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Figure 1: 2004 US Presidential elections: (a) geographically accurate map, (b) diffusion cartogram, (c) rectangular cartogram.

Abstract
Cartograms are used to visualize geographically distributed data by scaling the regions of a map (e.g., US states)
such that their areas are proportional to some data associated with them (e.g., population). Thus the cartogram
computation problem can be considered as a map deformation problem where the input is a planar polygonal map
M and an assignment of some positive weight for each region. The goal is to create a deformed map M′, where
the area of each region realizes the weight assigned to it (no cartographic error) while the overall map remains
readable and recognizable (e.g., the topology, relative positions and shapes of the regions remain as close to
those before the deformation as possible). Although several such measures of cartogram quality are well-known,
different cartogram generation methods optimize different features and there is no standard set of quantitative
metrics. In this paper we define such a set of seven quantitative measures, designed to evaluate how faithfully a
cartogram represents the desired weights and to estimate the readability of the final representation. We then study
several cartogram-generation algorithms and compare them in terms of these quantitative measures.

1. Introduction

A cartogram, or value-by-area diagram, is a thematic visu-
alization of a planar map, where geographic regions such
as countries or provinces are modified in order to realize a
given set of values by their areas. This kind of visualization
has been used for many years to represent census data such
as, population or gross-domestic-product, and to visualize
election returns, disease incidence and other geo-referenced
statistical data. Red-and-blue population cartograms of the
United States are often used to illustrate the results in pres-
idential elections starting in the year 2000. For example, in
the 2004 elections, geographically accurate maps seemed to
show an overwhelming victory for George W. Bush, while
the population cartograms effectively communicate the near
even split, by deflating the rural and suburban central states;
see Fig. 1.

Incorporating vastly different scaling factors for different
states could force significant topological or geometrical dis-
tortions in the input map, resulting in poor readability and
recognizability for the map. This is undesirable for effective
visualization of the given data, since the cartogram should

enable the viewer to quickly relate the displayed data to the
original map. This recognizability depends on preserving ba-
sic properties such as shapes and relative positions or orien-
tations for the regions, as well as the basic topology of the
map. All of these goals are difficult to achieve simultane-
ously, and in general, it is impossible to retain the original
map’s topology and shapes of the regions, while realizing
the given geo-referenced data perfectly; Fig. 2 shows an ar-
tificial example; also see [dBMS10, KNP04]. In the less ar-
tificial example of the rectilinear cartogram in Fig. 1(c), the
correct distribution of red and blue areas are shown, but sev-
eral characteristic shapes and adjacencies are compromised:
Oklahoma and New Mexico no longer share borders, and
the mirror-image shapes of New Hampshire and Vermont are
lost.

None of the existing algorithms and techniques to gener-
ate cartograms for a map is “perfect”; each of them produces
a “good” cartogram with respect to some criteria, but which
might be “bad” with respect to others. Although several such
measures of cartogram quality are well-known, different car-
togram generation methods optimize different features and
there is no standard set of quantitative metrics. In this paper
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Figure 2: Three cartograms for a map with an area assignment
for four states (A, B, C, D with desired areas 1, 2, 1, 2, respectively),
containing (a) cartographic error, (b) topology error and (c) shape
error. There is no cartogram with no cartographic error, topology
error and shape error.

we propose a set of quantitative measures that can be used
to estimate the accuracy of a cartogram in realizing the geo-
referenced weights, in maintaining the original map proper-
ties in the final representation, and well as the efficiency of
cartograms in terms of time complexity and the polygonal
complexity of the represented regions.

1.1. Related Work

Showing statistical information on top of a geographic map
is a common goal in geo-visualization and there are two dif-
ferent approaches. Augmented map visualizations have mul-
tiple correlated views, showing the geographic map, and data
plots (such as histograms, pie-charts and scatter-plots) are
used to show some geospatial data [FS04, MBHP98]. One
advantage of this approach is that both univariate and multi-
variate data can be visualized. One disadvantage is the weak
connection between the data and the geospatial locations,
due to relatively weak association between the plots and the
geographic map. In an interesting variant, the augmentation
projects the regions of the map into a different geometric
structure. Recent examples of such maps include grid map
layouts [EvKSS13], where the regions of the maps are pro-
jected onto a square grid by means of point-set matching and
necklace maps [SV10], where the regions of a map are pro-
jected onto intervals on a one-dimensional curve (the neck-
lace) that surrounds the map regions.

Unlike in the augmented maps visualizations, in car-
tograms the geospatial data and the map topology are shown
by a single visualization. There are two major types of car-
tograms. In the first type, deformation cartograms, the input
map itself is modified by appropriately pulling and pushing
boundaries to change the areas of the regions on the map.
In the second type, topological cartograms, the topology
of the map is extracted in the form of the dual graph, and
the dual graph is used to obtain a schematized layout for
the map. Here the map regions are highly schematized and
have very small (often constant) polygonal complexity. Both
types have their advantages and disadvantages. Since defor-
mation cartograms are formed by a continuous deformation
of the map, the map often remains recognizable; while for
topological cartograms recognizability is difficult to achieve.
On the other hand, since topological cartograms have small
polygonal complexity, it is easier to compare and contrast
the areas of different regions.

Among deformation cartograms, the most popular method
is the diffusion-based algorithm of Gastner and New-
man [GN04], where the original input map is projected onto
a distorted grid, computed in such a way that the areas of
the countries match the pre-defined values. Dougenik et al.
introduce a method based on force fields where the map is
divided into cells and every cell has a force related to its
data value which affects the other cells [DCN85]. Dorling
uses a cellular automaton approach, where regions exchange
cells until an equilibrium has been achieved, i.e., each re-
gion has attained the desired number of cells [Dor96]. It is
worth-mentioning that this technique can result in significant
distortions, thereby reducing readability and recognizability,
which is usually one of the main advantages of this type of
cartogram. Welzl et al. generate cartograms using a sequence
of homeomorphic deformations and measure the quality
with local distance distortion metrics [WEW97]. Kocmoud
and House [HK98] describe a technique that combines the
cell-based approach of Dorling [Dor96] with the homeo-
morphic deformations of Welzl et al. [WEW97]. Keim et
al. describe deformation algorithms CartoDraw [KNP04]
based on incremental repositioning of the vertices of the
map’s polygons by means of local changes of horizontal
and vertical scan lines, and VisualPoints [KPN05] based on
quadtree partitions of the plane. In a variant of Cartodraw,
the medial axes for the polygonal regions are used as the
scanlines [KPN05]. Although also deformation-based, the
method by Kämper et al. [KKN13] is different in that it uses
only circular arcs. Here the straight-line segments of the map
are replaced by circular arcs so that the countries with less
area in the original map than required inflate (and become
cloud-shaped), while those with more area than required de-
flate (and become snowflake shaped). Thus in such a car-
togram, it is easy to determine whether a country has grown
or shrunk, just by its overall shape.

Topological cartograms date back to the 19th cen-
tury and the highly schematized rectangular cartograms of
Raisz [Rai34], where each country is represented by an axis-
aligned rectangle. Several more recent methods for com-
puting rectangular cartogram have been proposed [KS07,
HKPS04, BSV12]. The main advantage of such rectangu-
lar representations is that it is usually easy to compare the
areas for the regions in the map, unless the rectangles have
poor aspect ratio. One disadvantage is that with rectangular
cartograms, it is not always possible to maintain the topol-
ogy of the map, i.e., not all given pairwise adjacencies be-
tween countries can be maintained. Thus in all the exist-
ing methods for rectangular cartogram, some adjacencies are
compromised, or a few countries are allowed to have non-
rectangular shapes, or some errors in the representation of
weights by area are allowed. Relaxing the requirement of
rectangular shape, some algorithms use more general recti-
linear shapes (still of constant polygonal complexity) to pro-
duce error-free cartograms. The upper bound on the com-
plexity of the polygonal shapes used in these cartograms has
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been reduced from the initial 40 [dBMS09] to 34 [KN07],
12 [BV11], 10 [ABF∗13a] and finally to 8 [ABF∗13b],
which also matches the lower bound [YS93]. There is also an
algorithm that modifies a rectangular cartogram into a recti-
linear one with a guarantee of no error and in practice most
regions continue to have very small complexity [dBMS10].
There are many more algorithms to generate cartograms; see
a great survey by Tobler for more information [Tob04].

Cartograms can be evaluated in terms of the error in real-
izing the desired value by area, and in terms of the preserva-
tion of the recognizability of the input map. There are several
algorithms for which one or two desirable cartogram fea-
tures have been evaluated quantitatively [BSV12, dBMS10,
KS07, KNPS03].

1.2. Our Contributions

In this paper we study various quantitative measures that
have been used in the literature for the analysis of car-
togram algorithms. Some measure how accurately the geo-
referenced data is realized in the cartogram. Others capture
the degree of faithfulness in maintaining the original region
shapes, map topology and properties. Limiting the polyg-
onal complexity for the regions in a cartogram also plays
significant role in the design decision of several cartogram
papers. We compare how well these measures capture dif-
ferent properties of cartograms. Based on this analysis, we
propose a set of quantitative measures (see Table 1) that we
use in the comparison of cartogram algorithms in this paper,
and which might be useful in future quantitative evaluation
of cartograms. Tobler [Tob04] suggested that cartogram al-
gorithms should be evaluated for (i) correct realization of
weights, (ii) preservation of region shapes to the extent pos-
sible, and (iii) efficient running time, in this order. We focus
on exactly these three types of measures: statistical distor-
tion, geographic distortion, and complexity. We also show
how this methodology can be used to evaluate several algo-
rithms for generating cartograms.

2. Performance Measures for a Cartogram

The challenge in creating a good cartogram is to shrink and
grow the regions in a map so that they reflect the set of
pre-specified area values (faithful realization of the weight),
while still retaining their characteristic shapes, relative po-
sitions, and adjacencies (faithful representation of the map).
As we have already seen in Fig. 2, there are trade-offs be-
tween these two goals. For efficient rendering of cartograms,
polygonal complexity and running time are also sometimes
important considerations. Here we consider several quanti-
tative measures that capture different properties of the car-
tograms, some already measured in various earlier work,
while others not yet quantified. We analyze new and existing
measures to compare how faithfully they represent the intu-
itive notions for the criteria they measure. According to To-

Criteria Measure & Notation Definition

Statistical
Distortion

Average
Cartographic

Error
ε

1
|V | ∑

v∈V

|o(v)−w(v)|
max{o(v),w(v)}

Maximum
Cartographic

Error
ξ max

v∈V

|o(v)−w(v)|
max{o(v),w(v)}

Topology
Distortion

Adjacency
Error

τ 1− |Ec∩Em|
|Ec∪Em|

Orientation
and Shape
Distortion

Angular
Orientation

Error
θ [HKPS04]

Hamming
distance

δ [Ski97]

Average
Aspect Ratio α [KS07]

Complexity
Polygonal

Complexity η
Maximum Number of
Corners per Region

Table 1: Definition of Performance Measures.

bler’s suggestion [Tob04], we analyze the quantitative mea-
sures in three categories: (i) parameters that measure statis-
tical distortion, i.e., the degree of inaccuracy in the value-
by-area realization of the statistical data, (ii) parameters that
capture geographic distortion, i.e., how deformed is the car-
togram compared with the original map, and (iii) an estima-
tion of the complexity of cartogram in terms of the running
time and the polygonal complexity of the regions in the rep-
resentation. Based on this analysis we select a set of seven
standard measures that we use in this paper, and that will
hopefully be used in future evaluations; see Table 1.

We assume an input map M is partitioned into n countries
with polygonal boundaries. For each country v, a(v) denotes
the area of v in M and the weight w(v) is the desired area
for the country. Both a and w are normalized to the same
total area, i.e., ∑v∈V a(v) = ∑v∈V w(v). An algorithm then
attempts to construct a cartogram M′, that is a deformation
of M, where each country v obtain o(v) area. We now define
some quantitative measures.

2.1. Parameters for Statistical Distortion

The most common measure for distortion in the value-by-
area realization is the cartographic error. Even though intu-
itively clear, this has been defined in different ways, which
often make sense for the specific algorithm under consider-
ation, but not necessarily for all cartogram algorithms.

Cartographic Error: Given a cartogram, the individual
cartographic error for each country v is defined as the
value of |o(v)−w(v)| where o(v) and w(v) are the obtained
and required areas for the country [KNPS03]. This value
is generally normalized and the overall cartographic error
for the cartogram is obtained by combining these individ-
ual normalized errors for all countries. We consider three
different normalization factors: (i) the required area w(v),
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Figure 3: Normalized cartographic errors with different ob-
tained areas o(v) for a country v with desired area w(v) = 1 unit.
Red, blue and green curves give the distributions when w(v),
o(v)+w(v), and max{o(v),w(v)} are the normalization factors.

as in [KS07, BSV12], (ii) the summation o(v) + w(v), as
in [KNP04], and (iii) the maximum of o(v) and w(v). The
first one is asymmetric with respect to o(v) and w(v); while
the other two are symmetric. It is preferable to normalize
the error by some symmetric function of a(v) and w(v); oth-
erwise, if we use w(v) as the normalization factor, then the
normalized error penalizes a country that needs to grow and
a country that needs to shrink in asymmetrically; see Fig. 3.

In particular, for a country v for which w(v) ≥ o(v) the
error lies in the range [0,1], while in case w(v) ≤ o(v), the
error lies in the range [0,∞). Thus when we combine these
individual normalized errors, the result depends on the num-
ber of countries that need to grow or shrink, rather than the
actual amount by which they need to grow or shrink. This
may lead to undesirable and counter-intuitive behavior; see
Fig. 4.

From the two symmetric normalization functions the
maximum of o(v) and w(v) seems better as it gives a more
uniform distribution of cartographic error (see Fig. 3, specif-
ically, for o(v) = w(v)/2, i.e, when some country has half
the desired area; the error should intuitively be 0.5, but
using o(v) + w(v) as the normalization factor, leads to an
error of 0.3). Finally, there are two standard ways in the
literature to combine individual errors in order to com-
pute the overall cartographic error: (i) by taking the aver-
age (or equivalently summation) for the individual errors
(e.g., [KNPS03]), or (ii) by taking the maximum for the indi-
vidual error (e.g., [KS07]). The maximum cartographic error
is much more sensitive to “outliers” than the average. For ex-
ample, consider a country with 100 states, where the desired
area for each is 1 unit and each achieves the correct area in
a cartogram except one which has area 101 units. Then after
normalization, the maximum and the average cartographic
errors are 0.98 and 0.55, respectively.

We therefore use both the maximum and the aver-
age as they capture different aspects of statistic distor-
tion. The average normalized cartographic error is given
by ε= 1

|V | ∑
v∈V

(|o(v)−w(v)|)/(max{o(v),w(v)}). The max-

imum normalized cartographic error is given by ξ =
max
v∈V

(|o(v)−w(v)|)/(max{o(v),w(v)}); see Table 1.

Figure 4: Cartograms with no cartographic error realizing areas
(100, 100 and 1 units) (left), with symmetric errors (97,97,7 units)
(center), and with asymmetric errors (199,1,1 units) (right). Intu-
itively, the center map is more accurate than the right map as it still
has one small and two large regions. This intuition is supported by
symmetric normalization (0.3 for center, 0.495 for right), while the
asymmetric one (2.02 for center, 0.66 for right) reverses the order.

Kämper et al. [KKN13] use success rate to evaluate the
realization of weights. In addition to the obtained and re-
quired areas, this measurement uses the original area of the
countries in the given geographic map. The goal is to eval-
uate the achieved area change, relative to the required area
change. Thus the success rate for a country v is | o(v)−a(v)

w(v)−a(v) |,
where a(v) is the actual area of v in the input map. This mea-
sure is natural for cartograms that are generated by gradually
deforming the input map to realize the weights. However, for
cartograms generated using the topology or the dual graph,
the actual area of a country in the original map does not play
any role (as only the topology matters).

2.2. Parameters for Geographic Distortion

In order for a cartogram to effectively visualize some given
data, such as population or GDP, it is important that the car-
togram is readable, in that one can find and identify every
country, and recognizable, in that one can see the same struc-
ture and topology as in the input map. Thus the measures for
geographic distortion can be subcategorized in two classes:
(i) those that computes how much the topology (region-
adjacencies) has changed, and (ii) the ones that estimates
distortions in the shapes and relative positions of the shapes.

Topology/Adjacency Distortion: The adjacency error τ

is an estimation of how the adjacency relationships between
pairs of neighboring countries have been affected in the car-
togram, compared to the original map. Similar to [HKPS04]
we measure this by the fraction of the adjacencies that the
cartogram fails to preserve; i.e., τ = 1− |Ec∩Em|

|Ec∪Em| , where Ec

and Em are respectively the adjacencies between countries in
the cartogram and the map.

Some cartogram algorithms suffer from an even more se-
rious disadvantage. Sometimes to make the input map suit-
able for the algorithm, some regions on the map is deleted
or merged with other neighboring regions. In the context of
cartograms, this is unacceptable and should be avoided.

Relative Position/Orientation: Preserving the relative po-
sitions of different countries in the map is important for
the recognizability of a cartogram. To quantify this notion,
Buchin et al. [BSV12] introduced the bounding box separa-
tion metric, which measures the average distance by which
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ΨM = 0.423 ΨM = 0.446 ΨM = 0.465 ΨM = 0.509

δ = 0.093 δ = 0.225 δ = 0.418 δ = 0.802

Figure 5: A polygonal region of a map and four of its schemati-
zations sorted in decreasing order by turning angle distortion ΨM
(top) and by Hamming distance δ (bottom). Intuitively, the bottom
order is more accurate as it seems to capture the notion of the orig-
inal shape better than the top one. Note that Ψ and the modified
variant ΨM gives the same ranking (top).

the bounding boxes for pairs of countries move from the
original map to the cartogram. This measure is well-defined
for rectangular layout but cannot be easily extended to gen-
eral cartograms. In particular, the bounding boxes are always
disjoint in rectangular cartogram, while this is not the case
for general cartograms. This takes into account only the rel-
ative position of adjacent countries, while adjacencies only
partially reflect the notion of relative positions [HKPS04].

To estimate the relative positions distortion, we use
angular orientation error, θ, defined by Heilmann et
al. [HKPS04] and obtained by computing the average
change in the slope of the line between the centroids of pairs
of countries. For applications where only the orthogonal rel-
ative position (north-south, east-west) is important, this mea-
sure θ can be approximated by calculating the fraction of
pairs of countries for which the relative north-south and east-
west orientations have changed. Note that this measure is
also a generalization of the binary variant for the bounding
box separation metric defined by Buchin et al. [BSV12].

Shape Distortion: We need to measure how the shape of a
country in the generated cartogram compares with its orig-
inal shape in the input map. Arkin et al. [ACH∗90] com-
pute the deviation between two polygons by normalizing
them by perimeter and then measuring a turning function,
which captures turning angle and edge length. This mea-
sure is translation-invariant, scale-invariant, and rotation-
invariant. Thus two rectangles which are the same, up to
rotation, are considered identical with this measure. Keim
et al. consider a similar measure (also translation-invariant,
scaling-invariant, and rotation-invariant) for shape compari-
son between countries [KNPS03] based on a Fourier trans-
formation of the turning angle functions. At the other end
of the spectrum of shape distortion measures, Heilmann et
al. [HKPS04] uses only the aspect ratios of the axis-aligned
bounding boxes when comparing the shapes of polygons.

None of these functions captures faithfully the similar-
ity between the shapes of countries on a map. Further-
more Arkin et al. [ACH∗90] pointed out that the turning
function is sensitive to non-uniform noise, which makes
it undesirable to compare geographic shapes. Intuitively,
a measure that is translation-invariant, scale-invariant, but
not rotation-invariant would be better, since the orienta-

tion is an important feature for distinguishing between
countries in a map. With this in mind we consider three
shape distortion measures: (1) turning-angle distortion, Ψ

by Arkin et al. [ACH∗90], (2) modified turning-angle dis-
tortion, ΨM , where we have removed its rotation-invariance,
and (3) Hamming distance, δ. The last one is based on
the idea of Hamming distance [Ski97] or symmetric differ-
ence [MvRS10] between two polygons. Two polygons are
superimposed on top of each other and the fraction of the
area that is in exactly one of the polygons is measured. In
order to make the comparison scale-invariant, we normal-
ize the area of polygons to unit area. To make it translation-
invariant we consider all possible values of translation up to
a small discretization and use the one that gives the smallest
error. We compared the three measures using several real-
world and synthetic examples. Our results indicate that the
Hamming distance, δ best captures the notion of similarity
between the shapes of countries on a map; see Fig. 5.

Aspect Ratio: Especially in rectangular cartograms, the as-
pect ratio, is an important factor for readability and poor as-
pect ratios make it difficult to show labels [vKS05, KS07].
We measure the aspect ratio, α, using the bounding box for
all types of cartograms, by computing the ratio between the
larger and smaller sides of the bounding box for each region
in the map, and taking the average.

2.3. Complexity Measures

These parameters are related to the efficiency of rendering
cartograms and the visual complexity of the regions.

Polygonal Complexity: There are practical and cognitive
reasons to limit the polygonal complexity of regions in car-
tograms. For some cartograms, such as rectangular [BSV12]
and some rectilinear cartograms (e.g., [ABF∗13b]), each
polygon has a constant complexity. For some other car-
tograms, such as diffusion-based cartograms [GN04] and
circular-arc cartograms [KKN13], the polygonal complex-
ity of the regions in a cartogram depends on the input
map. In addition to giving more visually complex shapes,
high polygonal complexity also results in significant in-
crease in size (e.g., for maps of the USA, 400KB for
diffusion-based cartogram [GN04] vs 8KB for rectangular
cartogram [BSV12]). As in [dBMS10], we measure this in
terms of maximum and average polygonal complexity of the
map regions.

Running Time: For cartogram systems, in particular for
interactive cartogram software, fast computation is essential.
The running time is thus an important factor for evaluating
cartogram algorithms.

3. Cartogram Algorithms

Here we review several cartogram generation methods
(diffusion-based, circular-arc, rectangular, rectilinear). We

submitted to Eurographics Conference on Visualization (EuroVis) (2015)



6 Submission No. # 327 / Quantitative Measures for Cartogram Generation Techniques

implemented all of them and used many different input maps
and statistics to generate different cartograms. We will illus-
trate how our proposed measures can be used to compare
these very different methods.

3.1. Deformation Cartogram Algorithms

Diffusion Method (DIFF): Gastner and Newman use a dif-
fusion method for creating cartograms [GN04], where the
original input map is projected onto a distorted grid, com-
puted in such a way that the areas of the countries match
exactly the pre-defined values. This method uses a physical
model in which the desired areas are achieved via an iter-
ative diffusion process, where flows move from one coun-
try to another until a balanced distribution is reached. After
each iteration the new coordinates for points on the map are
computed by interpolation of the distorted grid points. The
cartographic error, shape distortion and running time for this
method depends on the size of the chosen grid. We have used
a 1024× 1024 grid that generally is sufficient for the geo-
graphic maps under consideration.

Circular-Arc Cartogram Algorithm (CIRC): The method
of Kämper et al. [KKN13] deforms a given geographic map,
using circular arcs instead of straight-line segments along
the border between two regions, in order to grow and shrink
the regions on the map. First a flow network is computed
from the dual graph of the map, where bidirectional edges
are created between pairs of adjacent countries. The flow on
such edge (a,b) represents the area that the polygon for a
transfers to the polygon for b. The capacity of this edge is
assigned as the maximum “safe” area that can be transferred
from polygon for a to polygon for b, without creating any
crossing or overlapping polygons. Each country that needs
to shrink (grow) is connected to a source (sink) node and
the capacity on these edges corresponds to how much these
countries need to grow or shrink. The output cartogram is
the one that maximizes the flow in the network.

We make two modifications in the algorithm by Kämper
et al. [KKN13] to improve its performance. First, the origi-
nal algorithm did not allow the area of the “sea” to change.
As a result a country cannot grow into the sea unless there is
some other country that can compensate for it by shrinking
near the sea.We overcome this by augmenting the flow net-
work: in addition to the edges of the original flow network,
we add high-capacity small-weight edges from the source to
the sea and from the sea to the sink to allow the sea area
(equivalently, total land area) to be changed. Second, we
note that if the boundary of a country only contains line-
segments of small length, then it is impossible to achieve
significant change in the area by replacing the straight-line
segments with circular arcs. We therefore carefully remove
intermediate degree-2 points on the boundary of a region,
thus allowing significant change in the area, while still pre-
serving the overall shape of the region. We accomplish this
with a modified version of the poly-line simplification al-

gorithm of Douglas and Peucker [DP73]. We use this strat-
egy iteratively, where at each iteration we select a border
between pair of countries that gives the maximum reduction
in cartographic error and simplify the border between them
by removing half of the degree-2 points.

3.2. Topological Cartogram Algorithms

Rectangular Cartogram Algorithms (RECT): Not all pla-
nar maps can be drawn so that all the countries are rectan-
gles. But if we tolerate some topological errors, it is pos-
sible to compute a rectangular cartogram. Such cartograms
were studied by Van Kreveld and Speckmann [KS07]. They
used three different heuristics for computing rectangular car-
tograms. We implement their “segment-moving heuristic” to
generate cartograms. This heuristic gives two different car-
togram methods: in one the adjacencies might be disturbed
in order to realize the weights perfectly (area-preserving);
in the other all the adjacencies are maintained but the car-
tograms would contain some cartographic errors (topology-
preserving). While the area-preserving variant converges
fast to a cartogram with zero-cartographic error in the sim-
ple segment-moving heuristic, the topology-preserving car-
tograms have significant cartographic error. Hence for the
later variant, we use the improved algorithm by Buchin et
al. [BSV12].

The evolution algorithm in [BSV12] generates the
“fittest” rectangular cartogram for a planar map. At each
step the algorithm takes a number of different rectangular
layouts for the map and keeps only those for which the
cartogram computed using the approach in [SKF06] gives
the least error or the best “score” for a given scoring func-
tion. Then a number of new rectangular layouts are gener-
ated by combining the “fittest” old ones. Since this algo-
rithm produces topological cartograms which are always in-
ferior to deformation cartograms in terms of recognizability
and shape preservation we use a scoring function that opti-
mizes the cartographic error, which is the strongest feature
of these cartograms. We also only consider the topology-
preserving variant since in the area-preserving variant, the
segment-moving heuristic gives zero error. We call these two
variants RECT-A (area-preserving segment-moving heuris-
tic) and RECT-E (topology-preserving evolution algorithm).

Note that in both rectangular cartograms, the shape of the
outside boundary is manually determined by placing a set
of rectangles for the “sea” regions. Careful placement of the
sea regions can lead to better performance [BSV12, KS07].
To allow for the comparison between different algorithms we
use a standardized sea-procedure. We always place exactly
four sea regions in the left, top, right and bottom borders of
the map. In order to make a map realizable with rectangu-
lar cartogram, sometimes these methods merge two coun-
tries into one or split some country into two parts, which
may be undesirable. For example, in a cartogram of Europe,
the region for Luxembourg either gets merged with one of
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Germany map DIFF: ε = 0.013, ξ = 0.031, τ = 0, CIRC: ε = 0.103, ξ = 0.367, τ = 0,
θ = 0.82, δ = 12.02, α = 1.78 θ = 0.7, δ = 10.32, α = 1.80

RECT-A: ε = 0, ξ = 0.002, τ = 7.3, RECT-E: ε = 0.094, ξ = 0.686, τ = 0, COMBT: ε = 0.016, ξ = 0.041, τ = 0,
θ = 11.94, δ = 38.35, α = 2.98 θ = 17.83, δ = 34.47, α = 2.87 θ = 10.94, δ = 43.09, α = 2.94

Figure 6: Germany map and GDP cartograms by different algorithms along with the values for ε, τ, θ, δ and α.

its neighboring countries or one of the neighbors of Luxem-
bourg gets split into two parts [KS07]. In practice, this re-
sults in regions that are no longer rectangular, but still have
low polygonal complexity.

T-Shape Cartogram Algorithm (COMBT): Using a
Schnyder realizer [Sch90] and the area-universality of one-
sided rectangular duals [EMSV12], one can compute rec-
tilinear cartograms with optimal complexity [ABF∗13b].
Each country in the resulting cartogram is drawn by a T-
shape with at most 8 corners per polygon and the desired
areas are obtained via an iterative process that mimics the
natural phenomenon of air-pressure. This method of produc-
ing cartograms guarantees convergence to an error-free car-
togram and converges quickly in practice.

4. Evaluation using Proposed Metrics

Here we show how to use the defined standard measures
for statistical distortion, geographic distortion, and complex-
ity in order to analyze the performance of the different car-
togram algorithms. We begin with a description of the maps
and data that we used for our experiments.

4.1. Datasets and Experimental Settings

We use maps of the USA, Italy and Germany to compare all
the cartogram algorithms. For each map we use GDP and

population data for 2010. The properties of these maps and
the data are shown in Tables 2 and 3. After each algorithm
is run on each map and dataset, we compute the value of the
performance measures ε, ξ, τ, θ, δ and α. We also record
the running time and polygonal complexity (either constant
or equal to the input for all the algorithms considered). All
experiments were performed on on an Intel Core i5 1.8GHz
machine with 8 GB RAM. GDP cartograms of Germany for
the five algorithms are shown in Figure 6.

4.2. Performance Analysis

We analyze the performance of the five cartogram algo-
rithms with the three datasets and two statistics, using our
proposed metrics.

Deformation Algorithms vs Topological Algorithms: Re-
call that all the algorithms under consideration fall into
two types: deformation algorithms (DIFF and CIRC), and

Country Number
of States

Number of
Dual Edges

Average Polygon
Complexity

USA 46 117 52.4
Germany 12 28 66.3

Italy 15 30 32

Table 2: Properties of the input maps.
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Figure 7: Angular orientation error (θ), Hamming distance (δ), Average Aspect Ratio (α) and running time (cut off at 50s).

Country Data Maximum
Value

Minimum
Value

Average
Value

USA
GDP 1936400 26400 284846.7

Population 38041430 576412 5926901.7

Germany
GDP 37509 21404 27822.9

Population 17837000 1639000 6232500

Italy
GDP 321627 6067 82289.53

Population 9642000 320000 3377196.6

Table 3: Properties of the input data.

topological algorithms (different variants of RECT and
COMBT). The deformation algorithms modify the input map
by either moving vertices or by deforming edges, while the
topological algorithms use the map topology (i.e., the planar
dual) and construct cartograms exploiting different combina-
torial properties. Since deformation algorithms work on the
map itself rather than the dual, they produce cartograms with
better readability and recognizability than topological algo-
rithms; which is also evident from the value of the measures
(θ, δ, α) related to map recognizability; see Fig. 7.

However, topological algorithms have the advantage of

constant polygonal complexity, while for deformation al-
gorithms the polygonal complexity is the same as the in-
put map. Furthermore some of the topological algorithms
(RECT-A, COMBT) also guarantee zero cartographic error
for any map and input data; see Fig 8.

Diffusion Method vs Circular-Arc Cartograms: Among
the deformation algorithms, the circular-arc cartograms per-
form slightly better than the diffusion method in terms of
the three readability measures (θ, δ, α); see Fig. 7. This sug-
gests that circular-arc cartograms preserve the state-shapes
and their relative positions better. On the other hand the dif-
fusion method generates cartograms with lower cartographic
error. While the errors for circular-arc cartograms are com-
parable with (slightly worse than) RECT-E, they are much
worse than COMBT and RECT-A.

Comparison Among Topological Algorithms: Among
the topological algorithms, the COMBT algorithm and the
RECT-A algorithm achieve almost zero cartographic error
(they eventually converge to cartograms with zero carto-
graphic error), but the RECT-A algorithm significantly dis-
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Figure 8: Average normalized cartographic error ε (left) and maximum normalized cartographic error ξ (right) for all algorithms.

torts topology (missing 3-7 pairwise adjacencies in the re-
sulting cartograms). All RECT variants require that one or
more regions be deleted or merged with neighboring coun-
tries, in order to make the map suitable for rectangular rep-
resentation. In particular, these three algorithms delete one
state from Italy, two states from Germany and four states
from the USA to make the graph 4-connected, which guar-
antees the existence of such a rectangular drawing. This can
be avoided by allowing some regions to have more complex
shapes than rectangles (e.g., rectilinear). RECT-E generates
rectangular cartograms with much higher cartographic error;
see Fig. 8(right), but unlike RECT-A it preserves adjacencies
between regions.

Time-Analysis: Most of the algorithms generate car-
tograms fairly quickly but not all are suitable for real-
time cartogram generation; see Fig. 7. The COMBT and
the RECT algorithms guarantee convergence to zero car-
tographic error eventually; running them for 1–3 seconds
suffices to achieve negligible error. The running time for
both the iterative algorithms (CIRC, RECT-E) depends on
the number of iterations. We run them for 20–30 iterations,
while the average time per iteration for these algorithms is
about 2–5 seconds on USA map and about 1 second for the
Germany and Italy map. The running time for DIFF is about
25–50 seconds.

Overall Comparison: It is clear that there is no single
cartogram algorithm that satisfies all the desirable criteria.
Some can guarantee very low statistical distortion. Others
can provide very low geographic distortion. The algorithms
also differ in complexity (both in terms of running time
complexity and polygonal complexity of the regions). Thus
which cartogram algorithm should be used in practice de-
pends on the application requirements and on the viewers’
preferences. For example if the only criteria for a cartogram
is zero cartographic error, then RECT-A seems very good. If

in addition, topology is to be preserved, COMBT might be
a preferred choice. Further, if readability of the map is very
important, then one might choose DIFF or CIRC, while if
reasonable cartographic error and readability but low polyg-
onal complexity is needed, RECT-E may be suitable.

5. Conclusion, Limitations and Future Work

We propose a set of quantitative measures as a standard to
evaluate cartogram generation algorithms in terms of cor-
rect representation of statistical data, faithful realization and
readability of underlying map, and complexity of the car-
togram and the cartogram generation method. To the best of
our knowledge this is the first attempt to standardize these
measures, although the necessity of such measures has been
expressed before [Tob04]. We also compare five different
cartogram algorithms, using these measures. However, the
purpose of our experiment is only to show how the quantita-
tive measures can be used to evaluate cartogram algorithms.
The results obtained in our experiments are only applicable
to the relatively small dataset (3 countries, 2 statistics per
country) and it was not our intention to conduct a full-scale
comparison between these algorithms. Running a full-scale
experiment with more countries, more statistics, and with
more cartogram algorithms is left for the future. Further,
in order to validate the proposed quantitative measures for
cartogram algorithms, it is necessary to perform qualitative
analysis (user-study) and verify that the proposed measures
indeed capture the desired features.
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