
Chapter 4: Methods

Asserting Java

©Rick Mercer

Methods

Methods

We have used some existing methods without
fully understanding their implementation
– System.out's print, println

– String's length, charAt, indexOf, toUpperCase

– Scanner's nextDouble, nextInt

– BankAccount's withdraw, deposit

Java has thousands of methods
– We often need to create our own

Methods

There are two major components to a method

– the method heading with

access mode, return type, name, parameters

– the block

a pair of curly braces containing code that fulfills the

method's responsibility

Method headings specify the number and types of

arguments required to use the method

Method Heading
with documentation

/*

* Return a new string that is a substring of this string.

* The substring begins at the specified beginIndex and

* extends to the character at index endIndex-1.

* Thus the length of the substring is endIndex-beginIndex.

*

* Examples:

* "hamburger".substring(4, 8) returns "urge"

* "smiles".substring(1, 5) returns "mile"

*

* Parameters:

* beginIndex - the beginning index, inclusive.

* endIndex - the ending index, exclusive.

*

* Returns: the specified substring.

*/

public String substring(int beginIndex, int endIndex)

Using JUnit to demo substring

What method headings tell us

Method headings provide the information needed to

use it they show us how to send messages

public String substring(int beginIndex, int endIndex)
1 2 3 5 4 5 4

1 Where is the method accessible

2 What does the method evaluate to?

3 What is the method name?

4 What type arguments are required?

5 How many arguments are required?

Arguments are assigned to
parameters

The substring method requires two arguments in
order to specify the portion of the string to return

When the message is sent

– the 1st argument 0 is assigned to parameter
beginIndex

– the 2nd argument 6 is assigned to parameter endIndex

fullName.substring(0, 6);

public String substring(int beginIndex, int endIndex)

Implementation of the method is not shown here

Arguments Parameters

When a message is sent

– the first argument is assigned to the first parameter,

– second argument gets assigned to the second parameter,...

 If you do not supply the correct number and type of
arguments, you get compiletime errors

fullName.substring("wrong type");

fullName.substring(0, 6, fullName.length());

fullName.substring();

fullName.substring(0.0, 6.0);

BTW: This returns the string form index to the end
fullName.substring(2); // sometimes convenient

Method Heading:
General Form

General form of a Java method heading

public return-type method-name (parameter-1,

parameter-2, parameter-n, ...)

– public says a method is known where objects are constructed

– return-type may be any primitive type, any class, or void

– A void method returns nothing, therefore,

– a void method can not be assigned to anything

– a void method can not be printed with println

Method Headings

Example method headings think of class as type

public char charAt(int index) // class String

public int indexOf(String sub) // class String

public void withdraw(double amt) // class BankAccount

public String getText() // class Jbutton

public String setText(String str) // class Jbutton

public void setSize(int x, int y) // class JFrame

public int nextInt() // class Scanner

public int nextDouble() // class Scanner

public int next() // class Scanner

public int nextLine() // class Scanner

Parameters

Parameters, which are optional, specify the number

and type of arguments required in the message

– Sometimes methods need extra information

– How much to deposit?

– substring need to know begin- and end-indexes?

General form of a parameter between (and) in

method headings

class-name identifier
-or-

primitive-type identifier

The Block

The method body is Java code enclosed within a

block { }

Curly braces have the same things we've seen in

main methods

– variable declarations and initializations int creditOne = 0;

– objects String str = "local";

– messages boolean less = str.compareTo("m") < 0;

 Method bodies have access to parameters

– Hence, methods are general enough to be reused with many

different arguments

The return statement

All non-void methods must return a value

– The type of the value is defined in the method heading

Use Java's return statement

return expression ;

Example in the context of a method's block

public double f(double x) {

return 2.0 * x - 1.0;

}

Code Demo

Given the following documented method heading,

– Write a test method in ControlFunTest.java

The assertions are expected to fail

– Write the actual method in ControlFun.java

/*

* Return largest of 3 integer arguments

* max(1, 2, 3) returns 3

* max(1, 3, 2) returns 3

* max(-1, -2, -3) returns -1

*/

public int max(int a, int b, int c) {

return 0;

}

Methods: A Summary

Method headings provide this information on usage:
– is the method is available from other places in code?

public methods are known in the block where constructed

– return-type the kind of value a message evaluates to

– method-name that begins a valid method call

– parameter-list the number and type of needed arguments

– documentation to describe what the method does

The block is where your algorithm gets implemented

The parameters are accessible within the block

Methods usually return a value of the correct type

Methods must be fully tested (at least in this course)

