
1

Pattern-Oriented Design
by Rick Mercer based on the GoF book and

Design Patterns Explained

A New Perspective on Object-Oriented Design

Alan Shalloway, James R. Trott

Addison Wesley ISBN 0-201-71594-5

CSC 335: Object-Oriented

Programming and Design

2

Using Patterns to Design

 There are 23 Object-Oriented design patterns cataloged

in the GoF book--we’ve considered 10 so far (Fall 09)

Iterator, Observer, Strategy, Composite, Singleton,

Flyweight, Command, Template, Chain of Responsibility,

Decorator

We'll use some patterns to help design a system

The new case study is in electronic retailing over the

internet (An Ecommerce system)

Several design decisions will be aided by knowledge of

existing design patterns

at a fairly high level of abstraction

3

Plan too much, plan ahead,

or don’t plan at all?

Development of software systems can suffer from

analysis paralysis: attempt to consider all possible

changes in the future

At other times developers jump to code too quickly

there is tremendous pressure to deliver, not maintain

Life’s three certainties for software developers

Death, Taxes, and Changes in Requirements

There is a middle ground for planning for change

4

How will change occur

First, anticipate that changes will occur

Consider where they will change, rather than the

exact nature of the changes

These issues will come up in the Ecommerce case

study

5

What is variable in the design?

Consider what is variable in your design

Instead of focusing on what might force a

change to your design

Consider what you might want to change

Encapsulate the concept that varies

– this is a theme of many design patterns

Hopefully there are long term benefits

without a lot of extra work up front

6

OO Design Patterns Used

In the upcoming case study, these design

patterns will help make for a system that is

good design

Strategy

Singleton

Decorator

Observer

We've considered all four

7

An Ecommerce System

There is a TaskController object that handles
sales requests over the internet

When the sales order is requested, the
controller delegates to a SalesOrder object

8

Assign Responsibilities

SalesOrder responsibilities:

Allow users to make an order using GUI input

Process the order

Print a sales receipt

TaskController SalesOrder

+calcTax():double

SalesTicketPrinter

9

Changing Requirements

Start charging taxes on order from
customers

need to add rules for taxation, but how?

modify existing SalesOrder to handle
U.S. taxes

extend the existing SalesOrder object
and modify the tax rules so it applies to
the new country

This is an inheritance solution

10

Subclassing Solution

TaskController

CanadianSalesOrder

+calcTax():double

SalesOrder

+calcTax():double

SalesTicketPrinter

Canadian
Tax Rules

US Tax
Rules

11

Favor Composition Over

Inheritance

Design pattern theme of composition over

inheritance is ignored in previous design

Here is a different approach

consider what is variable in the design

encapsulate the concept the varies

Accept the fact that tax rules vary country to

country and state to state and county to county, and

sometimes city to city (like in Arizona) and they

change

12

Alternate Designs

Or use an abstract class with an abstract double

calcTax() and many classes in a hierarchy

Or design an interface to be implemented by

different classes using different algorithms

Then have SalesOrder contain a reference to the correct

object (composition over inheritance)

public interface TaxCalculator {

// A Salable object knows price and how it is taxed

public double taxAmount(Salable itemSold,

double quantity);

}

13

A Better Design with Strategy
SalesOrder

+calcTax():double

CandianTaxer

+taxAmount(itemSold:Salable,quantity:double):double

USTaxer

+taxAmount(itemSold:Salable,quantity:double):double

SalesTicketPrinte r

interface

TaxCalculator

+taxAmount(itemSold:Salable,quantity:double):double

TaskController

for each Salable

 reult += taxAmount(s,q)

14

Why does Strategy make this

design better?

Better Cohesion (hangs together)

sales tax details are in its own class

Easy to add tax rules from different countries

Easier to shift responsibilities

In the first design where CanadianSalesOrder extends

USSalesOrder, only TaskController is able to

determine which type of sales order to use

With Strategy, either TaskController or SalesOrder

could set the TaxCalculator

15

Determine What Varies

What Varies?

The business rules for taxation

Current design handles variations at least as well as

the other design design

Current design will handle future variations as well

A family of tax calculation algorithms have been

encapsulated as objects, they are interchangeable,

Strategy pattern applied in an Ecommerce system

16

Using the Strategy Pattern

What happens when EnglishTaxer is added

In England, old-age pensioners are not required to pay
taxes on sales items

How can this be handled?

1) Pass age of the Customer to TaxCalculator object

2) Be more general and pass a Customer object

3) Be even more general and pass a reference to the
SalesOrder object (this) to the TaxCalculator and let
that EnglishStrategy object ask SalesOrder for
customer age (post some html to the client)

17

Is this change bad?

To handle this new requirement, SalesOrder and

TaxCalculator have to be modified

But the change is small and certainly doable

Not likely to cause a new problem

 If a Strategy needs more information, pass the

information to the object as an argument

Some objects may ignore the extra parameter

Strategy can be applied anywhere you hear this

"At different times, different rules apply"

18

Singleton Pattern

Singleton Ensure a class only has one instance

and provide a global point of access to it

The singleton pattern works by having a special

method that is used to instantiate the object

when called, the method checks to see if the object has

already been instantiated

it returns the singleton if instantiated or constructs a

new one if this is the first call to get the instance

to guarantee this, have a private constructor

19

Using Singleton

TaxCalculators are currently encapsulated as
Strategy objects

How many USTaxer objects are required in this
system? How many CanadianTaxers?

Forces:

The same object is being used over and over again

More efficient to avoid instantiating them and
throwing them away again and again

Doing all at once could be slow to start up

Could instantiate these objects as needed

20

Only want one when needed

Don’t need more than one instance of each

TaxCalculator class

Solution:

Let Strategy objects handle the instantiation

Let there be only one instance

Don’t concern clients (SalesOrder) over this detail

In other words, use the Singleton design pattern

21

USTaxer is now a Singleton

public class USTaxer implements TaxCalculator {

private static USTaxer instance; // Only one

private static double taxRate;

private USTaxer() {

taxRate = 0.06; // greatly simplified

}

public static USTaxer getInstance() {

if (instance == null)

instance = new USTaxer();

return instance;

}

public double taxAmount(Salable item, double quan) {

return 0; // TODO: Implement tax algorithm

}

}

22
I have an instance of myself

prints
1

1..*1

1

I have an instance of myself

USTaxer

-instance:USTaxer

-taxRate:double

-USTaxer()

+getInstance():USTaxer

+taxAmount(item:Salable,quant:double):double

+main(args:String[]):void

TaskController

CanadianTaxer

-instance:CanadianTaxer

-taxRate:double

-CanadianTaxer()

+getInstance():CanadianTaxer

+taxAmount(item:Salable,quant:double):double

SalesTicketPrinte r

Salable

-cost:double

+price():double

interface

TaxCalculator

+taxAmount(itemSold:Salab le,quantity:double):double

SalesOrder

+calcTax():double

composition

aggregation (Salable is one part of SalesOrder)

dependency

implements

23

Aggregation vs. Composition

Definitions from the Unified Modeling Language Guide

Aggregation A special form of association that

specifies a whole/part relationship between the

aggregate (the whole) and a component (the part)

When a class has an instance variable

Composition A form of aggregation with strong

ownership. Once a component is created, its lives

and dies with its whole

A TaxCalculator object is only necessary with a

SalesOrder not used elsewhere

24

Other Patterns applied

 In the Ecommerce system, we will now

“Decorate” a SalesTicket and

“Observe” a Customer

25

Decorate SalesTicketPrinter

Assume the SalesTicketPrinter currently creates an

html sales receipt Airline Ticket

New Requirement: Add header with company

name, add footer that is an advertisement, during

the holidays add holiday relevant header(s) and

footer(s), we’re not sure how many

One solution

Place control in SalesTicketPrinter

Then you need flags to control what header(s) get printed

26

I have an instance of myselfI have an instance of myself

1

1..*1

1

prints

TaskController SalesOrder

+calcTax():double

interface

TaxCalculator

+taxAmount(itemSold:Salab le,quantity:double):double

USTaxer

-instance:USTaxer

-taxRate:double

-USTaxer()

+getInstance():USTaxer

+taxAmount(item:Salable,quant:double):double

+main(args:String[]):void

SalesTicketPrinte r

+printTicket():void

Salable

-cost:double

+price():double

CanadianTaxer

-instance:CanadianTaxer

-taxRate:double

-CanadianTaxer()

+getInstance():CanadianTaxer

+taxAmount(item:Salable,quant:double):double

Header

+printHeader():void

Footer

+printFooter():void

if header w anted, printHeader

printTicket

if footer w anted, printFooter

One Solution

This works well if there are few header and footer

options or perhaps just add a few private helper methods

underline indicates static methods

27

Strategy Pattern?

 If there are many types of headers and footers,

with only one being printed each time, use

Strategy

 If there are more than one header and footer,

and the ordering changes, and the number of

combinations grows,

use the Decorator design pattern to chain together

the desired functionality in the correct order

needed

28

Decorator Again

Decorator summary repeated Attach additional

Responsibilities to an object dynamically

GoF book states: Decorators provide a flexible

alternative to subclassing for functionality

Start chain with decorators, end with original object

Decorator

1

Decorator

2

Concrete

Component

Example:

keyboard = new BufferedReader(

new InputStreamReader(

System.in));

29

prints

1

1

1

1..*

1

1

I have an instance of myself

I have an instance of myself

Component

+printTicket():void

TicketDecorator

-myComponent:Component

+TicketDecorator()

+TicketDecorator(c:Component)

+printTicket():void

SalesTicket

+printTicket():void

+main(args:String[]):void

HeaderDecorator2

+HeaderDecorator2(c:Component)

+printTicket():void

+printHeader():void

FooterDecorator1

+FooterDecorator1(c:Component)

+printTicket():void

+printFooter():void

HeaderDecorator1

+HeaderDecorator1(c:Component)

+printTicket():void

+printHeader():void

Configuration

+getSalesTicket():Component

FooterDecorator2

+FooterDecorator2(c:Component)

+printTicket():void

+printFooter():void

SalesOrder

+main(args:String[]):void

+printTicket():void

+calcTax():double

interface

TaxCalculator

+taxAmount(itemSold:Salable,quantity:double):double

Salable

-cost:double

+price():double

TaskController

CanadianTaxer

-instance:CanadianTaxer

-taxRate:double

-CanadianTaxer()

+getInstance():CanadianTaxer

+taxAmount(item:Salable,quant:double):double

USTaxer

-instance:USTaxer

-taxRate:double

-USTaxer()

+getInstance():USTaxer

+taxAmount(item:Salable,quant:double):double

+main(args:String[]):void

30

A Simple SalesTicket

abstract class Component {

abstract public void printTicket();

}

// Instances of this class are sales tickets

// that may be decorated

class SalesTicket extends Component {

@Override

public void printTicket() {

// Hard coded here, but simpler than

// adding a new Customer class . . .

System.out.println("Customer: Kim");

System.out.println("The sales ticket itself");

System.out.println("Total: $123.45");

}

}

31

TicketDecorator

abstract class TicketDecorator extends Component {

private Component myComponent;

public TicketDecorator() {

myComponent = null;

}

public TicketDecorator(Component c) {

myComponent = c;

}

@Override

public void printTicket() {

if (myComponent != null)

myComponent.printTicket();

}

}

32

A Header Decorator

class HeaderDecorator1 extends TicketDecorator {

public HeaderDecorator1(Component c) {

super(c);

}

@Override

public void printTicket() {

this.printHeader();

super.printTicket();

}

public void printHeader() {

System.out.println("@@ Header One @@");

}

}

33

A Footer Decorator

class FooterDecorator1 extends TicketDecorator {

public FooterDecorator1(Component c) {

super(c);

}

@Override

public void printTicket() {

super.printTicket();

this.printFooter();

}

public void printFooter() {

System.out.println("%% FOOTER one %%");

}

}

34

A Client

public class Client {

public static void main(String[] args) {

Component myST = Configuration.getSalesTicket();

myST.printTicket();

}

}

35

Simple Configuration

// This method determines how to decorate SalesTicket

class Configuration {

public static Component getSalesTicket() {

// Return a decorated SalesTicket

return

new HeaderDecorator1(

new HeaderDecorator2(

new FooterDecorator2(

new FooterDecorator1(

new SalesTicket()

)

)

)

)

;

}

}

36

Output with Current

Configuration

Output:

@@ Header One @@

>> Header Two <<

Customer: Bob

The sales ticket itself

Total: $123.45

%% FOOTER one %%

FOOTER two

37

prints

1

1

1

1..*

1

1

I have an instance of myself

I have an instance of myself

Component

+printTicket():void

TicketDecorator

-myComponent:Component

+TicketDecorator()

+TicketDecorator(c:Component)

+printTicket():void

SalesTicket

+printTicket():void

+main(args:String[]):void

HeaderDecorator2

+HeaderDecorator2(c:Component)

+printTicket():void

+printHeader():void

FooterDecorator1

+FooterDecorator1(c:Component)

+printTicket():void

+printFooter():void

HeaderDecorator1

+HeaderDecorator1(c:Component)

+printTicket():void

+printHeader():void

Configuration

+getSalesTicket():Component

FooterDecorator2

+FooterDecorator2(c:Component)

+printTicket():void

+printFooter():void

SalesOrder

+main(args:String[]):void

+printTicket():void

+calcTax():double

interface

TaxCalculator

+taxAmount(itemSold:Salable,quantity:double):double

Salable

-cost:double

+price():double

TaskController

CanadianTaxer

-instance:CanadianTaxer

-taxRate:double

-CanadianTaxer()

+getInstance():CanadianTaxer

+taxAmount(item:Salable,quant:double):double

USTaxer

-instance:USTaxer

-taxRate:double

-USTaxer()

+getInstance():USTaxer

+taxAmount(item:Salable,quant:double):double

+main(args:String[]):void

The system

on 2 slides

SalesOrder

delegates to

Component to

print ticket

38

prints

1

1

1

1..*

1

1

I have an instance of myself

I have an instance of myself

Component

+printTicket():void

TicketDecorator

-myComponent:Component

+TicketDecorator()

+TicketDecorator(c:Component)

+printTicket():void

SalesTicket

+printTicket():void

+main(args:String[]):void

HeaderDecorator2

+HeaderDecorator2(c:Component)

+printTicket():void

+printHeader():void

FooterDecorator1

+FooterDecorator1(c:Component)

+printTicket():void

+printFooter():void

HeaderDecorator1

+HeaderDecorator1(c:Component)

+printTicket():void

+printHeader():void

Configuration

+getSalesTicket():Component

FooterDecorator2

+FooterDecorator2(c:Component)

+printTicket():void

+printFooter():void

SalesOrder

+main(args:String[]):void

+printTicket():void

+calcTax():double

interface

TaxCalculator

+taxAmount(itemSold:Salable,quantity:double):double

Salable

-cost:double

+price():double

TaskController

CanadianTaxer

-instance:CanadianTaxer

-taxRate:double

-CanadianTaxer()

+getInstance():CanadianTaxer

+taxAmount(item:Salable,quant:double):double

USTaxer

-instance:USTaxer

-taxRate:double

-USTaxer()

+getInstance():USTaxer

+taxAmount(item:Salable,quant:double):double

+main(args:String[]):void

39

Observe Customer

New Requirements: Send an email to a new

customer and verify the customer's address with

the post office

 If this was it, hard code Customer behavior when

being added to data base

1

1

I have an instance of myself
I have an instance of myself

prints

1

1..*

1

1

SalesOrder

+main(args:String[]):void

+printTicket():void

+calcTax():double

interface

TaxCalculator

+taxAmount(itemSold:Salable,quantity:double):double

SalesTicket

+printTicket():void

HeaderDecorator1

+HeaderDecorator1(c:Component)

+printTicket():void

+printHeader():void

Foote rDecorator2

+FooterDecorator2(c:Component)

+printTicket():void

+printFooter():void

CanadianTaxer

-instance:CanadianTaxer

-taxRate:double

-CanadianTaxer()

+getInstance():CanadianTaxer

+taxAmount(item:Salable,quant:double):double

Component

+printTicket():void

USTaxer

-instance:USTaxer

-taxRate:double

-USTaxer()

+getInstance():USTaxer

+taxAmount(item:Salable,quant:double):double

+main(args:String[]):void

Salable

-cost:double

+price():double

TicketDecorator

-myComponent:Component

+TicketDecorator()

+TicketDecorator(c:Component)

+printTicket():void

Foote rDecorator1

+FooterDecorator1(c:Component)

+printTicket():void

+printFooter():void

TaskController

HeaderDecorator2

+HeaderDecorator2(c:Component)

+printTicket():void

+printHeader():void

Configuration

+getSalesTicket():Component

Customer

+addCustomer():void

AddressVerification

+verifyAddress():void

WelcomeEMail

+doWelcomLetter():void

40

Or Use Observer

With additional behaviors (such as send

advertisements via snail mail), there may be a

changing list of objects that need notification that a

new customer is being added

These objects will have different interfaces

SendEmail, SendCouponsViaSnailMail,

SellPrivateInformationToTelemarketers,

Next up: change two objects into "Observers"

41

Observer

Have Customer extend Observable

Have all of the objects that need notification

implement Observer (all have the update method)

Have some configurer add the correct observers to

the Customer object with addObservers

Have the addCustomer method send the message

notifyObservers

42

I have an instance of myself

prints

1

1..*

1

1

1

1

I have an instance of myself

FooterDecorator1

+FooterDecorator1(c:Component)

+printTicket():void

+printFooter():void

Component

+printTicket():void

FooterDecorator2

+FooterDecorator2(c:Component)

+printTicket():void

+printFooter():void

Configuration

+getSalesTicket():Component

TaskController

SalesTicket

+printTicket():void

USTaxer

-instance:USTaxer

-taxRate:double

-USTaxer()

+getInstance():USTaxer

+taxAmount(item:Salable,quant:double):double

+main(args:String[]):void

HeaderDecorator1

+HeaderDecorator1(c:Component)

+printTicket():void

+printHeader():void

HeaderDecorator2

+HeaderDecorator2(c:Component)

+printTicket():void

+printHeader():void

TicketDecorator

-myComponent:Component

+TicketDecorator()

+TicketDecorator(c:Component)

+printTicket():void

interface

TaxCalculator

+taxAmount(itemSold:Salable,quantity:double):double

Salable

-cost:double

+price():double

SalesOrder

+main(args:String[]):void

+printTicket():void

+calcTax():double

CanadianTaxer

-instance:CanadianTaxer

-taxRate:double

-CanadianTaxer()

+getInstance():CanadianTaxer

+taxAmount(item:Salable,quant:double):double

java.util.Observable

Customer

+addCustomer():void

java.util.Observer

AddressVerification

+verifyAddress():void

+update(o:java.util.Observable,arg:Object):void

java.util.Observer

WelcomeEMail

+doWelcomeLetter():void

+update(o:java.util.Observable,arg:Object):void

Design with Observer

gatherCoupons()

