Java Threads

CSc 335
Object-Oriented Programming and Design
Spring 2009

Acknowledgements

* Some materials from the following texts was used:

= The Theory and Practice of Concurrency, by A.W.
Roscoe, Prentice Hall, 1997, ISBN 0-13-674409-5.

= Java In A Nutshell (5" Ed.), by David Flanagan, O'Reilly
Media, 2005, ISBN 0-596-00773-6.

* Slides by Ivan VVazquez, with some help from Rick
Snodgrass.

Threads H-2

Java Threads

Outline

* Basic concepts

* Processes

* Threads

° Java: Thread class

° Java: runnable Interface

* Single-threaded vs. Multi-Threads
* Concurrent Programming

* Thread Safety

* |nter-

hread Control

* Caveats

Threads

H-4

Processes

Disk

* Each process has

= Program counter

= Registers

\

CPU ¢

!

Peripherals

= Page map address (address space)

= Open files, etc.

* CPU context switches between processes
= Saves registers of prior process
= Loads register of new process

= Loads new page map

* A process is heavy weight.

= Lot of state

= Context switch takes time

Thread

\

Main Memory

H-5

What Are Threads?

* As an example program using threads, a word
processor should be able to accept input from the user
and at the same time, auto-save the document.

* The word processing application contains two threads:

= One to handle user-input
= Another to process background tasks (like auto-saving).

Word Processing Application
Thread 1 — user input code Thread 2 — background task code
Time o
-User types some stuff - auto-save timer limit reached
-User selects some text -initiate auto-save
-User cuts - saving ...
-User pastes -auto-save completed
v -User types more stuff - waiting...

Threads H-6

Programming Perspective

* The term thread is short for thread of control.

* A thread is a programming concept very similar to a process.
But a process can contain multiple threads.

* Threads share the same data, while processes each have their
own set of data: threads are light-weight.

° Note that your Java programs are being executed in a thread
already (the "main" thread).

Process A Process B

DATA-A DATA-B

Thread A1 Thread B1 Thread B2

Threads

Single-Threaded Vs. Multi-Threaded

* A typical Java program is single-threaded. This means there is
only one thread running.

* If more than one thread Is running concurrently then a program is
considered multi-threaded.

* The following example is single-threaded. (The only thread
running the main thread.)

Output:
public class SingleThreadedExample { Eiizfi
public static void main(String[] args) { Maﬂé 5
for(int 1 = 0; 1 < 10; i++) { Main: 3
mySleep (250); // milliseconds Main: 4
System.out.println("Main: " + 1);
}
}

}

Threads H-8

Using the Thread Class

* Java provides the Thread class to create and control Threads.

* To create a thread, one calls the constructor of a sub-class of the Thread
class.

°* The run () method of the new class serves as the body of the thread.
* A new instance of the sub-classed Thread is created in a running thread.

* The new thread (and its run () method) is started when start () Is called

on the Thread object.
public class ExampleThread extends Thread {

[public void run () {
new thread's body A ... // do stuff in the thread

}

~ public static void main(String[] args) {

Thread thread = new ExampleThread() ;

main thread's body | thread.start () ;

e Afterthe thread.start () call we have two threads active: the main
thread and the newly started thread.

Threads H-9

The Runnable Interface

* Another way of creating a Thread in Java Is to pass the Thread constructor
an object of type Runnable.

°* The Runnable interface requires only the run () method, which serves as
the body of the new thread. (Thread implements Runnable.)

* As before, the new thread (and its run () method) is started when start ()
Is called on the Thread object.

public class ExRunnable implements Runnable {
public void run() {

new thread's body A ... // do stuff in the thread

L}

~ public static void main (String[] args) {
Thread thread

= new Thread (new ExRunnable())

thread.start () ;

main thread's body 7

Threads H-10

Single-Threaded Vs. Multi-Threaded (contd.)

* Here we create and run two CountThread Instances.

public class CountThread extends Thread {
public CountThread (String s) { super(s); }
public void run () {
for(int 1 = 0; 1 < 10; 1i++) {
mySleep (500); // milliseconds
System.out.println(this.getName()+ ":" + 1);

public static void main(String[] args) {
Thread tl1 = new CountThread("tl1l");
Thread t2 = new CountThread("t2");
tl.start(); t2.start();

Output:
£1:0

tl:1

tl:2

tl:3

tl:4

tl: 5

t2:

t2:

t2:

t2:

t2:

° Threads t1 and t2 run simultaneously, each counting up to 10 in

parallel.

Threads

H-11

Concurrent Programming

* Concurrency Is a property of systems in which
several threads are executing at the same time,
and potentially interacting with each other.

° The biggest challenge in dealing with
concurrent systems is in avoiding conflicts
between threads.

* For example: what If our application wants to
access the same data from two different threads
at the same time?

Threads H-12

Outline

* Basic concepts

° Thread Safety

* Atomic actions

* Synchronized modifier

* Transient modifier

* Concurrent atomic package
* Concurrent collection

* |nter-

hread Control

* Caveats

Threads

H-13

Thread Safety

* If a class or method can be used by different
threads concurrently, without chance of
corrupting any data, then they are called
thread-safe.

* Writing thread-safe code requires careful
thought and design to avoid problems at
run-time.

° It is important to document whether or not code
Is thread-safe. For example, much of the Java's
Swing package is not thread-safe.

Threads H-14

Java And Thread-Safety

* Java provides a number of powerful tools
to make it relatively easily to implement
thread-safe code.

= Atomic actions

= The synchronized modifier
s The transient modifier

= The concurrent.atomic package

= The concurrent and synchronized collections

Threads H-15

Atomic Actions

* An atomic action iIs one that cannot be
subdivided and hence cannot be interrupted by
another thread.

* Reads and writes are atomic for all reference
variables and for most primitive variables
(except 1ong and double as they are 64 bits).

* This means that a thread can execute an atomic
action without fear of interruption by another
thread.

Threads H-16

Thread Safety 101: Race Conditions

* Using atomic operations doesn't solve all concurrency
problems.

* Look at the following constructor which assigns a
serial number to an object.

// i r Threadsafe ? * What's the problem?
public class MyThing {
static int count = 0; * Two threads could be
private int serialNum; assigning the same count
to two different MyThing
public MyThing () { objects in parallel threads.
serialNum = count;

count++; * This Is a race condition.
b

Threads H-17

Race Conditions

// 1 r Threadsafe

public class MyThing { public MyThing () {
static private int serialNum = count;
count = 0; count++;
private int serialNum; }
}
Threada MyThing Thread 2
Data
new MyThing () ; count O

serialNum = (=———
new MyThing () ;

<€ serialNum 0

count++; —3 count 1

count 2 <€mr— count++;

Threads H-18

Race Conditions (cont.)

* What about increment? serialNumber = count++;

* Still doesn’t work, because multiple low-level
operations are involved:
= Read count Into a register

= Increment that register
= Store register value in count variable

= Store register value also in serialNumber
* What about postincrement? serialNumber = ++count;

* Same problem...

Thread H-19

Using synchronized

* To make this truly thread-safe, we can use Java's
synchronized keyword.

* synchronized means that a thread must obtain a lock on an
object (in this case the MyThing class object) before it can
execute any of its synchronized methods on that object.

public class MyThing { private static synchronized
static private int count=0; int getSN() {
private int serialNum; int newCount = count;
public MyThing () { count++;
serialNum = getSN(); return newCount;

} }
} // End of class MyThing

Threads H-20

Using synchronized (contd.)

° In the previous example, the synchronized method is static.

* Here it is used on an instance method which increments the
instanceCount variable each time it is called.

* This method increments the instanceCount variable in a thread-
safe way

public class MyThing {
private int instanceCount;

public MyThing () {
instanceCount = 0O;

}

public synchronized int
incInstCount () {

this.instanceCount++;
}

} // End of class MyThing

Threads H-21

Using volatile

° There is one other problem: the JVM permits threads to cache
the value of variables in local memory (i.e., a machine register).

* This means the value read could be out of date. To avoid this,
we use the volatile keyword on fields that are referenced by

multiple threads.

public class MyThing {

private volatile int
instanceCount;

public MyThing () {

instanceCount = 0;

// thread safe

public synchronized int
incInstCount () |
return
this.instanceCount++;

Threads

H-22

Using synchronized Blocks

° Itis possible to use finer-grained locking mechanisms that
minimize the chance of lock conflicts.

* Here we lock only the instanceCount variable, so we do not

lock the entire object.

° Note that we had to make instanceCount be an object (an
Integer) to be able to use this mechanism.

public class MyThing {

private volatile Integer
instanceCount;

public MyThing () {
instanceCount = 0;

}

// Also thread-safe
public int incInstCount () {
synchronized (instanceCount) {

return
this.instanceCount++;

Threads

H-23

Using concurrent.atomic

The java.util.concurrent.atomic package

contains utility classes that permit atomic operations on
objects without locking.

* These classes definine get () and set () accessor

methods as well as compound operations, such as
incrementAndGet ().

public class MyThing {

private AtomicInteger // Also thread-safe

instanceCount; public int incInstCount () {

return

public MyThing() { ... instanceCount.incrementAndGet () ;

instanceCount = }

new AtomicInteger (0) ; }

}

Threads H-24

Concurrent And Synchronized Collections

* Java provides some concurrent thread-safe collections.

» BlockingQueue - aFIFO that blocks when you attempt
to add to a full queue, or retrieve from an empty queue

» ConcurrentMap — Maintains a set of key-value pairs in a
thread-safe manner.

* Java also provides the synchronized collection wrapper
classes, which pass through all method calls to the
wrapped collection after adding any necessary
synchronization.

m Collections.synchronized{Collection, Map,
Set, List, SortedMap}

Threads H-25

Outline

* Basic concepts
* Thread Safety

* Inter-Thread Control

* Stopping a thread
* Waiting for a thread to finish

* Passing data between threads
* BlockingQueue

* Caveats

Threads

H-26

Stopping a Thread

* One of the simplest ways to stop a thread is to use a flag variable

which can tell a thread to stop executing.

* Here's a flawed implementation of such a beast.

public class MyThread extends Thread {
volatile Boolean done = false;
public void run() {
synchronized (done) {
while (! done) {
. // do stuff
by o

public void stop () {
synchronized (done) {

done = true;

}

* The problem is that the done variable is locked outside of the
while loop in the run () method, which means it keeps the lock

forever during the while loop.

* The stop () method can never get the lock.

 This is called lock starvation.

Threads

H-27

Stopping a Thread (11)

* To fix this we need to apply one of our basic rules: Hold locks
for as short a time as possible.

* Here's a corrected implementation.

public class MyThread
extends Thread {

volatile Boolean done = false; public void stop () {
public void run() { synchronized (done) {
while (true) { done = true;
synchronized (done) { }
if(done) { }
break;

}
} // end synchronized block

// do regular loop stuff

Threads H-28

Waiting for a Thread to Finish

* Java terminates all threads (except for the Swing threads) when
the main () method exits.

* Sometimes it is necessary to wait for a thread to finish. For
example, we might be writing out a file in a thread which we
don't want to be terminated partway through its write.

* The join () method of the Thread class permits us to wait
until a thread is finished.

public static void main(...) {
Thread fileWriterThread
= new FWT () ;
fileWriterThread.start () ;
. // time to exit
// wait for fileWriter to finish.

fileWriterThread.join ()

Threads H-29

Passing Data Between Threads

One powerful design pattern that is readily applied to multi-
threaded applications is the Producer-Consumer pattern.

This is a way of synchronizing between two threads.

One thread produces data, and puts it into a shared buffer or
queue, and the other thread consumes the data (usually by
processing it).

An example use of this is a printer queue system where print
jobs are received by a thread which takes the job and produces
an entry in a print queue. The consumer thread takes the top
entry in the queue and prints it. This avoids the confusion of
having one thread attempt two jobs at once.

Java's BlockingQueue Interface provides methods for such
queues that are thread-safe.

Threads H-30

BlockingQueue

* BlockingQueue<E> Is an interface with the following

methods

Throws exception | Special value Blocks Times out
Insert add (e) offer (e) put (e) offer(e,time,unit)
Remove | remove () poll () take () poll (time,unit)
Examine | element () peek () N/A N/A

* If a queue method blocks then it stop execution of the thread
until the method returns. If a method times out then the method

sblocks until the time specified is reached, then the method

returns.

* Important implementations of BlockingQueue are

ArrayBlockingQueue, LinkedBlockingQueue,
PriorityBlockingQueue and SynchronousQueue.

Threads

Outline

* Basic concepts
* Thread Safety

* |Inter-Thread Control

* Stopping a thread
* \Waiting for a thread to finish

* Passing data between threads
* BlockingQueue

* Caveats

Threads

H-32

Concurrent Programming Caveats

* In general, multi-threaded programming is confusing and
difficult to debug. When threading conflicts do occur, they don't
always happen in the same way each time.

* When a thread acquires a lock on an object, no other thread can
acquire the same lock until the first thread releases the lock.
This can lead to a situation where multiple threads are
deadlocked waiting for a lock to be released.

* Always release locks as quickly as possible.

* Keep your thread-safe code to a minimum and scrutinize it
carefully.

° Review your design with someone who can play the devil's
advocate and see if they can break your code.

Threads H-33

