
Chapter 4: Methods

Asserting Java

©Rick Mercer

Methods

Methods

We have used some existing methods without
fully understanding their implementation
– System.out's print, println

– String's length, charAt, indexOf, toUpperCase

– Scanner's nextDouble, nextInt

– BankAccount's withdraw, deposit

Java has thousands of methods
– We often need to create our own

Methods

There are two major components to a method

– the method heading with

access mode, return type, name, parameters

– the block

a pair of curly braces containing code that fulfills the

method's responsibility

Method headings specify the number and types of

arguments required to use the method

Method Heading
with documentation

/*

* Return a new string that is a substring of this string.

* The substring begins at the specified beginIndex and

* extends to the character at index endIndex-1.

* Thus the length of the substring is endIndex-beginIndex.

*

* Examples:

* "hamburger".substring(4, 8) returns "urge"

* "smiles".substring(1, 5) returns "mile"

*

* Parameters:

* beginIndex - the beginning index, inclusive.

* endIndex - the ending index, exclusive.

*

* Returns: the specified substring.

*/

public String substring(int beginIndex, int endIndex)

Using JUnit to demo substring

What method headings tell us

Method headings provide the information needed to

use it they show us how to send messages

public String substring(int beginIndex, int endIndex)
1 2 3 5 4 5 4

1 Where is the method accessible

2 What does the method evaluate to?

3 What is the method name?

4 What type arguments are required?

5 How many arguments are required?

Arguments are assigned to
parameters

The substring method requires two arguments in
order to specify the portion of the string to return

When the message is sent

– the 1st argument 0 is assigned to parameter
beginIndex

– the 2nd argument 6 is assigned to parameter endIndex

fullName.substring(0, 6);

public String substring(int beginIndex, int endIndex)

Implementation of the method is not shown here

Arguments Parameters

When a message is sent

– the first argument is assigned to the first parameter,

– second argument gets assigned to the second parameter,...

 If you do not supply the correct number and type of
arguments, you get compiletime errors

fullName.substring("wrong type");

fullName.substring(0, 6, fullName.length());

fullName.substring();

fullName.substring(0.0, 6.0);

BTW: This returns the string form index to the end
fullName.substring(2); // sometimes convenient

Method Heading:
General Form

General form of a Java method heading

public return-type method-name (parameter-1,

parameter-2, parameter-n, ...)

– public says a method is known where objects are constructed

– return-type may be any primitive type, any class, or void

– A void method returns nothing, therefore,

– a void method can not be assigned to anything

– a void method can not be printed with println

Method Headings

Example method headings think of class as type

public char charAt(int index) // class String

public int indexOf(String sub) // class String

public void withdraw(double amt) // class BankAccount

public String getText() // class Jbutton

public String setText(String str) // class Jbutton

public void setSize(int x, int y) // class JFrame

public int nextInt() // class Scanner

public int nextDouble() // class Scanner

public int next() // class Scanner

public int nextLine() // class Scanner

Parameters

Parameters, which are optional, specify the number

and type of arguments required in the message

– Sometimes methods need extra information

– How much to deposit?

– substring need to know begin- and end-indexes?

General form of a parameter between (and) in

method headings

class-name identifier
-or-

primitive-type identifier

The Block

The method body is Java code enclosed within a

block { }

Curly braces have the same things we've seen in

main methods

– variable declarations and initializations int creditOne = 0;

– objects String str = "local";

– messages boolean less = str.compareTo("m") < 0;

 Method bodies have access to parameters

– Hence, methods are general enough to be reused with many

different arguments

The return statement

All non-void methods must return a value

– The type of the value is defined in the method heading

Use Java's return statement

return expression ;

Example in the context of a method's block

public double f(double x) {

return 2.0 * x - 1.0;

}

Code Demo

Given the following documented method heading,

– Write a test method in ControlFunTest.java

The assertions are expected to fail

– Write the actual method in ControlFun.java

/*

* Return largest of 3 integer arguments

* max(1, 2, 3) returns 3

* max(1, 3, 2) returns 3

* max(-1, -2, -3) returns -1

*/

public int max(int a, int b, int c) {

return 0;

}

Methods: A Summary

Method headings provide this information on usage:
– is the method is available from other places in code?

public methods are known in the block where constructed

– return-type the kind of value a message evaluates to

– method-name that begins a valid method call

– parameter-list the number and type of needed arguments

– documentation to describe what the method does

The block is where your algorithm gets implemented

The parameters are accessible within the block

Methods usually return a value of the correct type

Methods must be fully tested (at least in this course)

