 public String huh(String str) {
 if (str.charAt(0) == '-')
 return huh(str.substring(1, str.length()));
 else if (str.charAt(str.length() - 1) == '-')
 return huh(str.substring(0, str.length() - 1));
 else
 return str;
 }

19.3 Recursion with Arrays
The sequential search algorithm uses an integer subscript that increases if an element is not

found and the index is still in the range (meaning that there are more elements to compare).

This test method demonstrates the desired behavior.

232

Chapter 19: Recursion

 @Test

 public void testSequentialSearchWhenHere() {
 RecursiveMethods rm = new RecursiveMethods();
 String[] array = { "Kelly", "Mike", "Jen", "Marty", "Grant" };
 int lastIndex = array.length - 1;

 assertTrue(rm.exists(array, lastIndex, "Kelly"));
 assertTrue(rm.exists(array, lastIndex, "Mike"));
 assertTrue(rm.exists(array, lastIndex, "Jen"));
 assertTrue(rm.exists(array, lastIndex, "Marty"));
 assertTrue(rm.exists(array, lastIndex, "Grant"));
 }

 The same algorithm can be implemented in a recursive fashion. The two base cases are:

 1. If the element is found, return true.

 2. If the index is out of range, terminate the search by returning false.

The recursive case looks in the portion of the array that has not been searched. With sequential

search, it does not matter if the array is searched from the smallest index to the largest or the

largest index to the smallest. The exists message compares the search element with the

largest valid array index. If it does not match, the next call narrows the search. This happens

when the recursive call simplifies the problem by decreasing the index. If the element does not

exist in the array, eventually the index goes to -1 and the method returns false to the

preceding call, which returns false to the preceding call, until the original method call to

exists returns false to the point of the call.

 // This is the only example of a parameterized method.
 // The extra <T>s allow any type of arguments.
 public <T> boolean exists(T[] array, int lastIndex, T target) {
 if (lastIndex < 0) {
 // Base case 1: Nothing left to search
 return false;
 } else if (array[lastIndex].equals(target)) { // Base case 2: Found it
 return true;
 } else { // Recursive case
 return exists(array, lastIndex - 1, target);
 }
 }

A test should also be made to ensure exists returns false when the target is not in the array.

 @Test
 public void testSequentialSearchWhenNotHere() {
 RecursiveMethods rm = new RecursiveMethods();
 Integer[] array = { 1, 2, 3, 4, 5 };
 int lastIndex = array.length - 1;
 assertFalse(rm.exists(array, lastIndex, -123));
 assertFalse(rm.exists(array, lastIndex, 999));
 }

233

Self-Check
19-13 What would happen when lastIndex is not less than the array's capacity as

in this assertion?

 assertFalse(rm.exists(array, array.length + 1, "Kelly"));

19-14 What would happen when lastIndex is less than 0 as in this assertion?

 assertFalse(rm.exists(array, -1, "Mike"));

19-15 Write a method printForward that prints all objects referenced by the array

named x (that has n elements) from the first element to the last. Use

recursion. Do not use any loops. Use this method heading:

 public void printForward(Object[] array, int n)

19-16 Complete this testReverse method so a method named reverse in class

RecursiveMethods will reverse the order of all elements in an array of

Objects that has n elements. Use this heading:

 public void printReverse(Object[] array, int leftIndex, int rightIndex)

 @Test
 public void testReverse() {
 RecursiveMethods rm = new RecursiveMethods();

 String[] array = { "A", "B", "C" };
 rm.reverse(array, 0, 2);
 assertEquals();
 assertEquals();
 assertEquals();
 }

19-17 Write the recursive method reverse is if it were in class RecursiveMethods.

Use recursion. Do not use any loops.

19.4 Recursion with a Linked Structure
This section considers a problem that you have previously resolved using a loop — searching

for an object reference from within a linked structure. Consider the base cases first.

 The simplest base case occurs with an empty list. In the code shown below, this occurs

when there are no more elements to compare. A recursive find method returns null to

indicate that the object being searched for did not equal any in the list. The other base case is

when the object is found. A recursive method then returns a reference to the element in the

node.

 The recursive case is also relatively simple: If there is some portion of the list to search

(not yet at the end), and the element is not yet found, search the remainder of the list. This is a

simpler version of the same problem – search the list that does not have the element that was

just compared. In summary, there are two base cases and one recursive case that will search

the list beginning at the next node in the list:

Base cases:

 If there is no list to search, return null.

 If the current node equals the object, return the reference to the data.

234

Chapter 19: Recursion

Recursive case:

 Search the remainder of the list – from the next node to the end of the list

The code for a recursive search method is shown next as part of class SimpleLinkedList.

Notice that there are two findRecursively methods one public and one private. (Two

methods of the same name are allowed in one class if the number of parameters differs.) This

allows users to search without knowing the internal implementation of the class. The public

method requires the object being searched for, but not the private instance variable named

front, or any knowledge of the Node class. The public method calls the private method with

the element to search for along with the first node to compare front.

public class SimpleLinkedList<E> {

 private class Node {
 private E data;
 private Node next;

 public Node(E objectReference, Node nextReference) {
 data = objectReference;
 next = nextReference;
 }
 } // end class Node

 private Node front;

 public SimpleLinkedList() {
 front = null;
 }

 public void addFirst(E element) {
 front = new Node(element, front);
 }

 // Return a reference to the element in the list that "equals" target
 // Precondition: target's type overrides "equals" to compare state
 public E findRecursively(E target) {
 // This public method hides internal implementation details
 // such as the name of the reference to the first node to compare.
 //
 // The private recursive find, with two arguments, will do the work.
 // We don't want the programmer to reference first (it's private).
 // Begin the search at the front, even if front is null.
 return findRecursively(target, front);
 }

 private E findRecursively(E target, Node currentNode) {
 if (currentNode == null) // Base case--nothing to search for
 return null;
 else if (target.equals(currentNode.data)) // Base case -- element found
 return currentNode.data;
 else
 // Must be more nodes to search, and still haven't found it;
 // try to find from the next to the last. This could return null.
 return findRecursively(target, currentNode.next);
 }
}

235

Each time the public findRecursively method is called with the object to find, the

private findRecursively method is called. This private method takes two arguments: the

object being searched for and front the reference to the first node in the linked structure.

If front is null, the private findRecursively method returns null back to the public

method findRecursively , which in turn returns null back to main (where it is printed).

 In a non-empty list, currentNode refers to a node containing the first element. If the first

node's data does not equal the search target, a recursive call is made. The second argument

would be a reference to the second node in the list. (The method still needs to pass the object

being searched). This time, the problem is simpler because there is one less element in the list

to search. Each recursive call to findRecursively has a list with one less node to consider.

The code is effectively "shrinking‖ the search area.

 The recursive method keeps making recursive calls until there is either nothing left of the

list to search (return null), or the element being searched for is found in the smaller portion

of the list. In this latter case, the method returns the reference back to the public method,

which in turn returns the reference back to main (where it is printed).

 At some point, the method will eventually reach a base case. There will be one method

call on the stack for each method invocation. The worst case for findRecursively is the

same for sequential search: O(n). This means that a value must be returned to the calling

function, perhaps thousands of times. A trace of looking for an element that is not in the list

could look like this. The portion of the list being searched is shown to the right of the call ([]

is an empty list):

null

null

null

null

findRecursively("X") []

findRecursively("X") [C]

findRecursively("X") [B, C]

findRecursively("X") [A, B, C]

And here is a trace of a successful search for "C". If "C" were at the end of the list with size()

== 975, there would have been 975 method calls on the stack.

236

Chapter 19: Recursion

"C"

"C"

"C"

findRecursively("C") [C]

findRecursively("C") [B, C]

findRecursively("C") [A, B, C]

Self-Check
19-18 Add a recursive method toString to the SimpleLinkedList class above that returns a

string with the toString of all elements in the linked list separated by spaces. Use

recursion, do not use a loop.

Answers to Self-Checks
19-1 powRecurse (3, 0) == 1

19-2 powRecurse (3, 1) == 3

19-3 filled in from top to bottom

 3*(3, 0) = 1

 3*(3, 1) = 3*1 = 3

 3*(3, 2) = 3*3 = 9

 3*(3, 3) = 3*9 = 27

 3*(3, 4) = 3*27 = 81

19-4 result mystery(5)

 1 <2> 1 <3> 1 <2> 1 <4> 1 <2> 1 <3> 1 <2> 1 <5> 1 <2> 1 <3> 1 <2> 1 <4> 1 <2> 1 <3> 1 <2> 1

 fence post pattern - the brackets follow the numbers being recursed back into the method

19-5 mystery2(4) result: 1 2 3 4

19-6 a. __0__ mystery6(-5)

b. __1__ mystery6(1)

c. __2__ mystery6(2)

d. __4__ mystery6(3)

e. __8__ mystery6(4)

19-7 a. false b. false c. true

237

19-8
 public int fibonacci(int n){
 if(n == 0)
 return 1;
 else if(n ==1)
 return 1;
 else if(n >= 2)
 return fibonacci(n-1) + fibonacci(n-2);
 else
 return -1;
 }

19-9
 public int howOften(String str, String sub) {
 int subsStart = str.indexOf(sub);
 if (subsStart < 0)
 return 0;
 else
 return 1 + howOften(str.substring(subsStart + sub.length()), sub);
 }

19-10 isPalindrome ("yoy") == true

19-11 isPalindrome("yoyo") == false

19-12 return values for huh, in order

 a. +abc+

 b. abc

 c. a-b-c

 d. abc

19-13 - if "Kelly" is not found at the first index, it will throw an arrayIndexOutOfBounds exception

19-14 - it will immediately return false without searching

19-15
 public void printForward(Object[] array, int n) {
 if (n > 0) {
 printForward(array, n - 1);
 System.out.println(array[n-1].toString());
 }
 }

19-16
 assertEquals("A", array[2]);
 assertEquals("B", array[1]);
 assertEquals("C", array[0]);

19-17
 public void reverse(Object[] array, int leftIndex, int rightIndex) {
 if (leftIndex < rightIndex) {
 Object temp = array[leftIndex];
 array[leftIndex] = array[rightIndex];
 array[rightIndex] = temp;

 reverse(array, leftIndex + 1, rightIndex - 1);
 }
 }

19-18

238

Chapter 19: Recursion

 public String toString (){
 return toStringHelper(front);
 }

 private String toStringHelper(Node ref) {
 if(ref == null)
 return "";
 else
 return ref.data.toString() + " " + toStringHelper(ref.next);
 }

239

