
Chapter 13

Generic Collections using Inheritance
and Generics

Goals
 Introduce class Object and inheritance

 Show how one collection can store any type of element using Object[]

13.1 The Object class
The StringBag class shown of Chapter 9 could only store one type of element. It is desirable to have a

collection class to store any type. Java provides at least two approaches:

1. Store references to Object objects rather than just String (this section)

2. Use Java generics (in the chapter that follows)

We'll consider the first option now, which requires knowledge of Java's Object class, inheritance, and

casting.

 Java's Object class has one constructor (no arguments) and 11 methods, including equals and

toString. All classes in Java extend the Object class or another class that extends Object. There is no

exception to this. All classes inherit the methods of the Object class.

 One class inherits the methods and instance variables of another class with the keyword extends. For

example, the following class heading explicitly states that the EmptyClass class inherits all of the method

of class Object. If a class heading does not have extends, the compiler automatically adds extends

Object.

// This class extends Object even if extends Object is omitted
public class EmptyClass extends Object {
}

Even though this EmptyClass defines no methods, a programmer can construct and send messages to

EmptyClass objects. This is possible because a class that extends Object inherits (obtains) Object’s

methods. A class that extends another is called a subclass. Here are three of the methods that EmptyClass

inherits from the Object class:

Two Methods of the Object Class

 toString returns a String that is the class name concatenated with the at symbol (@) and a

hexadecimal (base 16) number related to locating the object at runtime.

 equals returns true if both the receiver and argument reference the same object.

Chapter 13: Generic Collections using Inheritance and Generics

148

Additionally, a class that does not declare a constructor is automatically given a default constructor. This

is to ensure that constructor for Object gets invoked. The following code is equivalent to that shown

above

// This class extends Object implicitly
public class EmptyClass {

 public EmptyClass() {
 super(); // Explicitly call the constructor of the superclass, which is Object
 }
}

This following test code shows these two methods used by a class that extends class Object.

 EmptyClass one = new EmptyClass();
 EmptyClass two = new EmptyClass();

 assertFalse(one.equals(two)); // passes
 System.out.println(two.toString());

 System.out.println(one.toString());

 // The variable two will now reference the same object as one
 one = two;
 assertTrue(one.equals(two));
 System.out.println("after assignment->");
 System.out.println(two.toString());
 System.out.println(one.toString());

Output

EmptyClass@8813f2
EmptyClass@1d58aae
after assignment->
EmptyClass@8813f2
EmptyClass@8813f2

The Object class captures methods that are common to all Java objects. Java makes sure that all classes

extend the Object class because there are several things that all objects must be capable of in order to

work with Java's runtime system. For example, Object’s constructor gets invoked for every object

construction to help allocate computer memory for the object at runtime. The class also has methods to

allow different processes to run at the same time, allowing applications such as Web browsers to be more

efficient. Java programs can download several files while browsing elsewhere, while creating another

image, and so on.

One-way Assignment Compatibility

Because all classes extend Java’s Object class, a reference to any type of object can be assigned to an

Object reference variable. For example, consider the following valid code that assigns a String object

and an EmptyClass object to two different reference variables of type Object:

 String aString = new String("first");
 // Assign a String reference to an Object reference
 Object obj1 = aString;

 EmptyClass one = new EmptyClass();
 // Assign an EmptyClass reference to an Object reference
 Object obj2 = one;

Java’s one-way assignment compatibility means that you can assign a reference variable to the class that

it extends. However, you cannot directly assign in the other direction. For example, an Object reference

cannot be directly assigned to a String reference.

mailto:EmptyClass@8813f2

149

 Object obj = new Object();
 String str = obj;

Type mismatch: cannot convert from Object to String

This compile time error occurs because the compiler recognizes that obj is a reference to an Object that

cannot be assigned down to a String reference variable.

13.2 A Generic Collection with Object[]
This GenericList class uses Object parameters in the add and remove methods, an Object return

type in the get method, and an array of Objects as the instance variable to store any type element that

can be assigned to Object (which is any Java type).

public class GenericList {

 private Object[] elements;
 private int n;

 // Construct an empty list

 public GenericList() {
 elements = new Object[10];
 }

 // Provide access to the number of meaningful list elementas

 public int size() {

 return n;

 }

 // Add an element to the end of this list

 // Precondition: index >= 0 && index < size()

 public void add(Object elementToAdd) {
 elements[n] = elementToAdd;
 n++;

 }

 // Retrieve a reference to an element

 public Object get(int index) {
 return elements[index];
 }
}

This design allows one class to store collections with any type of elements:

 @Test
 public void testGenericity() {
 GenericList names = new GenericList();
 names.add("Kim");
 names.add("Devon");

 GenericList accounts = new GenericList();
 accounts.add(new BankAccount("Speilberg", 1942));

 GenericList numbers = new GenericList();
 numbers.add(12.3);
 numbers.add(4.56);
 }

In such a class, a method that returns a value would have to return an Object reference.

 public Object get(int index) {
 return elements[index];
 }

Chapter 13: Generic Collections using Inheritance and Generics

150

This approach requires a cast. You have to know the type stored.

 @Test
 public void testGet() {
 GenericListA strings = new GenericListA();
 strings.add("A");
 strings.add("B");
 String firstElement = (String) strings.get(0);
 assertEquals("A", firstElement);
 }

With this approach, programmers always have to cast, something Java software developers had been

complaining about for years (before Java 5). With this approach, you also have to be wary of runtime

exceptions. For example, even though the following code compiles, when the test runs, a runtime error

occurs.

 @Test
 public void testGet() {
 GenericList strings = new GenericList();
 strings.add("A");
 strings.add("B");
 // Using Object objects for a generic collection is NOT type safe.
 // Any type of object can be added accidentally (not usually desirable).
 strings.add(123);

 // The attempt to send cast to all elements fails when index == 2:
 for (int index = 0; index < 3; index++) {
 String theString = (String) strings.get(index);
 System.out.println(theString.toLowerCase());
 }
 }

 java.lang.ClassCastException: java.util.Integer

strings.get(2) returns a reference to an integer, which the runtime treats as a String in the cast. A

ClassCastException occurs because a String cannot be cast to an integer. In a later section, Java

Generics will be shown as a way to have a collection store a specific type. One collection class is all that

is needed, but the casting and runtime error will disappear.

Self-Check

13-1 Which statements generate compiletime errors?

 Object anObject = "3"; // a.
 int anInt = anObject; // b.
 String aString = anObject; // c.
 anObject = new Object(); // d.

13-2 Which letters represent valid assignment statements that compile?

 Object obj = "String"; // a.
 String str = (String)obj; // b.
 Object obj2 = new Point(3, 4); // c.
 Point p = (String)obj2; // d.

13-3 Which statements generate compile time errors?

 Object[] elements = new Object[5]; // a.
 elements[0] = 12; // b.
 elements[1] = "Second"; // c.
 elements[2] = 4.5; // d.
 elements[3] = new Point(5, 6); // e.

151

13.3 Collections of Primitive Types
Collections of the primitive types such int, double, char can also be stored in a generic class. The type

parameter could be one of Java's "wrapper" classes (or had to be wrapped before Java 5). Java has a

"wrapper" class for each primitive type named Integer, Double, Character, Boolean, Long, Short,

and Float. A wrapper class does little more than allow a primitive value to be viewed as a reference type

that can be assigned to an Object reference.

A GenericList of integer values can be stored like this:

 GenericList tests = new GenericList();
 tests.add(new Integer(79));
 tests.add(new Integer(88));

However, since Java 5, integer values can also be added like this:

 tests.add(76);

 tests.add(100);

Java now allows primitive integers to be treated like objects through the process known as autoboxing.

Autoboxing / Unboxing

Before Java 5, to treat primitive types as reference types, programmers were required to "box" primitive

values in their respective "wrapper" class. For example, the following code was used to assign an int to

an Object reference.

 Integer anInt = new Integer(123); // Wrapper class needed for an int
 tests.add(anInt); // to be stored as an Object reference

To convert from reference type back to a primitive type, programmers were required to "unbox" by

asking the Integer object for its intValue like this:

 int primitiveInt = anInt.intValue();

Java 5.0 automatically performs this boxing and unboxing.

 Integer anotherInt = 123; // autobox 123 as new Integer(123)
 int anotherPrimitiveInt = anotherInt; // unboxed automatically

This allows primitive literals to be added. The autoboxing occurs automatically when assigning the int

arguments 79 and 88 to the Object parameter of the add method.

 GenericList tests = new GenericList();
 tests.add(79);
 tests.add(88);

However, with the current implementation of GenericList, we still have to cast the return value from

this get method.

 public Object get(int atIndex) {
 return elements[index];
 }

The compiler sees the return type Object that must be cast to whatever type of value happens to stored at

elements[index]:

 Integer anInt = (Integer)tests.get(0);

Chapter 13: Generic Collections using Inheritance and Generics

152

Self-Check

13-4 Place a check mark in the comment after assignment statement that compiles (or leave blank).

 Object anObject = new Object();
 String aString = "abc";
 Integer anInteger = new Integer(5);
 anObject = aString; // ______
 anInteger = aString; // ______
 anObject = anInteger; // ______
 anInteger = anObject; // ______

13-5 Place a check mark in the comment after assignment statement that compiles (or leave blank).

 Object anObject = new String("abc");
 Object anotherObject = new Integer(50);
 Integer n = (Integer) anObject; // ______
 String s = (String) anObject; // ______
 anObject = anotherObject; // ______
 String another = (String) anotherObject; // ______

 Integer anotherInt = (Integer) anObject; // ______

13-6 Place a check mark in the comment after assignment statement that compiles (or leave blank).

 Integer num1 = 5; // ______
 Integer num2 = 5.0; // ______
 Object num3 = 5.0; // ______
 int num4 = new Integer(6); // ______

Type Parameters
The manual boxing, the cast code, and the problems associated with collections that can accidentally add

the wrong type element are problems that all disappeared in Java 5. Now the programmer can specify the

one type that should be stored by passing the type as an argument to the collection class. Type parameters

and arguments parameters are enclosed between < and > rather than (and). Now these safer collection

classes look like this:

public class GenericListWithTypeParameter<E> {

 private Object[] elements;
 private int n;

 public GenericListWithTypeParameter() {
 elements = new Object[10];
 n = 0;
 }

 public int size() {

 return n;

 }

 // Retrieve a reference to an element

 // Precondition: index >= 0 && index < size()

 public void add(E element) {
 elements[n] = elementToAdd;
 n++;
 }

 // Place the cast code here once so no other casting code is necessary

 public E get(int index) {
 return (E)elements[index];
 }
}

153

Instances of GenericListWithTypeParameter would now be constructed by passing the type of element

as an argument to the class:

 GenericListWithTypeParameter<String> strings =

 new GenericListWithTypeParameter<String>();

 GenericListWithTypeParameter<Integer> tests =

 new GenericListWithTypeParameter<Integer>();

 GenericListWithTypeParameter<BankAccount> accounts =

 new GenericListWithTypeParameter<BankAccount>();

In add, Object is replaced with E so only elements of the type argument String, Integer or

BankAccount above can be added to that collection.

 The compiler catches accidental adds of the wrong type. For example, the following three attempts to

add the wrong type generate compiletime errors, which is a good thing (better than waiting until runtime

when the program would otherwise terminate.

 strings.add(123);

The method add(String) in the type GenericListWithTypeParameter<String> is not applicable for the arguments (int)

tests.add("a String");

The method add(Integer) in the type GenericListWithTypeParameter<Integer> is not applicable for the arguments (String)

You also don’t have to manually box primitives during add messages.

tests.add(89);

tests.add(77);

tests.add(95);

Nor do the return values need to be cast since the cast to the correct type is done in the get method.

strings.add("First");

strings.add("Second");

String noCastToStringNeeded = strings.get(0);

And in the case of Integer, the Integer object is automticallyunboxed to a primitive int.

int sum = 0;

for (int i = 0; i < tests.size(); i++) {

 sum += tests.get(i); // no cast needed because get already casts to (E)

}

Using Java generic type arguments does require extra syntax when constructing a collection (two sets of

angle brackets and the type to be stored twice). However the benefits include much less casting syntax,

the ability to have collections of primitives where the primitives appear to be objects, and we gain the

type safety that comes from allowing the one type of element to be maintained by the collection. The

remaining examples in this textbook will use Java Generics with < and > rather than having parameters

and return types of type Object.

Self-Check

13-7 Give the following code, print all elements in uppercase. Hint no cast required before sending a message

 GenericListWithTypeParameter<String> strings =
 new GenericListWithTypeParameter<String>();
 strings.add("lower");
 strings.add("Some UpPeR");
 strings.add("ALL UPPER");

Chapter 13: Generic Collections using Inheritance and Generics

154

Answers to Self-Check Questions
13-1 which have errors? b and c

 -b cannot assign an Object to an Integer

 -c cannot assign an Object to a String even when it references a String

13-2 a, b, and c. In d, the compiler notices the attempt to store a String into a Point?

 Point p = (String)obj2; // d.

13-3 None

13-4 anObject = aString; // __x___
 anInteger = aString; // Can't assign String to Integer
 anObject = anInteger; // __x___
 anInteger = anObject; // Can;t assign Obect to Integer

13-5 Object anObject = new String("abc");
 Object anotherObject = new Integer(50);
 Integer n = (Integer) anObject; // __x___
 String s = (String) anObject; // __x___
 anObject = anotherObject; // __x___
 String another = (String) anotherObject; // __x___
 Integer anotherInt = (Integer) anObject; // __x___

13-6 Integer num1 = 5; // __x___
 Integer num2 = 5.0; // ______
 Object num3 = 5.0; // __x___
 int num4 = new Integer(6); // __x___

13-7 for (int i = 0; i < strings.size(); i++) {
 System.out.println(strings.get(i).toUpperCase());
 }

