
10-1

A few uses of

Inheritance in Java

CSC 335

Object-Oriented Programming and Design

©Rick Mercer

10-2

The Object class (review)

 Java's Object class captures things that are common

to all objects in Java. For example

— Object's constructor communicates with the operating

system to allocate memory at runtime

• public Object() is called for every new object

 Object is the root of all other classes

— All classes extend Object

— Before your constructor executes, super() is called

which calls Object's constructor, even with this code
class A {}

new A();

10-3

EmptyClass inherits the methods of

Object

// This class inherits Object's 11 methods

public class EmptyClass extends Object {

super(); // These two are always present implicitly

}

// Send messages when methods are implemented in Object

EmptyClass one = new EmptyClass();

System.out.println(one.toString());

System.out.println(one.hashCode());

System.out.println(one.getClass());

System.out.println(one.equals(one));

10-4

Inheritance helps with the Swing

framework

 Inheritance allows one class obtains behavior
(methods) and attributes (instance variables) from
an existing class get something for nothing

public class ImAJFrame2 extends JFrame {

}

10-5

Inherit methods and fields

import javax.swing.JFrame;

public class Try2JFrames {

public static void main(String[] args) {

JFrame window1 = new JFrame();

window1.setTitle("I'm a JFrame");

window1.setSize(200,100);

window2.setLocation(10, 0);

window1.setVisible(true);

ImAJFrame2 window2 = new ImAJFrame2();

window2.setTitle("I'm a JFrame too");

window2.setSize(200,100);

window2.setLocation(210, 0);

window2.setVisible(true);

}

}

10-6

Has-A or Is-A

 “HAS-A” relationships represent containment within

an object; realized by instance variables
public class MyList implements ListModel {

private List<Songs> things;

}

— MyList object “has-a” List in it, and therefore can use it

 “IS-A” relationships represent supersets of abilities;

realized by inheritance

— ImAJFrame2 IS-A JFrame

10-7

Another example:

Java's Exception Hierarchy

Exceptions handle weird and awkward things

— Some are standard exceptions that must be

• caught with try and catch blocks,

• or declared to be thrown in every method

– The read message won’t compile unless you do one or the other

public static void main(String[] args) {

try {

System.in.read();

}

catch(IOException e) {

System.out.println("read went wrong");

}

}

10-8

Part of the Throwable

inheritance hierarchy

Exception

IOException RunTimeException

FileNotFoundException NullPointerException

EOFException

The arrows are UML

notation for the inheritance

relationship between classes

Throwable

Error

Object

IndexOutOfBoundsException

ArrayIndexOutOfBoundsException

10-9

Base and derived classes

 Object is the super class of all classes

The Throwable class is the superclass of all errors

and exceptions in the Java language

Error indicates serious problems that a reasonable

application should not try to catch.

 Exception and its subclasses are a form of

Throwable that indicates conditions that a

reasonable application might want to catch

10-10

Java's Throwable hierarchy is wide

and deep (many)

 See http://download.oracle.com/javase/6/docs/api/java/lang/Throwable.html

 RuntimeException is the superclass of

exceptions that can be thrown during the normal

operation of the Java Virtual Machine

 IOException classes are related to I/O

 IndexOutOfBounds exceptions indicate that an

index of some sort (such as to an array, to a string,

or to a vector) is out of range

http://download.oracle.com/javase/6/docs/api/java/lang/Throwable.html

10-11

Our own Exception classes

A method can throw an existing exception
/**

* @return element at the top of this stack

*/

public E top() throws EmptyStackException {

// The EmptyStackException is in java.util.*;

if(this.isEmpty())

throw new EmptyStackException();

// If this stack is empty, return doesn't happen

return myData.getFirst();

}

 Declare what the method throws, then throw a new
exception -- The superclass constructor does the work

10-12

Writing our own Exception classes

Consider a NoSongsInQueueException method in
class PlayList to inform users they sent a

playNextSong message when the playlist has 0 songs

public void playNextSong() {

if (songQueue.isEmpty())

throw new NoSongsInQueueException();

// ...

}

You could start from scratch
— find the line number, the file name, the methods, …

• Or you could extend an Exception class

10-13

Create a new Exception

// The work of exception handling will be extended to our

// new NoSongsInQueueException. All we have to do is imple-

// ment one or two constructors that calls the superclass's

// constructor (RuntimeException here) with super.

class NoSongsInQueueException extends RuntimeException {

public NoSongsInQueueException() {

// Send a message to RuntimeException() constructor

super();

}

public NoSongsInQueueException(String errorMessage) {

// Send a message to RuntimeException(String) constructor

super("\n " + errorMessage);

}

}
super calls the superclass constructor, which

in this new exception class is RunTimeException

10-14

Using our new default Constructor
Download

class PlayList {

Queue songQueue = new LinkedBlockingQueue();

public PlayList() {

songQueue = new LinkedBlockingQueue();

}

public void playNextSong() {

if (songQueue.isEmpty())

throw new NoSongsInQueueException();

// ...

}

}

PlayList pl = new PlayList();

pl.playNextSong();

Exception in thread "main" NoSongsInQueueException

at PlayList.playNextSong(NoSongsInQueueException.java:36)

at NoSongsInQueueException.main(NoSongsInQueueException.java:12)

https://sites.google.com/site/csc335fall10/code-demos-1/NoSongsInQueueException.java?attredirects=0&d=1

10-15

Use constructor with string parameter

class PlayList {

Queue songQueue = new LinkedBlockingQueue();

public PlayList() {

songQueue = new LinkedBlockingQueue();

}

public void playNextSong() {

if (songQueue.isEmpty())

throw new NoSongsInQueueException(

"Hey, there ain't no songs in this PlayList");

}

}

PlayList pl = new PlayList();

pl.playNextSong();

Exception in thread "main" NoSongsInQueueException:

Hey, there ain't no songs in this PlayList

at PlayList.playNextSong(NoSongsInQueueException.java:36)

at NoSongsInQueueException.main(NoSongsInQueueException.java:12)

10-16

java.io uses inheritance too

The BufferedReader class is often used with
InputStreamReader

— BufferedReader has a readLine method

 BufferedReader is used for input from keyboard or

a text file

InputStreamReader bytesToChar

= new InputStreamReader(System.in);

BufferedReader objectWithReadline

= new BufferedReader(bytesToChar);

System.out.print("Enter a number: ");

String line = objectWithReadline.readLine();

double number = Double.parseDouble(line);

10-17

Constructor takes a Reader parameter or

any class that extends Reader

Since the BufferedReader constructor a Reader

parameter public BufferedReader(Reader in)

— any class that extends Reader can be passed as an

argument to the BufferedReader constructor

• InputStreamReader such as Java's System.in object

– For keyboard input

• FileReader

– for reading from a file

BufferedReader hasReadline

= new BufferedReader();

Part of Java's inheritance hierarchy. References to

InputStreamReader and FileReader can be assigned

to a Reader reference (one-way assignment)

Reader

InputStreamReader

FileReader

Object

10-18

New Listener

WindowListener has 7 methods to implement

We only need WindowClosing

When users close the window, have that method

ask the user to save files, quit without save, or

cancel

— Need to change defaultCloseOperation to
DO_NOTHING_ON_CLOSE

this.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

10-19

Add a WindowListener to this by

implementing all 7 methods

import java.awt.event.WindowEvent;

import java.awt.event.WindowListener;

import javax.swing.JFrame;

public class NewListener extends JFrame {

public static void main(String[] args) {

JFrame frame = new NewListener();

frame.setVisible(true);

}

public NewListener() {

setTitle("Let someone list to me");

setSize(200, 150);

setLocation(100, 100);

this.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

this.addWindowListener(new RespondToWindowEvents());

}

private class RespondToWindowEvents implements WindowListener {

10-20

Or extend WindowAdapter

To help, you can have the WindowListener extend

WindowAdapter to save writing all 7 methods

This gives you all 7 as method stubs that do nothing

Then override WindowClosing

To terminate program

System.exit(0);

10-21

ConfirmMessageDialog

private class RespondToWindowEvents extends WindowAdapter {

public void windowClosing(WindowEvent evt) {

int userInput

= JOptionPane.showConfirmDialog(null, "Save data?");

assert (userInput == JOptionPane.NO_OPTION

|| userInput == JOptionPane.YES_OPTION

|| userInput == JOptionPane.CANCEL_OPTION);

// Do whatever is appropriate for your application

// You will want to terminate the program after saves

System.exit(0);

}

}

10-22

Benefits of Inheritance

According to Sun’s Java website,

inheritance offers the following benefits:
— Subclasses provide specialized behaviors from the

basis of common elements provided by the superclass.

Through the use of inheritance, programmers can

reuse the code in the superclass many times.

— Programmers can implement superclasses called

abstract classes that define "generic" behaviors. The

abstract superclass defines and may partially

implement the behavior, but much of the class is

undefined and unimplemented. Other programmers

fill in the details with specialized subclasses.

10-23

Purpose of Abstract Classes

Why have Abstract classes?

— Define generic behaviors

— Can implement the common behaviors

Summary of how to guarantee that derived classed

implement certain methods

— Make the method abstract, do not implement it

— Use the key word abstract in the method heading and

end with ; rather than { }

10-24

Example of Simple Abstract

Class

public abstract class AnimalKingdom {

private String phylum;

public AnimalKingdom(String p) {

phylum = p;

}

public String getPhylum(){

return phylum;

}

public abstract void eat();

}

10-25

Particularities of Abstract

Classes

Cannot be instantiated

A class can be declared abstract even though it

has no abstract methods

You can create variables of an abstract class

— it must reference a concrete (nonabstract) subclass

Animal giraffe = new Giraffe("Chordata");

10-26

…More particularities

A subclass cannot access the private fields of its

superclass (might want to use protected access

modifier to do so, or private with getters and

setters)

 If a subclass does not implement the abstract

methods of its parent, it too must be abstract

Protected methods and fields are known

throughout the package, and to all subclasses

even if in another package

10-27

Summary of

Access Modifiers

Modifier Visibility

private None

None(default) Classes in the package

protected Classes in package and subclasses

inside or outside the package

public All classes

10-28

Another consideration

You can not reduce visibility

— you can override a private method with a public one

— you can not override a public method with a private

one

10-29

Uses of inheritance continued

You can print any Object with toString
— Inheritance is one feature that distinguishes the object-

oriented style of programming

— At a minimum, because every class extends Object,
every class is guaranteed to understand the toString
message. If a class does not override toString, the
toString method in the Object class executes

 Inheritance gives us polymorphic messages
— Inheritance is one way to implement polymorphism

(Java interfaces are the other way). Polymorphism
allows the same message to be sent to different types
of objects for behavior that is appropriate to the type

10-30

Design Principle

Favor object composition over class

inheritance
Inheritance is a cool way to change behavior. But we know that it's brittle

because the subclass can easily make assumptions about the context in

which a method it overrides is getting called. …

Composition has a nicer property. The coupling is reduced by just having

some smaller things you plug into something bigger, and the bigger

object just calls the smaller object back. …

Or read all this page

http://www.artima.com/lejava/articles/designprinciples4.html#resources

http://www.artima.com/lejava/articles/designprinciples4.html

10-31

Example of bad use of

Inheritance

Stack<E> extends Vector<E>
Stack<Integer> s = new Stack<Integer>();

s.push(5);

s.push(1);

s.push(4);

s.push(2);

s.push(3);

System.out.println(s);

Collections.shuffle(s);

System.out.println(s);

s.remove(2);

System.out.println(s);

s.insertElementAt(-999, 2);

System.out.println(s);

Output (is this LIFO?)

[5, 1, 4, 2, 3]

[4, 2, 5, 3, 1]

[4, 2, 3, 1]

[4, 2, -999, 3, 1]

