
Object-Oriented

Design Patterns

CSC 335: Object-Oriented

Programming and Design

Outline

Overview of Patterns

Iterator

Strategy

12-2

The Beginning

Christopher Alexander, architect

– A Pattern Language--Towns, Buildings, Construction

– Timeless Way of Building (1979)

– “Each pattern describes a problem which occurs over

and over again in our environment, and then describes

the core of the solution to that problem, in such a way

that you can use this solution a million times over,

without ever doing it the same way twice.”

Other patterns: novels (tragic, romantic, crime),

movies genres, 12-3

“Gang of Four” (GoF) Book

Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley Publishing Company, 1994

Written by this "gang of four"

– Dr. Erich Gamma, then Software Engineer, Taligent, Inc.

– Dr. Richard Helm, then Senior Technology Consultant, DMR Group

– Dr. Ralph Johnson, then and now at University of Illinois, Computer

Science Department

– Dr. John Vlissides, then a researcher at IBM

• Thomas J. Watson Research Center

– See WikiWiki tribute page http://c2.com/cgi/wiki?JohnVlissides

http://c2.com/cgi/wiki?JohnVlissides

Patterns

This book defined 23 patterns in three categories
– Creational patterns deal with the process of object creation

– Structural patterns, deal primarily with the static composition and
structure of classes and objects

– Behavioral patterns, which deal primarily with dynamic interaction
among classes and objects

12-5

Documenting Discovered Patterns

Many other patterns have been introduced
documented
– For example, the book Data Access Patterns by Clifton

Nock introduces 4 decoupling patterns, 5 resource patterns,
5 I/O patterns, 7 cache patterns, and 4 concurrency patterns.

– Other pattern languages include telecommunications
patterns, pedagogical patterns, analysis patterns

– Patterns are mined at places like Patterns Conferences

12-6

http://hillside.net/patterns/

ChiliPLoP

Recent patterns books work shopped at

ChiliPLoP, Carefree Arizona
– Patterns of Enterprise Application Arhitecture Martin Fowler

– Patterns of Fault Tolerant Software, Bob Hamner

– Patterns in XML Fabio Arciniegas

– Patterns of Adopting Agile Development Practices Amr

Elssamadisy

– 2010: Patterns of Parallel Programming, Ralph Johnson

• 16 patterns and one Pattern Language work shopped

– Will be yet another book worksopped at ChiliPLoP

12-7

http://www.hillside.net/chiliplop/
http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420
http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420
http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420
http://www.amazon.com/Patterns-Fault-Tolerant-Software-Wiley/dp/0470319798
http://www.amazon.com/Patterns-XML-Design-Implementation-Applications/dp/0321241606/ref=sr_1_3?ie=UTF8&s=books&qid=1254257237&sr=1-3
mailto:fabio@postgraphy.com
http://www.amazon.com/Agile-Adoption-Patterns-Roadmap-Organizational/dp/0321514521
http://www.upcrc.illinois.edu/workshops/paraplop10/program.html

GoF Patterns

– Creational Patterns

• Abstract Factory

• Builder

• Factory Method

• Prototype

• Singleton

– Structural Patterns

• Adapter

• Bridge

• Composite

• Decorator

• Façade

• Flyweight

• Proxy

– Behavioral Patterns

• Chain of Responsibility

• Command

• Interpreter

• Iterator

• Mediator

• Memento

• Observer

• State

• Strategy

• Template Method

• Visitor

12-8

Why Study Patterns?

Reuse tried, proven solutions

– Provides a head start

– Avoids gotchas later (unanticipated things)

– No need to reinvent the wheel

Establish common terminology

– Design patterns provide a common point of reference

– Easier to say, “We could use Strategy here.”

Provide a higher level prospective

– Frees us from dealing with the details too early
12-9

Carpenter's Conversation
Adapted from Ralph Johnson

How should we build the cabinet drawers?

Cut straight down into the wood, cut back up 45

degrees a specific length, then go straight back

down a specific length, the cut back up at 45

degrees

12-10

A Higher Level Discussion

A high level discussion could have been:

– "Should we use a miter joint or a dovetail joint?"

– This is a higher, more abstract level

– Avoids getting bogged down in details

Which level of detail is more efficient?s

12-11

Consequences of which joint

Dovetail joints

– are more complex, more expensive to make

– withstands climate conditions – dovetail joint remains

solid as wood contracts and expands

– independent of fastening system

– more pleasing to look at

Thoughts underneath this question are

– Should we make a beautiful durable joint or a cheap

and dirty one that lasts until the check clears?
http://www.infoq.com/interviews/Ralph-Johnson-Parallel-Programming-Patterns 12-12

http://www.infoq.com/interviews/Ralph-Johnson-Parallel-Programming-Patterns
http://www.infoq.com/interviews/Ralph-Johnson-Parallel-Programming-Patterns
http://www.infoq.com/interviews/Ralph-Johnson-Parallel-Programming-Patterns
http://www.infoq.com/interviews/Ralph-Johnson-Parallel-Programming-Patterns
http://www.infoq.com/interviews/Ralph-Johnson-Parallel-Programming-Patterns
http://www.infoq.com/interviews/Ralph-Johnson-Parallel-Programming-Patterns
http://www.infoq.com/interviews/Ralph-Johnson-Parallel-Programming-Patterns
http://www.infoq.com/interviews/Ralph-Johnson-Parallel-Programming-Patterns
http://www.infoq.com/interviews/Ralph-Johnson-Parallel-Programming-Patterns

Consequences

Carpenters, patterns writers, and software

developers discuss consequences

– consequences simply refer to cause and effect

• If we do this, what will happen – both good and bad

– also known as the forces that patterns consider

• Example: If we use Mediator to add and drop courses

– Add an extra type that needs references to several objects

– All of the logic and process is confined to one class so any change

to the "rules" would be handled there

– Reduces dependencies between others objects (simpler design

when student does NOT tell the scheduled course to change) 12-13

Other advantages

Most design patterns make software more

modifiable, less brittle

– we are using time tested solutions

Using design patterns makes software systems

easier to change

Helps increase the understanding of basic object-

oriented design principles

– encapsulation, inheritance, interfaces, polymorphism
12-14

Style for Describing Patterns

We will use this structure:

– Pattern name

– Recurring problem: what problem the pattern

addresses

– Solution: the general approach of the pattern

– UML for the pattern

• Participants: a description of the classes in the UML

– Use Example(s): examples of this pattern, in Java

12-15

A few Patterns

Coming p: Two OO Design Patterns

– Iterator Design Pattern

• access the elements of an aggregate object

sequentially without exposing its underlying

representation

– Strategy

• A means to define a family of algorithms, encapsulate

each one as an object, and make them interchangeable

12-16

Pattern: Iterator

Name: Iterator (a.k.a Enumeration)

Problem: How can you loop over all objects in any

collection. You don’t want to change client code when

the collection changes. You also want the same

interface (methods)

Solutions: 1) Have each class implement an interface.

2) Have an interface that works with all collections

Consequences: Can change collection class details

without changing code to traverse the collection
12-17

GoF Version

of Iterator page 257

ListIterator

First()

Next()

IsDone()

CurrentItem()

// Imaginary code

ListIterator<Employee> itr = list.iterator();

for(itr.First(); !itr.IsDone(); itr.Next()) {

cout << itr.CurrentItem().toString();

12-18

Java version of Iterator

interface Iterator

boolean hasNext()
Returns true if the iteration has more elements.

Object next()
Returns the next element in the iteration and updates the iteration to

refer to the next (or have hasNext() return false)

void remove()
Removes the most recently visited element

12-19

The Iterator interface in use

// The Client code

List<BankAccount> bank =

new ArrayList<BankAccount>();

bank.add(new BankAccount("One", 0.01));

// ...

bank.add(new BankAccount("Nine thousand", 9000.00));

String ID = "Two";

Iterator<BankAccount> i = bank.iterator();

while(i.hasNext()) {

if(i.next().getID().equals(searchAcct.getID()))

System.out.println("Found " + ref.getID());

} 12-20

UML Diagram of Java's

Iterator and Collections

<<interface>>

Iterator

hasNext()

next()

<<interface>>

List

iterator()

…

Client

Vector

iterator()

Iterator

hasNext()

next()

LinkedList

iterator()

ArrayList

iterator()

12-21http://download.oracle.com/javase/6/docs/api/java/util/List.html

http://download.oracle.com/javase/6/docs/api/java/util/List.html

Code Demo

Iterate over two different data structures

See iterators.zip on code demos page

12-22

Strategy Design Pattern

Strategy

12-23

Pattern: Strategy

Name: Strategy (a.k.a Policy)

Problem: You want to encapsulate a family of

algorithms and make them interchangeable.

Strategy lets the algorithm vary independently

from the clients that use it (GoF)

Solution: Create an abstract strategy class (or

interface) and extend (or implement) it in

numerous ways. Each subclass defines the

same method names in different ways
12-24

Design Pattern: Strategy

Consequences:

– Allows families of algorithms.

Known uses:

– Layout managers in Java

– Different Poker Strategies in a 335 Project

– Different PacMan chase strategies in a 335 Project

– TextField validators in dBase and Borland OWL:

• Will use different algorithms to verify if the user input is a valid

integer, double, string, date, yes/no.

• Eliminates conditional statements 12-25

Java Example of Strategy

this.setLayout(new FlowLayout());

this.setLayout(new GridLayout());

In Java, a container HAS-A layout manager

– There is a default

– You can change a container's layout manager with
a setLayout message

12-26

Change the stategy at runtime

Demonstrate LayoutControllerFrame.java
private class FlowListener

implements ActionListener {

// There is another ActionListener for GridLayout

public void actionPerformed(ActionEvent evt) {

// Change the layout strategy of the JPanel

// and tell it to lay itself out

centerPanel.setLayout(new FlowLayout());

centerPanel.validate();

}

}

12-27

http://www.cs.arizona.edu/classes/cs335/spring07/demoCode/LayoutControllerFrame.java

interface LayoutManager

– Java has interface java.awt.LayoutManager

– Known Implementing Classes

• GridLayout, FlowLayout, ScrollPaneLayout

– Each class implements the following methods
addLayoutComponent(String name, Component comp)

layoutContainer(Container parent)

minimumLayoutSize(Container parent)

preferredLayoutSize(Container parent)

removeLayoutComponent(Component comp)

12-28

http://java.sun.com/j2se/1.5.0/docs/api/java/awt/LayoutManager.html

UML Diagram of Strategy

General Form

Context

strategy: Strategy

setStrategy(Strategy)

…

<<interface>>

Strategy

AlgorithmInterface

ConcreteClassA

AlgorithmInterface

ConcreteClassB

AlgorithmInterface

ConcreteClassC

AlgorithmInterface

implements

12-29

Specific UML Diagram of

LayoutManager in Java

JPanel

layoutMan: LayoutManager

size: Dimension

setLayout(lm: LayoutManager)

setPreferredSize(di:Dimension)

<<interface>>

LayoutManager

addLayoutComponent()

layoutContainer()

minimumLayoutSize()

GridLayout

addLayoutComponent()

layoutContainer()

minimumLayoutSize()

FlowLayout

addLayoutComponent()

layoutContainer()

minimumLayoutSize()

ScrollPaneLayout

addLayoutComponent()

layoutContainer()

minimumLayoutSize()

implements

