
1-1

C Sc 335 Course Overview

Object-Oriented

Programming and Design

Rick Mercer

1-2

Main Topics in C Sc 335

1. Java

2. Object-Oriented Programming

3. Object-Oriented Design

4. Technology

5. Object-Oriented Principles

6. Software Development

7. Team Project

1-3

1. Java

Classes and Interfaces

Exceptions, Streams, Persistence

Graphical Components

Event-driven programming

— Make something happen on a click, mouse

motion, window close, checkbox....

Socket Networking

Concurrency with Java Threads

1-4

2. Object Oriented Programming

Encapsulation / Modularity

— keeping data and behavior together

 Inheritance

— Capture common data and behavior in a class,

then let other classes extend it

Polymorphism

— via interfaces and inheritance

1-5

3. Object-Oriented Design

Design Guidelines such as

— Assign a responsibility to the object that has

the necessary information, high cohesion, low

coupling

Object-Oriented Design Patterns such as

— Iterator

— Strategy

— Adaptor

— Decorator

— Composite

— Mediator

— Command

— Observer

— Factory

1-6

3. OO Design continued

Responsibility Driven Design (RDD)

Unified Modeling Language (UML)

Test Driven Design (TDD)

Refactoring

— Improving the design of existing code without

changing its meaning—make it more readable

and maintainable, a few examples:

• Rename, Extract method , Exit method as soon as

possible, Change method signature

1-7

4. Technology

Professional IDE: Eclipse

Concurrent Versioning System (CVS)

Use existing frameworks

— Java's Collection Framework

— javax.swing, javax.awt

— java.io

— java.net

1-8

5. Object-Oriented Principles

The Single Responsibility Principle

The Open–Closed Principle

The Dependency Inversion Principle

The Liskov Substitution Principle

Favor composition over inheritance

Encapsulate what varies

Program to interfaces, not implementations

1-9

6. Software Development

We'll use a mash up of Agile techniques

— Test Driven Development (TDD)

— Short iterations

— Coding standard and collective code ownership

— Pair programming

— Frequent build updates

— Sustainable pace

— Estimating and planning

— Retrospectives

1-10

7. Team Project

Great projects have each person developing

50-65 hours each over the final six weeks

– You can still get very high marks in less time

Teams of four

Some rough estimates

— 15-25 classes

— A few interfaces

— 4,000 to 6,000 lines of code (LoC)

1-11

No Text Book to buy

 There is no one good textbook for this class

 There will be readings of online content, some

views of videos and

 Selected readings are from Safari Books Online

You need to be at a UofA computer or establish a

Virtual Private Network (VPN) connection on your

machine, UofA has a Cisco solution for free

You have access to thousands of technical books

1-12

Goals

Understand and use the fundamentals of object-

oriented programming: encapsulation,

polymorphism, and inheritance

Understand the relationships between objects,

classes, and interfaces

Build complex systems with at least one that has

15 or more classes that you develop with a team

1-13

Goals (continued)

Learn to work on teams

Use good practices of programming to develop

good object-oriented software

Become comfortable with event-driven

programming and graphical user interfaces

 Use the tools of object-oriented software development

— Design Patterns, the Unified Modeling Language (UML),

unit testing (JUnit), a professional IDE (Eclipse),

frameworks, Agile techniques

1-14

Goals continued

Value TDD and see how it helps design and

provide confidence in correctness

Write clean code

Be able to make intelligent design decisions

Build a project that is better than the sum of the

parts (team project is greater than what 1person

can do in the same number of person hours)

Have some fun

