
Java Threads

CSc 335

Object-Oriented Programming and Design

Spring 2009

Threads H-2

Acknowledgements

• Some materials from the following texts was used:

 The Theory and Practice of Concurrency, by A.W.

Roscoe, Prentice Hall, 1997, ISBN 0-13-674409-5.

 Java In A Nutshell (5th Ed.), by David Flanagan, O'Reilly

Media, 2005, ISBN 0-596-00773-6.

• Slides by Ivan Vazquez, with some help from Rick

Snodgrass.

Java Threads

Refactoring Y-3Refactoring Y-3Refactoring Y-3

ConcurrencyNetworks ThreadsSerialization

Javadoc

JUnit

Eclipse

Debugging

Testing &

Maintaing

Large

Programs

Teams

Reading

others’

code

MVC

Observer

Observable

Design

Patterns

UML

Class

Diagrams

Inheritance

Hierarchy

Coupling/

Cohesion

OO Design

PITL

Sequence

Diagrams

Package

Diagrams

Anonymous

Classes

Abstract

Classes
Packages

JDK/JRE

Java Language

Compile-Time

Run-Time

Type Resolution

Type Checking

Java Swing

Frameworks

Java API

Inversion

of Control

Layout

Manager

Listeners

Events

I/O

Iterator

Collection

Exceptions

Composite

CommandTemplate

Decorator

H-3

Threads H-4

Outline

• Basic concepts
• Processes

• Threads

• Java: Thread class

• Java: runnable Interface

• Single-threaded vs. Multi-Threads

• Concurrent Programming

• Thread Safety

• Inter-Thread Control

• Caveats

Processes

• Each process has

 Program counter

 Registers

 Page map address (address space)

 Open files, etc.

• CPU context switches between processes

 Saves registers of prior process

 Loads register of new process

 Loads new page map

• A process is heavy weight.

 Lot of state

 Context switch takes time

Thread H-5

Disk CPU Main Memory

Peripherals

Threads H-6

What Are Threads?

• As an example program using threads, a word

processor should be able to accept input from the user

and at the same time, auto-save the document.

• The word processing application contains two threads:
 One to handle user-input

 Another to process background tasks (like auto-saving).

Time

Word Processing Application

Thread 1 – user input code

-User types some stuff

-User selects some text

-User cuts

-User pastes

-User types more stuff

Thread 2 – background task code

- auto-save timer limit reached

-initiate auto-save

- saving ...

-auto-save completed

- waiting...

Threads H-7

Programming Perspective

• The term thread is short for thread of control.

• A thread is a programming concept very similar to a process.

But a process can contain multiple threads.

• Threads share the same data, while processes each have their

own set of data: threads are light-weight.

• Note that your Java programs are being executed in a thread

already (the "main" thread).

Process A

Thread A1

DATA-A

Process B

Thread B1

DATA-B

Thread B2

Threads H-8

Single-Threaded Vs. Multi-Threaded

• A typical Java program is single-threaded. This means there is

only one thread running.

• If more than one thread is running concurrently then a program is

considered multi-threaded.

• The following example is single-threaded. (The only thread

running the main thread.)

public class SingleThreadedExample {

public static void main(String[] args) {

for(int i = 0; i < 10; i++) {

mySleep(250); // milliseconds

System.out.println("Main: " + i);

}

}

}

Output:

Main: 0

Main: 1

Main: 2

Main: 3

Main: 4

...

Threads H-9

Using the Thread Class

• Java provides the Thread class to create and control Threads.

• To create a thread, one calls the constructor of a sub-class of the Thread

class.

• The run() method of the new class serves as the body of the thread.

• A new instance of the sub-classed Thread is created in a running thread.

• The new thread (and its run() method) is started when start() is called

on the Thread object.

• After the thread.start() call we have two threads active: the main

thread and the newly started thread.

public class ExampleThread extends Thread {

public void run() {

... // do stuff in the thread

}

public static void main(String[] args) {

Thread thread = new ExampleThread();

thread.start();

...

new thread's body

main thread's body

Threads H-10

The Runnable Interface

• Another way of creating a Thread in Java is to pass the Thread constructor

an object of type Runnable.

• The Runnable interface requires only the run() method, which serves as

the body of the new thread. (Thread implements Runnable.)

• As before, the new thread (and its run() method) is started when start()

is called on the Thread object.

public class ExRunnable implements Runnable {

public void run() {

... // do stuff in the thread

}

public static void main(String[] args) {

Thread thread

= new Thread(new ExRunnable());

thread.start();

...

new thread's body

main thread's body

Threads H-11

Single-Threaded Vs. Multi-Threaded (contd.)

• Here we create and run two CountThread instances.

public class CountThread extends Thread {

public CountThread(String s) { super(s); }

public void run() {

for(int i = 0; i < 10; i++) {

mySleep(500); // milliseconds

System.out.println(this.getName()+ ":" + i);

}

public static void main(String[] args) {

Thread t1 = new CountThread("t1");

Thread t2 = new CountThread("t2");

t1.start(); t2.start();

...

Output:

t1:0

t2:0

t1:1

t2:1

t1:2

t2:2

t1:3

t2:3

t1:4

t2:4

t1: 5

...

• Threads t1 and t2 run simultaneously, each counting up to 10 in

parallel.

Threads H-12

Concurrent Programming

• Concurrency is a property of systems in which

several threads are executing at the same time,

and potentially interacting with each other.

• The biggest challenge in dealing with

concurrent systems is in avoiding conflicts

between threads.

• For example: what if our application wants to

access the same data from two different threads

at the same time?

Threads H-13

Outline

• Basic concepts

• Thread Safety
• Atomic actions

• Synchronized modifier

• Transient modifier

• Concurrent atomic package

• Concurrent collection

• Inter-Thread Control

• Caveats

Threads H-14

Thread Safety

• If a class or method can be used by different

threads concurrently, without chance of

corrupting any data, then they are called

thread-safe.

• Writing thread-safe code requires careful

thought and design to avoid problems at

run-time.

• It is important to document whether or not code

is thread-safe. For example, much of the Java's

Swing package is not thread-safe.

Threads H-15

Java And Thread-Safety

• Java provides a number of powerful tools

to make it relatively easily to implement

thread-safe code.

 Atomic actions

 The synchronized modifier

 The transient modifier

 The concurrent.atomic package

 The concurrent and synchronized collections

Threads H-16

Atomic Actions

• An atomic action is one that cannot be

subdivided and hence cannot be interrupted by

another thread.

• Reads and writes are atomic for all reference

variables and for most primitive variables
(except long and double as they are 64 bits).

• This means that a thread can execute an atomic

action without fear of interruption by another

thread.

Threads H-17

Thread Safety 101: Race Conditions

• Using atomic operations doesn't solve all concurrency

problems.

• Look at the following constructor which assigns a

serial number to an object.

// i r Threadsafe ?

public class MyThing {

static int count = 0;

private int serialNum;

public MyThing() {

serialNum = count;

count++;

} ...

• What's the problem?

• Two threads could be

assigning the same count

to two different MyThing

objects in parallel threads.

• This is a race condition.

Threads H-18

Race Conditions

// i r Threadsafe

public class MyThing {

static private int

count = 0;

private int serialNum;

}

public MyThing() {

serialNum = count;

count++;

}

Thread 1 Thread 2MyThing
Data

count 0

.

.

.

count 1

.

count 2

new MyThing();

serialNum = 0

.

.

count++;

.

.

new MyThing();

serialNum = 0

.

.

.

count++;

Race Conditions (cont.)

• What about increment? serialNumber = count++;

• Still doesn’t work, because multiple low-level

operations are involved:

 Read count into a register

 Increment that register

 Store register value in count variable

 Store register value also in serialNumber

• What about postincrement? serialNumber = ++count;

• Same problem…

Thread H-19

Threads H-20

Using synchronized

• To make this truly thread-safe, we can use Java's

synchronized keyword.

• synchronized means that a thread must obtain a lock on an

object (in this case the MyThing class object) before it can

execute any of its synchronized methods on that object.

public class MyThing {

static private int count=0;

private int serialNum;

public MyThing() {

serialNum = getSN();

}

private static synchronized

int getSN() {

int newCount = count;

count++;

return newCount;

}

} // End of class MyThing

Threads H-21

Using synchronized (contd.)

• In the previous example, the synchronized method is static.

• Here it is used on an instance method which increments the

instanceCount variable each time it is called.

• This method increments the instanceCount variable in a thread-

safe way

public class MyThing {

private int instanceCount;

public MyThing() { ...

instanceCount = 0;

}

public synchronized int

incInstCount() {

this.instanceCount++;

}

} // End of class MyThing

Threads H-22

Using volatile

• There is one other problem: the JVM permits threads to cache

the value of variables in local memory (i.e., a machine register).

• This means the value read could be out of date. To avoid this,

we use the volatile keyword on fields that are referenced by

multiple threads.

public class MyThing {

private volatile int

instanceCount;

public MyThing() { ...

instanceCount = 0;

}

// thread safe

public synchronized int

incInstCount() {

return

this.instanceCount++;

}

}

Threads H-23

Using synchronized Blocks

• It is possible to use finer-grained locking mechanisms that

minimize the chance of lock conflicts.

• Here we lock only the instanceCount variable, so we do not

lock the entire object.

• Note that we had to make instanceCount be an object (an

Integer) to be able to use this mechanism.

public class MyThing {

private volatile Integer

instanceCount;

public MyThing() { ...

instanceCount = 0;

}

// Also thread-safe

public int incInstCount() {

synchronized(instanceCount) {

return

this.instanceCount++;

}

}

Threads H-24

Using concurrent.atomic

• The java.util.concurrent.atomic package

contains utility classes that permit atomic operations on

objects without locking.

• These classes definine get() and set() accessor

methods as well as compound operations, such as

incrementAndGet().

public class MyThing {

private AtomicInteger

instanceCount;

public MyThing() { ...

instanceCount =

new AtomicInteger(0);

}

// Also thread-safe

public int incInstCount() {

return

instanceCount.incrementAndGet();

}

}

Threads H-25

Concurrent And Synchronized Collections

• Java provides some concurrent thread-safe collections.

 BlockingQueue – a FIFO that blocks when you attempt

to add to a full queue, or retrieve from an empty queue

 ConcurrentMap – Maintains a set of key-value pairs in a

thread-safe manner.

• Java also provides the synchronized collection wrapper

classes, which pass through all method calls to the

wrapped collection after adding any necessary

synchronization.

 Collections.synchronized{Collection, Map,

Set, List, SortedMap}

Threads H-26

Outline

• Basic concepts

• Thread Safety

• Inter-Thread Control
• Stopping a thread

• Waiting for a thread to finish

• Passing data between threads

• BlockingQueue

• Caveats

Threads H-27

Stopping a Thread

• One of the simplest ways to stop a thread is to use a flag variable

which can tell a thread to stop executing.

• Here's a flawed implementation of such a beast.

public class MyThread extends Thread {

volatile Boolean done = false;

public void run() {

synchronized(done) {

while(! done) {

... // do stuff

} } }

public void stop() {

synchronized(done) {

done = true;

}

}

• The problem is that the done variable is locked outside of the

while loop in the run() method, which means it keeps the lock

forever during the while loop.

• The stop() method can never get the lock.

• This is called lock starvation.

Threads H-28

Stopping a Thread (II)

• To fix this we need to apply one of our basic rules: Hold locks

for as short a time as possible.

• Here's a corrected implementation.

public class MyThread

extends Thread {

volatile Boolean done = false;

public void run() {

while(true) {

synchronized(done) {

if(done) {

break;

}

} // end synchronized block

... // do regular loop stuff

} } }

public void stop() {

synchronized(done) {

done = true;

}

}

Threads H-29

Waiting for a Thread to Finish

• Java terminates all threads (except for the Swing threads) when

the main() method exits.

• Sometimes it is necessary to wait for a thread to finish. For

example, we might be writing out a file in a thread which we

don't want to be terminated partway through its write.

• The join() method of the Thread class permits us to wait

until a thread is finished.

public static void main(...) {

Thread fileWriterThread

= new FWT();

fileWriterThread.start();

... // time to exit

// wait for fileWriter to finish.

fileWriterThread.join();

}

Threads H-30

Passing Data Between Threads

• One powerful design pattern that is readily applied to multi-

threaded applications is the Producer-Consumer pattern.

• This is a way of synchronizing between two threads.

• One thread produces data, and puts it into a shared buffer or

queue, and the other thread consumes the data (usually by

processing it).

• An example use of this is a printer queue system where print

jobs are received by a thread which takes the job and produces

an entry in a print queue. The consumer thread takes the top

entry in the queue and prints it. This avoids the confusion of

having one thread attempt two jobs at once.

• Java's BlockingQueue interface provides methods for such

queues that are thread-safe.

Threads H-31

BlockingQueue

• BlockingQueue<E> is an interface with the following

methods

• If a queue method blocks then it stop execution of the thread

until the method returns. If a method times out then the method

sblocks until the time specified is reached, then the method

returns.

• Important implementations of BlockingQueue are

ArrayBlockingQueue, LinkedBlockingQueue,

PriorityBlockingQueue and SynchronousQueue.

Throws exception Special value Blocks Times out

Insert add(e) offer(e) put(e) offer(e,time,unit)

Remove remove() poll() take() poll(time,unit)

Examine element() peek() N/A N/A

Threads H-32

Outline

• Basic concepts

• Thread Safety

• Inter-Thread Control
• Stopping a thread

• Waiting for a thread to finish

• Passing data between threads

• BlockingQueue

• Caveats

Threads H-33

Concurrent Programming Caveats

• In general, multi-threaded programming is confusing and

difficult to debug. When threading conflicts do occur, they don't

always happen in the same way each time.

• When a thread acquires a lock on an object, no other thread can

acquire the same lock until the first thread releases the lock.

This can lead to a situation where multiple threads are

deadlocked waiting for a lock to be released.

• Always release locks as quickly as possible.

• Keep your thread-safe code to a minimum and scrutinize it

carefully.

• Review your design with someone who can play the devil's

advocate and see if they can break your code.

