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Abstract. Given a biconnected plane graph G and a nonnegative integer k, we
examine the problem of deciding whether G admits a strict-orthogonal drawing
(i.e., an orthogonal drawing without bends) such that the reflex face complexity
(the maximum number of reflex angles in any face) is at most k. We introduce
a new technique to solve the problem in O(n1.5

min{k1.5, log n log k}) time,
while no such subquadratic-time solution for arbitrary k was known before. In
contrast, if the embedding is not fixed, then we prove that it is the NP-complete
to decide whether a planar graph admits a strict-orthogonal drawing with reflex
face complexity k, for some k 2 O(1).

1 Introduction

A t-bend orthogonal drawing of G is an orthogonal drawing of G, where each edge is
drawn as an orthogonal polyline with at most t-bends. An orthogonal drawing is strict
if it does not contain any bend. Such a drawing is also referred to as bendless or no-
bend orthogonal drawing [17]. If G is a plane graph (i.e., a graph with a fixed planar
embedding), then an orthogonal drawing of G is additionally constrained to respect the
given planar embedding. The reflex face complexity of an orthogonal drawing � is the
smallest integer k such that each inner face of � contains at most k reflex angles, and
the outer face of � contains at most k+4 reflex angles. Thus in an orthogonal drawing
of G with reflex face complexity k, each face of G is drawn as an orthogonal polygon
with at most 2k + 4 sides; see Figs. 1(a)-(c).

From technical drawings and wiring schematics to transportation network layouts,
orthogonal drawing (or layout) is one of the most common techniques for visualiz-
ing planar graphs [1] and is also a popular visualization technique provided by most
network layout systems (e.g., yEd [20], graphviz [6], and OGDF [3]). Early work on
orthogonal layouts was done by Valiant [19] and Leiserson [13] in the context of VLSI
design. The input graphs are assumed to be planar and with maximum-degree four,
although models incorporating higher degree graphs were introduced later by Tamas-
sia [18] and Fößmeier and Kaufmann [7].

Optimization Goals and Challenges. The number of reflex corners per face and the
number of bends per edge are two important aesthetic criteria in an orthogonal draw-
ing, and a good drawing usually minimizes these two parameters. Minimizing the total
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Fig. 1. (a) A plane graph G. (b) A strict-orthogonal drawing of G with reflex face complexity 1.
(c) A rectangular drawing of G. (d)–(e) Two strict-orthogonal drawings (0-bend drawings) of the
same graph with different reflex face complexities.

number of bends over all possible embeddings of the input planar graph is NP-hard [8].
However, Tamassia [18] introduced a maximum-flow based technique to solve the prob-
lem for maximum-degree-4 plane graphs (planar graphs with given embedding), which
takes O(n7/4

p
log n)-time. Later, Cornelsen and Karrenbauer [4] proposed a variation

of this maximum-flow based approach that improves the running time to O(n3/2
).

Note that minimization of the number of total bends, or the number of bends per
edge cannot bound the reflex face complexity, see Figs. 1(d)–(e), but a drawing with
reflex face complexity k ensures that the number of bends per edge is at most k. Given
a plane graph G with four prescribed corner vertices, Miura et al. [15] showed how
to decide whether G admits a strict-orthogonal drawing with reflex face complexity 0

(also known as rectangular drawings, as shown in Fig. 1(c)), that respects the given
corners. He reduced the problem to the problem of finding a perfect matching in some
graph, which leads to an O(n1.5/ log n)-time algorithm. A variation of Tamassia’s [18]
flow based approach can solve this problem in O(n log

2 n) time even when the corners
are not given in the input (see Appendix A).

An intriguing question in this context is whether one can adapt the maximum-flow
based approach [4, 18] or Miura et al.’s [15] technique to decide orthogonal drawabil-
ity with reflex face complexity k in polynomial time, for any nonnegative integer k.
While generalizing Miura’s technique does not seem simple, careful modifications of
the maximum-flow based approach can solve this drawing problem (see Appendix A).
The challenge here is that for k � 1, these modifications reduce the drawing problem to
the problem of finding a maximum flow in some nonplanar network with O(n) vertices
and edges, and hence takes O(n2

) time [16]. Therefore, it is natural to seek for a faster
algorithm to meet the practical needs.

Our Contributions: We study the problem of orthogonal drawing of a biconnected
planar graph with a given reflex face complexity k. Note that since every vertex in an
orthogonal drawing has degree  4, we consider only max-degree-4 graphs in this pa-
per. In the fixed embedding setting, we give two different polynomial-time algorithms
to compute strict-orthogonal drawings of a biconnected plane graph G with any given
face complexity k (if such drawings exist). Furthermore, given the nonnegative inte-
gers k0, k1, . . . , kr for the faces f0, f1, . . . , fr of G, both our algorithms can com-
pute strict-orthogonal drawings of G, with at most ki reflex corners in each face fi,
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i 2 {0, 1, . . . , r}. For example, one can specify ki = k for each inner face fi, and
k0 = 4 for the outer face f0 to compute a complexity-k tessellation of a rectangle.

We reduce this drawing problem to two classic graph optimization problems: find-
ing a maximum flow and finding a perfect matching. Although perfect matching prob-
lems on bipartite graphs can be solved via maximum flow [14], the two techniques
we present here are structurally different, and do not use this relationship. Based on
the best known time-complexities for these problems, our matching-based algorithm
runs in O((nk)1.5) time and the flow-based algorithm runs in O(n1.5

log n log k) time,
where k is the maximum over all ki’s. Both our algorithms can be extended to compute
general (non-strict) orthogonal drawings as well as orthogonal drawings with at most ti
bends on each edge ei, for some nonnegative integer ti.

Finally, we show that if the embedding of the planar graph G is not given, deciding
whether G has a strict-orthogonal drawing with a given reflex face complexity k is
NP-complete, even when k is bounded by a constant.

2 Strict-Orthogonal Drawing Algorithms for Plane Graphs

We begin with a preliminary result showing that to compute a strict-orthogonal drawing
it suffices to specify the angles between pairs of consecutive edges around each vertex.
We then describe our two algorithms, proving the following main theorem:

Theorem 1. Let G be an n-vertex biconnected plane graph with the faces f0, . . . , fr.
Given the nonnegative integers k0, . . . , kr with k = maxi{ki}, one can decide in poly-
nomial time T (n, k) whether G has a strict-orthogonal drawing, where each face fi
has at most ki reflex corners, and construct such a drawing if it exists.

Orthogonal Drawing using Angle Assignment. Tamassia [18] showed that an orthog-
onal drawing � of a biconnected plane graph G can be described by augmenting the em-
bedding of G with the angles at the bends (bend angles) and the angles between pairs of
consecutive edges around the vertices of G (vertex angles). For strict-orthogonal draw-
ings (no bends), we only consider vertex angles. Specifically, an angle assignment is a
mapping from the set {⇡/2,⇡, 3⇡/2} to the angles of G, where each angle is assigned
exactly one value. Although an angle assignment of G does not specify edge lengths, it
can precisely describe the shape of � . Given an angle assignment �, one can test if �
corresponds to a strict-orthogonal drawing by Lemma 1, which is implied from [18]:

Lemma 1. An angle assignment � for a plane graph G corresponds to a strict-orthogonal
drawing of G if and only if � satisfies the following conditions (P1–P2):

(P1) The sum of the assigned angles around each vertex v in G is 2⇡.
(P2) the total assigned angle of every inner (respectively, outer) face f is (� � 2)⇡

(respectively, (� + 2)⇡), where � is the number of vertices on the boundary of f .

Given an angle assignment � satisfying (P1–P2), one can obtain a strict-orthogonal
drawing of G (i.e., the exact coordinates for the vertices) in linear time.
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Fig. 2. (a) A plane graph G (induced by the bold edges), and the construction of B(G) with
k0 = 8, k1 = k2 = k3 = k4 = 1, where only a few edges of B(G) are shown. (b) The
remaining edges in B(G): the edges shown are the ones incident to the convex boundary vertices
for a degree-4 (red), a degree-3 (green), a degree-2 (blue) vertices and the ones incident to reflex
boundary vertices for two degree-2 vertices (black).

2.1 Bipartite Graph Matching Formulation

Here we prove Theorem 1 by reducing the drawing problem to the problem of finding
a perfect matching in a bipartite graph. We construct a bipartite graph B(G) so that
one can compute a strict-orthogonal drawing of G with reflex face complexity k from a
perfect matching of B(G), and vice versa. Although our result generalizes the rectan-
gular drawing algorithm by Miura et al. [15], the bipartite graph we construct is quite
different from the one in [15] and it gives the option of having reflex corners in a face.

Let f0 be the outer face and f1, . . ., fr be the inner faces of G; see Fig. 2(a). For
each inner face fi, i 2 {1, . . . , r} of G we have four vertices x1

i , x2
i , x3

i , x4
i in B(G).

These vertices will correspond to four ⇡/2 angles in fi. We also have ki pairs of vertices
a1i , b1i , . . ., aki

i , bki
i associated with fi, as shown with white and gray squares with bold

boundaries. For each j 2 {1, . . . , ki}, there is an edge (aji , b
j
i ). Later, every a-vertex

will correspond to a ⇡/2 angle, and every b-vertex will correspond to a 3⇡/2 angle in
fi. In each internal face fi, there are only ki pairs of a and b-vertices, which will bound
the number of reflex corners of fi in the final drawing. Observe that by Condition (P2)
of Lemma 1, each internal face of G has exactly four ⇡/2 angles more than its 3⇡/2
angles, and hence we have four more white squares than gray squares. Similarly, the
outer face f0 must contain four 3⇡/2 angles more than its ⇡/2 angles. Thus for the face
f0, we have four vertices y10 , y20 , y30 and y40 representing 3⇡/2 angles, and p = k0 � 4

pairs of vertices a10, b10, . . ., ap0, bp0. Call the x- and the a-vertices the convex face-vertices
and the y- and b-vertices the reflex face-vertices.

In addition to the face-vertices above, B(G) also has vertex-vertices that correspond
to the vertices of G. For each degree-4 vertex v in G, let fi, fj , fk, fl be the four faces
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incident to v. For each h 2 {i, j, k, l}, B(G) has a vertex vh, which is adjacent to all the
convex face-vertices associated with fh; see vertex h in Fig. 2(a). We refer to these ver-
tices as convex boundary-vertices. Each of these convex boundary-vertices will choose
a convex face-vertex ensuring four ⇡/2 angles around v. For each degree-3 vertex v
incident to the faces fi, fj , fk, B(G) has three vertices vi, vj , vk, which are adjacent to
all the face-vertices of their corresponding faces. We also have an additional vertex v⇤

in B(G), which is a common neighbor for vi, vj , vk; see vertex n⇤ in Fig. 2(a). Again
we refer to these vertices vi, vj , vk as convex boundary-vertices, and the vertex v⇤ as
the central-vertex. Intuitively, v⇤ will match with one of its incident vertices leaving
two vertices among {vi, vj , vk}, which will choose two ⇡/2 angles around v. Finally,
if v is a degree-2 vertex incident to the faces fi and fj , then we have two vertices v0

and v00 in B(G) that are adjacent to each other. We call v0 a convex boundary-vertex
(shown as gray circle), and v00 a reflex boundary-vertex (shown as white circle). The
vertex v0 is adjacent to all the convex face-vertices associated with fi and fj , and the
vertex v00 is adjacent to all the reflex vertices associated with fi and fj ; see vertex m in
Fig. 2(a). Note that degree-3 and degree-4 vertices of G do not have any associated re-
flex boundary-vertices in B(G), since they cannot induce 3⇡/2 angles in an orthogonal
drawing; see Lemma 1, Condition (P1).

This completes the construction of B(G). It is bipartite. as in gray and white in
Figs. 2(a)–(b)). We have the following lemma, with the proof details in Appendix A.

Lemma 2. There is a perfect matching in B(G) if and only if G has a strict-orthogonal
drawing, where each face fi contains at most ki reflex corners.

Proof Sketch: If B(G) has a perfect matching M , see Figs. 3(a)–(b), then we compute
an angle assignment � for G that satisfies Conditions (P1–P2) of Lemma 1. For any
face fi of G, assign the angle inside fi (at some vertex v) the value ⇡/2 (resp. 3⇡/2)
if the corresponding boundary-vertex in B(G) is matched to some convex (resp. reflex)
face-vertex of fi. Otherwise, the boundary-vertex is matched with some central-vertex,
or another boundary vertex. In both cases assign the angle the value ⇡. If the above
rule leads to a conflict at some degree-2 vertex, i.e., when it has both convex and reflex
boundary-vertices matched to face-vertices of the same face (see vertex q in Fig. 3(b)),
we again assign the angle at v a value of ⇡ (inside that face). Since M is a perfect
matching, the construction of B(G) implies that each inner (resp. the outer) face has
exactly four more (resp. fewer) ⇡/2 angles than 3⇡/2 angles. Consider now a vertex
v of G. If deg(v) = 4, it has exactly four ⇡/2 angles by the matching of its four
convex boundary-vertices. If deg(v) = 3, it has two ⇡/2 angles and one ⇡ angle. For
deg(v) = 2, it has either two ⇡ angles or one ⇡/2 and one 3⇡/2 angles. By Lemma 1,
this angle assignment gives a desired orthogonal drawing of G; see Fig. 3(c).

Conversely, if G has a strict-orthogonal drawing � , where each face fi has at most
ki reflex corners, then � gives a perfect matching M in G. Inside each face fi of G,
for each ⇡/2 (resp. 3⇡/2) angle, match the corresponding boundary-vertex to a convex
(resp. reflex) face-vertex of fi. It is straightforward to match face-vertices with bound-
ary vertices such that the unmatched face vertices remain in pairs and later we take the
edges between the unmatched pairs in M . For each degree-2 vertex with two ⇡ angles,
we take the edge between its boundary-vertices in M . Finally, for each degree-3 vertex
v, we match the boundary vertex corresponding to the ⇡ angle of v with v⇤. ut
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Fig. 3. (a) A biconnected plane graph G with maximum degree four, (b) a perfect matching in
B(G), and (c) a strict-orthogonal drawing of G with k0 = 8 and k1 = k2 = k3 = k4 = 1.

The number of vertices |V | in B(G) is O(nk), where k = maxi{ki}. Since there
are O(n) boundary-vertices and for each of the O(n) faces, there are O(k) face-vertices,
the number of edges |E| in B(G) is again O(nk). Hence the existence of a perfect
matching in B(G) can be tested in O(

p
|V ||E|) = O(

p
nk.nk) = O((nk)1.5) time

using the Hopcroft-Karp algorithm [10].

2.2 Maximum-Network-Flow Formulation

Here we use a maximum-network-flow algorithm to compute strict-orthogonal draw-
ings of a biconnected plane graph G, with at most ki reflex corners in each face fi.

Note that network-flow models have been used before in the context of orthogonal
drawings [4, 18]. While these network-flow models are also based on the concept of an-
gle assignment, our network-flow model is of independent interest because it is planar
for arbitrary choice of k, and thus gives a faster solution to the problem. We refer the
reader to Appendix A, where we show how to modify previous network-flow formula-
tions to solve the problem of strict-orthogonal drawings with bounded number of reflex
corners for the faces. However, for k � 1, the modified networks are no longer planar
and hence solving the problem takes O(n2

) time [16].
Here is an outline of our algorithm. Given a plane graph G, we construct a flow-

network H , where the vertices of H are partitioned into two sets: the boundary-vertices,
VR, which corresponds to the vertices of G and the face-vertices, VF , which corre-
sponds to the faces of G. Any edge of H that connects a boundary-vertex with a face-
vertex corresponds to a vertex-face incidence of G. The vertices of degree more than
two in VR correspond to the sources, and a set of vertices UF ⇢ VF corresponds to the
sinks of H . Roughly speaking, the incoming flow to vertices of (VF \ UF ) determines
the convex corners, while the outgoing flow determines the reflex corners. We set the
edge capacities so that each sink consumes at most four units of flow, as per Condition
(P2) of Lemma 1. The flow constraints also ensure the desired number of reflex corners
in each face of the drawing implied by the maximum flow.
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We now describe the algorithm in detail. Given a plane graph G = (V,E), let F be
the faces in G. The graph H is constructed by the following steps; see Figs. 4(a)–(d).

Vertices: For each face f of G, there are two vertices v0f and v00f in H . Call v0f a
convex face-vertex and v00f a reflex face-vertex. Thus V 0

F = {v0f |f 2 F} and V 00
F =

{v00f |f 2 F} are the sets of all convex and reflex face-vertices, respectively, and are
shown in gray-blue and lightgray-red vertices; see Fig. 4. For each vertex v of G with
degree three or four, add v as a vertex of H . All these vertices are convex boundary-
vertices. For each vertex v of degree two, add two vertices v and v⇤ to H , where v
is a convex boundary-vertex and v⇤ is a reflex boundary-vertex. The reflex boundary-
vertices are denoted by black squares in Fig. 4.

Edges: For each face f in G and for each vertex v on f in G, add an edge from the
corresponding convex boundary-vertex in H to the convex face-vertex v0f ; see Fig. 4(b).
If v has degree 2, then also add an edge e from the reflex face-vertex v00f to the reflex
boundary-vertex v⇤; see Fig. 4(d). Set the capacity upper bound ce = 1 for e. For each
face fi of G, add an edge e from the convex face-vertex v0fi to the reflex face-vertex v00fi
with ce = ki; see Fig. 4(c). For each vertex v of degree-2, add an edge from the reflex
boundary-vertex v⇤ to the convex boundary-vertex v with ce = 1; see Fig. 4(c).

Sources and sinks: All the convex boundary-vertices corresponding to the degree-3
and degree-4 vertices of G are sources of H . Each degree-3 vertex has a production of
2 units of flow, and each degree-4 vertex has a production of 4 units of flow. For each
inner face f of G, there is a sink (unfilled-green vertices in Fig 4) with an incoming
edge e from the convex face-vertex v0f , where ce = 4; see Fig. 4(c). Finally, there is a
source on the outer face f0 with an outgoing edge e to the convex face-vertex v0f0 with
ce = 4. We set production of this source to be four units of flow.

This completes the construction. Before we argue correctness, define a maximum
flow in H to be saturated if it consumes the productions of all the sources of H , as
well as saturates the incoming edges to all the sinks of H . We now show that finding
an integral maximum flow in H is equivalent to computing a desired strict-orthogonal
drawing of G. We have the following lemma with the proof details in Appendix A.

Lemma 3. There is a strict-orthogonal drawing of G where each face fi contains at
most ki reflex corners if and only if the integral maximum flow in H is saturated.

Proof Sketch: Assume that the maximum flow of H is saturated. We then find an angle
assignment for H that corresponds to a desired strict-orthogonal drawing of G. The
edges from the convex boundary-vertices to the convex face-vertices carry at most one
unit of flow. A non-zero (resp., zero) flow on such an edge corresponds to an angle
of ⇡/2 (resp., ⇡) at the corresponding angle. Similarly the edges from the reflex face-
vertices to the reflex boundary-vertices also carry at most one unit of flow. A non-
zero (resp., zero) flow on such an edge corresponds to an angle of 3⇡/2 (resp., ⇡) at
the corresponding angle. An exception of the above two rules is the case when there
is a degree-2 vertex v and a face f incident to v in G so that the edges (v, v0f ) and
(v00f , v

⇤
) both carry one unit of flow; see the flow through o⇤ in Figs. 4(e)–(h). In this

scenario, assign ⇡ to the corresponding angle. In the detailed proof we show that this
angle assignment corresponds to a strict-orthogonal drawing of G, in particular, the two
properties of Lemma 1 hold; see Figs. 4(e)–(h). ut
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Fig. 4. (a) A plane graph G, (b)–(d) construction of the flow-network H from G, the edges shown
in three partitions, (e)–(g) a saturated integral flow on H , where each thin edge in black (resp.
gray) carries one (resp. zero) unit of flow, (h) a corresponding strict-orthogonal drawing of G.

Theorem 1 is a direct consequence of Lemma 3. To compute the maximum flow
we use the O(min(|V |2/3, |E|1/2)|E| log(|V |2/|E|) logU)-time algorithm of Gold-
berg and Rao [9]. Since H has O(n) edges and each edge has O(k) capacity upper
bound U , the running time is O(n1.5

log n log k).
For the case when k = 0, we can delete the reflex face-vertices (except the one

in the outer face) to make H planar. Then the maximum-flow problem for a multiple-
source and multiple-sink directed planar graph can be solved in O(n log

3 n) time [2].
However, here the productions and demands for the vertices are known. Thus we need
to solve only a feasible flow problem, which can be computed in O(n log

2 n) time [12].

Corollary 1. Given a plane graph G with n vertices, one can determine in O(n log

2 n)
time whether G admits a rectangular drawing, and construct such a drawing if it exists.

2.3 General Orthogonal Drawing with a Given Face-Complexity

Here we extend our algorithms to general (non-strict) orthogonal drawing. Each bend
in an orthogonal drawing can be thought of as a degree-2 vertex on some edge in the
graph (e.g., a subdivision of an edge). We have the following lemma, whose proof is in
Appendix B.

Lemma 4. Let G be a biconnected plane graph with edges e1, . . ., em and faces f0,
f1, . . ., fr. Consider the set of non-negative integers t1, . . ., tm and k0, k1, . . ., kr. Let
Gt be a graph obtained from G by subdividing each edge ei exactly ti times. Then G
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has an orthogonal drawing, where each edge ei has at most ti bends and each face fi
has at most ki reflex corners if and only if Gt has a strict-orthogonal drawing where
each face fi has at most ki reflex corners.

Assume t = maxi{ti} and k = maxi{ki}. Since each of the O(n) edges in G
is subdivided t times, the number of vertices in Gt is O(nt), where n is the number
of vertices in G. Hence the time-complexity of finding whether G has an orthogonal
drawing with upper bound on the number of bends on each edge and upper bound on
the number of reflex corners in each face can be found from the time-complexities of our
two algorithms for computing strict-orthogonal drawing replacing n by nt. Note that in
an orthogonal drawing of a biconnected plane graph with reflex face complexity k each
edge can have at most 2k bends. Thus the time-complexity to test a general orthogonal
drawing of G with reflex face complexity k is O((nk2)1.5) and O((nk)1.5 log n log k)
using the perfect matching and the network-flow formulation, respectively.

Theorem 2. For an n-vertex biconnected plane graph G and an integer k � 0, one can
decide in polynomial time if G has an orthogonal drawing of reflex face complexity k.

We can assign positive costs to the edges of the flow-network, and then use min-cost
max-flow to minimize the number of bends while computing a drawing with a given
reflex face complexity. Specifically, if we assign unit cost only to the edges, incoming
to the division vertices, then the cost of the maximum flow will directly correspond to
the total number of bends in the drawing. This provides an alternative of Tamassia’s
technique [18] for minimizing the total number of bends in an orthogonal drawing.

Corollary 2. Given an n-vertex biconnected plane graph G and a positive integer k,
we can decide in polynomial time whether G admits an orthogonal drawing with reflex
face complexity k, and if such a drawing exists, then we can construct the drawing
minimizing the total number of bends in polynomial time.

3 NP-Hardness for Planar Graphs

In this section we prove that it is NP-complete to decide whether a planar bicon-
nected graph admits a strict-orthogonal drawing with a given reflex face complexity
k. Throughout this section we denote this problem by MIN-REFLEX-DRAW. The NP-
hardness proof for deciding strict-orthogonal drawability [8] implies that it is NP-hard
to determine drawability with k reflex face complexity, but this proof does not hold if
we restrict k to be a constant. On the other hand, our NP-hardness proof holds for some
k 2 O(1), even when it is known that the input graph has a strict-orthogonal drawing.

We prove the NP-completeness with a reduction from the rectilinear monotone pla-
nar 3-SAT problem (RMP3SAT), which is NP-hard [5]. The input of an RMP3SAT
instance I is a collection C of clauses over a set U of variables such that each clause
contains at most three variables, and each clause is either positive or negative (i.e., all its
variables are either positive or negative). Moreover, the corresponding SAT-graph GI

(i.e., a bipartite graph with vertex set C[U and edge set {(x, y)|x 2 C, y 2 U, y 2 x})
admits a planar drawing � satisfying the following property: Each vertex in � is drawn
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as an axis-aligned rectangle. All the vertices representing variables lie along a horizontal
line h (known as backbone). The vertices representing positive (respectively, negative)
clauses lie on the top (respectively, bottom) half-plane of h. Each edge is drawn as a
vertical line segment that is incident to the drawings of its end vertices. The RMP3SAT
problem asks to decide whether there is a satisfying truth assignment for U satisfying
all clauses in C. RMP3SAT remains NP-hard even when each variable appears in at
most four clauses [11].

Given an instance I = (U,C) of RMP3SAT, where each variable appears in at
least two and at most 4 clauses, we construct a planar graph H so that H has a strict-
orthogonal drawing with face complexity k, for a constant k, if and only if the RMP3SAT
instance is satisfiable. We only sketch the construction; see Appendix C for details.

We construct H from the drawing � of the SAT-graph GI . We first draw a polygon
with holes (shown in gray) that represents each edge of � as a tunnel; see Fig. 5(b). For
each variable, we draw a horizontal line-segment (i.e., a variable-segment, as shown in
dashed line), and for each variable-clause incidence, we draw a vertical/horizontal line
segment (i.e., a clause-segment, as shown in dotted line). Let the resulting drawing be
� 0. We now add polynomial number of vertices, division vertices and edges to � 0 to
obtain � 00 such that in any strict-orthogonal drawing of the underlying graph G00, the
edges are forced to maintain the axis-alignments as in � 00 (up to rotation or reflection);
see Fig. 5(c). For each variable-segment in � 00, we add a variable-staircase of length
4�2, and for each clause-segment, a clause-staircase of length �2 (Fig. 5(d) shows a
staircase of length 8). Here � is a constant. We discuss at the end of this section about
a suitable value for �. For each face in � 0 that corresponds to a clause c 2 C, we
add a corner-staircase of length (4� |c|+ 1)�2 to some convex corner of that face (see
Fig. 5(f)), where |c| is the number of variables in c. Unlike corner-staircases, the clause-
and variable- staircases are flippable.

We now have the following lemma with the proof details in Appendix C.

Lemma 5. There is a strict-orthogonal drawing of H with reflex face complexity k =

4�2
+ 3� if and only if I is satisfiable.

Proof Sketch: Given a drawing of H with reflex face complexity k, we use the above/
below orientations of a variable staircase to find the truth value of the corresponding
variable; see Fig. 5(h). The face that receives a variable staircase obtains at least 4�2

reflex corners, and hence cannot have any clause-staircase inside it. Moreover, no face
that represents a clause can have all its clause-staircases inside it since then it would
have at least (4� |c|+ 1)�2

+ |c|�2
= 5�2 reflex vertices. Consequently, every clause

representing a face must have one of its clause-staircases outside of the face, which
implies that each clause must be satisfied. On the other hand, given a satisfying truth
assignment for I , we orient the variable-staircases above/below depending on whether
it is false/true. The placement for the rest of the staircases is then straightforward. ut

Lemma 5 proves the NP-hardness of MIN-REFLEX-DRAW. Given a drawing �H

of H and an integer k, it is straightforward to decide in polynomial time if � is a
strict-orthogonal drawing with reflex face complexity k. Thus the problem is also in
NP, which yields our final theorem.
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c2=(x1 _ x2 _ x3)

c3=(x̄2 _ x̄3 _ x̄4)

c1 = (x1 _ x3 _ x4)

c4 = (x̄1 _ x̄4)

x1 x2 x3 x4
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c4
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F
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Fig. 5. (a) GI , (b) � 0, (c) G00, (d) a clause-staircase, (e) flip of a staircase, (f) a corner-staircase,
(g) �H , with x1 = x2 = true, x3 = x4 = false; corner-, clause-, variable- staircases shown in
black, gray, white, respectively, (h) computing truth assignment: x1 = x2 = x4 =false, x3=true.

Theorem 3. It is NP-complete to decide if a planar graph admits a strict-orthogonal
drawing with a given face complexity k, where k is upper bounded by a constant.

It suffices to choose � = 18 in our hardness proof; which implies that k can be
upper bounded by 4�2

+3� = 1350. Note that our construction does not give a hardness
result, when k is bounded by a small constant k, e.g., when k 2 {1, 2, 3}.

4 Conclusion

We presented two polynomial-time algorithms to decide whether a planar graph G ad-
mits a strict orthogonal drawing with a given reflex face complexity k, for any given
nonnegative integer k. The time-complexities that we achieved are O((nk)1.5) and
O(n1.5

log n log k). Finding faster algorithms for this problem would be a natural di-
rection for future research.

We also showed that in the variable-embedding setting the problem of deciding
whether a biconnected planar graph admits a strict-orthogonal drawing with a given
reflex face complexity k is NP-complete, even when k is a constant. Since the value
of k in our proof is large, it would be worthwhile to consider the complexity of the
problem for small fixed values of k.

Acknowledgment: We thank the anonymous reviewers from SoCG 2014 for pointing
out how the two earlier network-flow formulations can be modified to compute orthog-
onal drawings with bounded face complexities; see Appendix A.
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Appendix A
Proof of Lemma 2: Assume that B(G) has a perfect matching M ; see Figs. 3(a)–(b).
From this matching, we compute an angle assignment � for G from the set {⇡/2, ⇡,
3⇡/2} so that � satisfies Conditions (P1–P2) of Lemma 1.

Consider an arbitrary face fi of G. We assign an angle inside fi (at some vertex v)
the value ⇡/2 if the corresponding boundary-vertex in B(G) is matched to some convex
face-vertex of fi. For example, the convex boundary-vertices associated with the ver-
tices b and h in Fig. 3(b) are determining ⇡/2 angles around b and h in Fig. 3(c). Sim-
ilarly, a 3⇡/2 angle is assigned to v when its corresponding boundary-vertex in B(G)

is matched with a reflex face-vertex for fi, e.g., see vertex m in Fig. 3(b). Otherwise,
the boundary-vertex is either matched with some central-vertex, or another boundary
vertex (e.g., see vertex c). In both cases we assign the corresponding angle the value ⇡.

Note that the above rules may lead to a conflict at some degree-2 vertex, when
it has both convex and reflex boundary-vertices matched to the convex and reflex face-
vertices of the same face. For example, the vertex q in Fig. 3(b) has its boundary vertices
matched with the face-vertices in the same face f3. In such a case we assign the angle
at v a value of ⇡ (inside the corresponding face). Since M is a perfect matching, the
construction of B(G) implies that each inner face has exactly four more ⇡/2 angles
than 3⇡/2 angles. Similarly, the outer face f0 contains exactly four more 3⇡/2 angles
than ⇡/2 angles. Thus Condition (P2) of Lemma 1 is satisfied for each face of G.

Consider now the assignment of angles around each vertex v of G. If deg(v) = 4,
then all its four convex boundary-vertices are matched to some convex face-vertices,
and hence it has exactly four ⇡/2 angles. If deg(v) = 3, then exactly one of its three
convex boundary-vertices is matched with v⇤, and hence it has two ⇡/2 angles and one
⇡ angle. Finally, if deg(v) = 2, then it either has two ⇡ angles (because v0 and v00

are either matched to each other or to the face-vertices in the same face); or it receives
exactly one ⇡/2 angle and exactly one 3⇡/2 angle. Thus the sum of angles around
each vertex is 2⇡, satisfying Condition (P1) of Lemma 1. By Lemma 1, this angle
assignment gives an orthogonal drawing of G. Since each face fi can have at most
ki reflex boundary-vertices matched to its ki reflex face-vertices, the number of reflex
corners in the drawing of fi is at most ki; see Fig. 3(c).

Conversely, if G has a strict-orthogonal drawing � , where each face fi of G has at
most ki reflex corners, then � gives a perfect matching M in G, as follows. For each
face fi of G, traverse around its drawing in � , and for each ⇡/2 (respectively, 3⇡/2)
angle, match the corresponding boundary-vertex to a convex (respectively, reflex) face-
vertex of fi. There are always sufficiently many face-vertices, since each inner face fi
is associated with ki pairs of convex and reflex face-vertices, and the outer face f0 has
exactly p = k0�4 such pairs. It is straightforward to match face-vertices with boundary
vertices such that the unmatched face vertices remain in pairs. Hence we can afterwards
choose the edges between the unmatched pairs of face-vertices in M . For each degree-2
vertex with two ⇡ angles, we take the edge between its boundary-vertices in M . Finally,
for each degree-3 vertex v, we match the boundary vertex corresponding to the ⇡ angle
of v with v⇤. ut
Proof of Lemma 3: Assume that the maximum flow of H is saturated. We then find
an angle assignment for H that corresponds to a desired strict-orthogonal drawing of
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G. The edges from the convex boundary-vertices to the convex face-vertices carry at
most one unit of flow. A non-zero (resp., zero) flow on such an edge corresponds to an
angle of ⇡/2 (resp., ⇡) at the corresponding angle. Similarly the edges from the reflex
face-vertices to the reflex boundary-vertices also carry at most one unit of flow. A non-
zero (resp., zero) flow on such an edge corresponds to an angle of 3⇡/2 (resp., ⇡) at
the corresponding angle. An exception of the above two rules is the case when there
is a degree-2 vertex v and a face f incident to v in G so that the edges (v, v0f ) and
(v00f , v

⇤
) both carry one unit of flow; see the flow through o⇤ in Figs. 4(e)–(h). In this

scenario1, assign ⇡ to the corresponding angle. We now show that this angle assignment
corresponds to a strict-orthogonal drawing of G, in particular, the two properties of
Lemma 1 hold; see Figs. 4(e)–(h).

Property P1: To show that the sum of assigned angles around each vertex v in G
is ⇡, we first consider the case when deg(v) = 4. Since this vertex corresponds to a
source s in H with production 4, each outgoing edge from s must have one unit of
flow, implying four ⇡/2 angles around v. If deg(v) = 3, then the production of the
corresponding source s in H is 2. Therefore, two of the outgoing edges from s will
have one unit of flow, implying two ⇡/2 angles around v. The remaining outgoing edge
from s will have zero flow determining a ⇡ angle at v. Finally, if deg(v) = 2, then let
the two faces incident to v in G be f and f 0. According to the capacity constraints, there
are three possibilities: (1) The path v00f , v

⇤, v, v0f 0 (or, v00f 0 , v⇤, v, v0f ) carries one unit of
flow implying a ⇡/2 (resp., 3⇡/2) angle at f and a 3⇡/2 (resp., ⇡/2) angle at f 0. (2)
The path v00f 0 , v⇤, v, v0f 0 (or, v00f , v

⇤, v, v0f ) carries one unit of flow, which implies a ⇡
angle at f and a ⇡ angle at f 0. (3) The amount of outgoing flow from v and hence the
incoming flow to v⇤ is zero, implying a ⇡ angle at f and a ⇡ angle at f 0. In all the above
three cases, the sum of assigned angles around v is ⇡.

Property P2: Every inner (resp., outer) face contains four more ⇡/2 (resp., 3⇡/2)
angles than 3⇡/2 (resp., ⇡/2) angles. Since we assumed the maximum flow is saturated,
the difference between incoming flows between the convex and reflex face-vertices of
f is exactly four. Then f has exactly four more convex corners than reflex corners.
Similarly, for the outer face, the source ensures that the number of reflex vertices is
exactly four more than the number of convex corners. Both cases imply the condition
P2 of Lemma 1.

Thus by Lemma 1, this angle assignment corresponds to a strict-orthogonal drawing
of G. Furthermore, since the edge between the convex and the reflex face-vertices v0f
and v00f in each face fi can carry at most ki units of flow, and since this is the only
incoming edge to v00f , the face fi has at most ki reflex corners.

Conversely, if G has a strict-orthogonal drawing where each face fi has at most
ki reflex corners, then we can find a saturated integral flow in H , as follows. For every
⇡/2 angle inside some face f , we assign one unit of flow from the corresponding convex
boundary-vertex v to the convex face-vertex v0f . Similarly, for each 3⇡/2 angle inside
f , we assign one unit of flow from the reflex face-vertex v00f to the corresponding reflex
boundary-vertex. Since each inner face has exactly four ⇡/2 angles more than 3⇡/2
angles, and the outer face has exactly four 3⇡/2 angles more than ⇡/2 angles, the
incoming sink edges at each inner face and the outgoing source edges at the outer face

1 Alternatively, we can use a min-cost max-flow network with positive costs for edges.
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Fig. 6. (a) A plane graph G, (b) construction of the flow-network H from G by Tamassia, (c) an
orthogonal drawing of G and the corresponding flow, (d) modification of the network by Tamassia
to solve the problem of orthogonal drawing with bounded reflex complexity for the faces.

are saturated. Since each degree-3 vertex has exactly two ⇡/2 angles and each degree-4
vertex has exactly four ⇡/2 angles, the production from all the sources is consumed.
Finally, since the number of reflex corners at each face fi is at most ki, the flow on the
edge between the convex and the reflex face-vertices for a face is at most the capacity
upper bound ki. Hence this flow assignment gives a saturated integral flow. ut

Previous Flow-Networks: Here we briefly review the network-flow formulations by
Tamassia [18] and by Cornelsen and Karrenbauer [4] for computing minimum-bend
orthogonal drawings of plane graphs. We then describe how these algorithms can be
modified in order to compute drawings with bounded reflex face complexities.

In Tamassia’s network H there are boundary-vertices, VR, and face-vertices, VF ;
see Fig. 6(a–b). The edges of H are the bidirectional edges of the dual graph of G
(dashed edges in Fig. 6(b), called dual edges) and the edges from each boundary-vertex
to its incident face-vertices (solid edges). Each vertex v in VR is a source with a pro-
duction of 4 � deg(v) units; while the production or consumption of each face-vertex
is either 4 � deg(f) units (for inner faces) or �4 � deg(f) (for the outer face). The
cost of an edge is 1 unit if it connects two face-vertices, and 0 otherwise. A min-cost
max-flow in this network corresponds to an orthogonal drawing of G, as follows. A
flow of t 2 {0, 1, 2, 3} units from a boundary-vertex to a face-vertex determines a
(t+1)⇡/2 assignment to the corresponding angle in G. A flow of t units through some
dual edge (dashed edge) corresponds to t bends in the corresponding edge of G; see
Fig. 6(c). Using this network, Tamassia [18] gave an O(n2

log n)-time algorithm for
orthogonal drawing with minimum number of bends. Cornelsen and Karrenbauer [4]
used the same network but improved the running time to O(n1.5

) with a faster min-cost
max-flow algorithm for this planar network.

One can modify the above network to solve the problem of orthogonal drawings
with bounded reflex face complexities as follows; see Fig. 6(d). Delete the dual edges,
i.e., dashed edges of H . For each face-vertex vf in H , add a new vertex v0f (unfilled red
vertices) in H . For each edge (vb, vf ) in H , with a degree-2 boundary vertex vb, add the
edge (vb, v0f ). Add the edges (v0f , vf ) and call the resulting network H 0; see Fig. 6(d).
Note that only degree-two vertices can contribute to 3⇡/2 angles in the drawing. Place
a capacity upper bound of 1 unit on each edge that is incident to some degree-two
boundary-vertex vb. Consequently, a 3⇡/2 angle at vb inside some face f corresponds
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to one unit of flow from vb to vf and one unit of flow through vb, v0f , vf . Finally, add a
capacity upper bound of kf on (v0f , vf ), where kf is the given reflex face complexity for
f . Note that this network is no longer planar and one cannot use the primal-dual algo-
rithm from [4] to solve the min-cost max-flow problem on this network. Furthermore,
unlike the original network in [18, 4], this modified network is not “uncapacitated”, as
it has capacity upper bound on some edges.

Our network-flow formulation is different from the above network. For example,
this network-flow formulation gives a planar network. Besides, it directly uses the ge-
ometric property that the sum of the angles inside (respectively, outside) an orthogonal
face with t vertices is 2t� 4 (respectively, 2t+4). In our network-flow formulation we
use the property that the number of ⇡/2 angles in an inner (respectively, outer) face is
four more (respectively, less) than the number of 3⇡/2 angles, which results in a differ-
ent set of vertices, edges, edge capacities and different interpretation of the flows in the
network.

Although the modified network described above is nonplanar for k � 1, for the case
when k = 0, we can find a planar network by deleting the unfilled red vertices, i.e., v0f ,
along with the incident edges. Thus the problem reduces to finding a maximum flow in a
planar network with multiple sources and sinks, which can be computed in O(n log

2 n)
time [12] since the productions and demands of all the vertices of the network are
known.

Appendix B
Proof of Lemma 4: Assume that G has a desired orthogonal drawing. For each bend
point p, subdivide the corresponding edge at p. In this way each edge ei is subdivided
at most ti times. For each edge ei that has not been subdivided ti times in this process,
further subdivide itso that the total number of subdivisions is exactly ti. Then this cor-
responds to a strict-orthogonal drawing of Gt, where each face fi has at most ki reflex
corners. Conversely, if � is a strict-orthogonal drawing of Gt, where each face fi has
at most ki reflex corners, then a desired orthogonal drawing of G can be obtained from
� by considering the degree two vertices (with angles ⇡/2 and 3⇡/2) of � as the bends
of the corresponding edges in G. ut

Appendix C
Construction of H: Given an instance I = (U,C) of RMP3SAT, where every variable
appears in at least two and at most 4 clauses, we construct a planar graph H .

Let GI be the SAT-graph of I and let � be a rectilinear monotone embedding of
GI , as shown in Fig. 5(a). We first construct a planar graph G00 from GI such that
any strict-orthogonal drawing of G00 will be unique (up to rotation or reflection), as
follows. We create a tunnel for each clause-variable incidence in � ; e.g., see Fig. 5(b)
ignoring the dotted and dashed lines. Observe that the tunnels and the rectangles (i.e.,
vertices) in � create a polygon P with some holes (shown in gray). We now draw
some straight line segments inside P to split it into smaller parts, as shown in Fig. 5(b)
using dashed and dotted lines. Specifically, a horizontal line segment (i.e., variable-
segment) for each variable along the backbone, and a vertical/horizontal line segment
(i.e., clause-segment) for each tunnel that splits the tunnel into two parts. The variable-
segments and clause-segments are shown with dashed and dotted lines in Fig. 5(b). Let
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the resulting drawing be � 0. Let G0 be the graph such that the vertices of G0 are deter-
mined by the end points of the line segments in � 0, and any two vertices are adjacent if
and only if there exists a line segment in � 0 that pass through them. We now briefly de-
scribe how to construct a graph G00 by adding polynomial number of vertices, division
vertices and edges to G0 such that in any strict-orthogonal drawing of G00, the edges of
G0 are forced to maintain orientations as in � 0 (up to rotation or reflection). Fig. 5(c)
illustrates an example of G00. Broadly speaking, to construct G00 we use the observation
that the orientation of the edges of a degree-4 vertex uniquely determines the edge ori-
entations of its neighboring degree four vertices. Thus one can construct G00 by placing
� 0 inside a grid-like structure. Another important issue is to split the holes into rect-
angles (since otherwise the corresponding face may have O(n) reflex vertices). Recall
that each variable appears in at most four clauses in I . Therefore, one can construct G00

such that G00 admits a drawing with reflex face complexity �, where � is a constant.
We now construct H by adding some some subgraphs (called staircases) to the

vertex- and clause-segments of G00. Fig. 5(d) illustrates an staircase of length eight
(in gray) attached to some clause-segment (in black), where the number eight denotes
that the staircase contributes to 8 reflex angles to the face that contains it. Observe that
addition of an staircase keeps the rigidity property, i.e., in any strict-orthogonal drawing
of the resulting graph, the edges of G0 are forced to maintain the orientations as in � 0.
Fig. 5(e) illustrates that one can flip an staircase with respect to its associated segment.
These staircases will determine the truth values of the variables of I = (U,C) in our
hardness proof. Specifically, we add a staircase of length 4�2 to each variable-segment,
and a staircase of length �2 to each clause-segment. We refer to these staircases as
variable- and clause-staircases, respectively. For each face in � 0 that corresponds to a
clause c 2 C, we add a staircase of length (4 � |c| + 1)�2 to some convex corner of
that face, as illustrated in Fig. 5(f). Here |c| denotes the number of variables in c. Note
that such a staircase is not flippable and respects the rigidity property. We refer to these
staircases as corner-staircases. The resulting graph is the required graph H .

Proof of Lemma 5: We first assume that I = (U,C) admits a satisfying truth assign-
ment and then show that H admits a strict-orthogonal drawing with reflex face com-
plexity k. Recall that by construction, the subgraph G00 of H admits a strict-orthogonal
drawing � 00 with reflex face complexity �. We now extend � 0 by drawing the staircases,
and the resulting drawing will be the required drawing of H .

The drawings of corner-staircases are straightforward, but for variable- and clause-
staircases we have exponential number of choices. Let u be a variable in I = (U,C).
If u = false, then we draw the corresponding variable-staircase above the variable-
segment. For each positive clause c 2 C that contains u, we draw the correspond-
ing clause-staircase inside the face that represents c. If u = true, then we draw the
corresponding variable-staircase below the variable-segment. For each negative clause
c 2 C that contains u, we draw the corresponding clause-staircase inside the face that
represents c. Finally, we draw every remaining clause-staircase outside of the clause-
representing face. An example is in Fig. 5(g). Let the resulting drawing be �H .

We now show that the face complexity of �H is at most k. The face complexity of
� 00 is �. Since a face can have at most � variable- or clause-segments, any face that
does not contain a staircase in �H , can have at most 3� reflex vertices. Any other face
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f contains at least one staircase, and can be categorized depending on whether it is
incident to some variable-segment or not.

If f is incident to some variable-segment and contains the variable-staircase, then by
construction of �H , no other staircase is drawn inside f . Therefore, the face complexity
of f is at most 4�2

+3�. If f is incident to some variable-segment and does not contain
the variable-staircase, then it can have at most four clause-staircases (since each variable
in I appears in at most four distinct clauses). Since each clause-staircase is of length
�2, the face complexity of f is at most 4�2

+ 3�. Finally, if f is not incident to any
variable-segment, then f represents a clause c, and hence it may contain only corner-
and clause-staircases. There are (4�|c|+1)�2 reflex vertices due to the corner-staircase.
Since �H is constructed from a satisfying truth assignment of I , and at least one literal
in c is true. Therefore, by construction of �H , at least one clause-staircase is drawn
outside of f . Therefore, f contains at most (|c| � 1)�2 reflex vertices due to clause-
staircases. Consequently, the face complexity of f is at most 4�2

+ 3�.
We now assume that H admits a strict-orthogonal drawing �H with reflex face com-

plexity k = 4�2
+ 3�, and construct a satisfying truth assignment of I = (U,C). For

each variable u, we assign it to false (or true) depending on whether the correspond-
ing variable-staircase lies above (or below) the corresponding variable-segment; see
Fig. 5(h). Such a truth assignment would satisfy I if every clause is satisfied. Suppose
for a contradiction that some clause c is not satisfied. If c is a positive clause, then each
variable-staircase that represents a variable in c must lie above the corresponding vari-
able segment. Since the face complexity of �H is k, all the clause-staircases of c must
be drawn inside the face f that represents c. Since f now contains (4� |c|+1)�2 reflex
vertices due to its corner-staircase, and |c|�2 reflex vertices due to the clause-staircases,
the face complexity of f is at least 5�2, which contradicts that the face complexity of
�H is k. On the other hand, if c is a negative clause, then each variable-staircase that
represents a variable in c must lie below the corresponding variable segment, and leads
to a similar argument that the face complexity of �H is more than k. ut
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