
Eurographics/ IEEE-VGTC Symposium on Visualization 2009
H.-C. Hege, I. Hotz, and T. Munzner
(Guest Editors)

Volume 28 (2009), Number 3

Fully Automatic Visualisation of Overlapping Sets

Paolo Simonetto, David Auber, and Daniel Archambault

LaBRI, Université Bordeaux 1 & Gravité, INRIA Sud-Ouest, France

Abstract
Visualisation of taxonomies and sets has recently become an active area of research. Many application fields now
require more than a strict classification of elements into a hierarchy tree. Euler diagrams, one of the most natural
ways of depicting intersecting sets, may provide a solution to these problems.
In this paper, we present an approach for the automatic generation of Euler-like diagrams. This algorithm differs
from previous approaches in that it has no undrawable instances of input, allowing it to be used in systems where
the output is always required. We also improve the readability of Euler diagrams through the use of Bézier curves
and transparent coloured textures. Our approach has been implemented using the Tulip platform. Both the source
and executable program used to generate the results are freely available.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

1. Introduction

Visualisation of hierarchies, usually described by a set of
elements and a cluster tree that groups the elements recur-
sively, has been widely studied over the last decade. Many
techniques such as Treemaps [JS91] have been proposed as
interactive solutions for the exploration of this type of data.
However, the containment metaphor, where a parent of the
hierarchy strictly contains all of its children, is limited when
analysing modern datasets. With increasing frequency, these
classifications are no longer cluster trees, but, rather, they are
taxonomies where an element can belong to multiple groups
at the same level of the hierarchy. Thus, the classification of
the elements is no longer a cluster tree but rather a cluster
DAG or directed acyclic graph.

A cluster DAG can always be transformed into a clus-
ter tree through unfolding, where branches of the DAG are
duplicated. Unfolding has been used [KMBG07, SMO∗04]
for the visualisation of company relationships and metabolic
networks respectively. However, these works demonstrated
that in practical cases the number of duplications can be
very high. These duplications result in a visualisation that
is far more complicated than it needs to be. Approaches,
which are not based on data duplication, can be developed
once techniques for visualising sets and their intersections
are available. Approaches based on Euler diagrams seem to

Figure 1: Example of an Euler diagram rendered with our
approach. The red set contains world monuments, the green
set contains things that are typically Italian, and the blue set
contains things that are typically French. The red set shares
the element “Colosseum” with the green set and the element
“Eiffel Tower” with the blue set as demonstrated through
overlaps of the regions.

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2009)

2 P. Simonetto, D. Auber and D. Archambault / Fully Automatic Visualisation of Overlapping Sets

be promising candidates for solutions to these types of prob-
lems.

In this paper, we present an algorithm for the automatic
generation of Euler diagrams. Our technique is fully auto-
matic, and, unlike previous work, does not have any un-
drawable instances of input sets and their intersections. This
visualisation technique could be used whenever it is nec-
essary to deal with overlapping sets of elements, like in
social [PDFV05] or biological networks [BH03], complex
query display [VV04], engineering diagrams [FH02] and
many other application areas.

2. Related work

Euler diagrams [Eul61] are graphical representations that de-
pict sets and their intersections. In an Euler diagram, a set
is a region of the plane bounded by a curve and intersec-
tions between sets are depicted through overlaps between
these regions as shown in Figure 1. Unfortunately, there is
no widely accepted definition of an Euler diagram. Many
definitions exist and differ substantially from each other in
the types Euler diagrams they can draw [FS, FS06, SRHT].
A variety of algorithms exist using different definitions for
an Euler diagram, each with its own set of undrawable in-
stances [Cho07, FH02, FFH08, VV04]. However, all these
algorithms suffer from undrawable instances, where the al-
gorithm is unable to produce output for some collections of
sets.

The problem of generating Euler-like diagrams for any
collection of sets and their intersections is a relatively new
topic. An Euler-like diagram generalises the notion of an Eu-
ler diagram to include disconnected sets, sets with holes, and
other constructions which are usually not permitted. Since
we focus on Euler-like diagrams for the rest of the paper,
we use will almost always use the term Euler diagram when
describing our algorithm to mean Euler-like diagram. Si-
monetto and Auber [SA08] analysed the conditions which
resulted in instances of undrawable Euler diagrams. They
demonstrated that allowing holes and disconnected sets was
sufficient to resolve all undrawable input instances. How-
ever, this theoretical work did not present techniques for vi-
sualising Euler-like diagrams, rather the results were drawn
by hand. Subsequently, the authors presented an algorithm
to resolve undrawable input instances and compute set adja-
cency [SA09], but the work did not present an algorithm for
drawing the resultant diagrams.

To our knowledge, the only existing algorithm that gen-
erate Euler-like diagrams for every input instance has been
developed by Rodgers, Zhang, and Fish [RZF08, RZSF08]
as an extension of the algorithm of Flower, Fish, and
Howse [FFH08]. However, their approach differ from the
one we are presenting for several reasons.

First of all, Rodgers et al. explicitly tries to avoid spe-
cial cases, such as multiple crossing points and concurrent

(a) (b)

Figure 2: Classes, zones, and labelling conventions. (a) We
use capital letters to denote classes. In this example, M de-
notes the set of monuments, I the set of Italian things, and F
the set of French ones. (b) We use sequences of lower case
letters to label zones. For example, the intersection between
I and M is labelled im.

boundaries. In our method, textures and smooth bounding
curves for each set mostly handle these cases, as shown in
Figure 1, making our approach easier to implement.

Both approaches subsequently improve the initial drawing
of the diagram by using a force-directed layout algorithm.
However, in our approach, a structure called grid graph is
used as an approximation for the set boundaries. This ap-
proximation aims to be a good starting point for the layout
stage, rather than being visually similar to the final bound-
aries. This simplifies the process and leads to a clearer divi-
sion of the stages. Also, it is important to note that adding
edge-node repulsive forces to the model does not guaran-
tee that no new crossings will be incurred [Ber99]. In our
approach, we use a force-directed algorithm that guarantees
nodes and edges will not cross during iterations.

Finally, by inserting set elements before executing the
force-directed algorithm, we can produce diagrams where
the size of a set is proportional to its cardinality, making bet-
ter use of space in the plane.

2.1. Definitions and Algorithm Overview

Before we present our approach, we should review some
concepts formally defined in previous work. Given a subset
S of the sets in the Euler diagram, a zone corresponds to the
region in the plane where all and only the elements of S in-
tersect. Examples of zones are shown in Figure 2(b). A zone
is also the subset of elements contained by region. Classes,
defined previously in Simonetto and Auber [SA08], are the
sets depicted in the drawing of the Euler diagram. Specific
classes are denoted with capital letters, and zones are de-
noted using letter combinations as shown in Figure 2.

At a high-level, the approaches used by previous algo-
rithms are relatively similar. All of the approaches identify
three steps as illustrated in Figure 3:

1. Construct an intersection graph: construct a planar graph

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2009)

P. Simonetto, D. Auber and D. Archambault / Fully Automatic Visualisation of Overlapping Sets 3

a

f

bc

ab

acde dfcfg

g

ae

? a f

bcab

acde

df

cfg

g

ae

a f

bcab

acde

df

cfg

g

ae

A

Figure 3: High-level procedure for drawing Euler diagrams. First, construct the intersection graph. Second, draw the intersec-
tion graph using a planar graph drawing algorithm. Third, draw the set boundaries around all nodes in the same class.

that represents the structure of the Euler diagram, associ-
ating nodes of the graph with zones, and selecting edges
between zones that should be adjacent.

2. Draw the intersection graph: compute a planar drawing
of the intersection graph

3. Construct the set contours: compute the contours of the
classes using the drawing of the intersection graph.

3. Algorithm

The input to our algorithm consists of a listing of the classes
in set notation. For example, the input to generate the dia-
gram shown in Figure 1 would be:

Monuments = {Eiffel Tower, Colosseum, Taj Mahal,
Big Ben, Great Wall of China, Statue of Liberty}

France = {Wine, Baguette, Eiffel Tower}
Italy = {Colosseum, Pasta, Pizza}

The heuristic of Simonetto and Auber [SA09] is used to
generate the intersection graph from the input sets. In this
work, the authors describe a greedy approach that ranks all
intersection edges with a metric. This metric encodes the
contribution the edge would make in creating a well-formed
intersection graph. At each iteration, the edge with the high-
est metric value is inserted into the graph in a way that is
similar that Kruskal’s algorithm for computing a minimum
spanning tree. The algorithm terminates when no more edges
can be inserted, either because they will create an intersec-
tion graph that is not planar or because they do not signifi-
cantly contribute to intersection graph structure.

In the heuristic, the metric was developed to encourage the
creation of intersection graphs that correspond to a proper
Euler diagram whenever possible, i.e. Euler diagrams with-
out disconnected sets. Moreover, the algorithm drives the se-
lection of graph edges toward more readable Euler diagrams.
For example, the metric discourages the adjacency of unre-
lated sets and encourages the adjacency of zones that share
a larger number of common sets.

As this paper focuses on the visualisation of overlapping
sets, the remainder of this paper concerns itself with drawing
Euler diagrams. We accomplish this in four steps:

1. Construct a planar drawing of the intersection graph
2. Build a grid graph around the intersection graph, map-

ping nodes of the intersection graph to zones.
3. Insert the elements into their zones and apply iterations

of PrEd [Ber99] to refine the drawing.
4. Select colours and textures for the classes and use Bézier

curves to draw the class boundaries.

In the following sections, these four steps are described in
detail.

3.1. Drawing the Intersection Graph

Recall that each node of the intersection graph represents a
zone, and an edge links two nodes if their zones are adja-
cent. Therefore, a drawing of the intersection graph decides
positions and shapes of the zones and classes in the Euler di-
agram. Our drawing of the intersection graph must be planar
and as regular as possible, avoiding large variations in edge
length or angular resolution.

To obtain an initial planar drawing of the intersection
graph, we use the algorithm of De Fraysseix et. al [DFPP90].
The output of this algorithm is guaranteed to be planar but
is quite unsatisfactory with respect to the criteria described
above as shown in Figure 4(a). To overcome this prob-
lem, we apply the PrEd [Ber99] force-directed algorithm.
In PrEd, no edge crossings are incurred or eliminated. As
there are no crossings in the initial layout, the resulting lay-
out will also be planar. The drawing will generally conform
more closely with the above criteria as shown in Figure 4(b).
Applying PrEd at this stage of the algorithm is not strictly
necessary, but it allows for faster convergence and helps the
approach avoid local minima.

3.2. Building the Grid Graph

A node of the intersection graph corresponds to a zone of the
Euler diagram. All previous work computes the zones im-

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2009)

4 P. Simonetto, D. Auber and D. Archambault / Fully Automatic Visualisation of Overlapping Sets

(a) (b) (c) (d)

Figure 4: Overview of our drawing algorithm. (a) Initial output of the FPP algorithm. This layout of the intersection graph is
unsatisfactory in appearance. (b) The algorithm draws the intersection graph with PrEd [Ber99]. (c) The algorithm constructs
a grid graph around the layout of the intersection graph. (d) Elements of the sets are added to the drawing, and the algorithm
runs several iterations of PrEd. In the four subfigures, nodes of the intersection graph are red, the nodes of the grid graph are
green, and the elements of the sets are blue.

plicitly by tracing the contours around an initial layout of the
intersection graph. In our approach, the mapping between a
node of the intersection graph and a region of the Euler di-
agram is explicitly done through a second graph called the
grid graph. The result of a grid graph computation is shown
in Figure 4(c).

The grid graph encloses each node and edge of the inter-
section graph in its own non-overlapping region of the plane.
Thus, by building the grid graph, we will identify regions
of empty space around nodes and edges of the intersection
graph. We call these regions node-regions and edge-regions
respectively. As long as these regions are of limited size,
zone overlaps that do not correspond to set intersections are
avoided through a planar drawing of the intersection graph.

To construct the grid graph, we start by computing a set of
non-intersecting circles around the nodes of the intersection
graph. Each circle centred on a corresponding node in the
intersection graph layout and will be used to define the node-
regions and the edge-regions of the grid graph directly.

3.2.1. Computing the Set of Circles

The position of each circle is given by the position of each
node in the layout of the intersection graph. Thus, we can
choose a single radius R for all circles that is just small
enough to avoid all overlaps. If we inscribe our node regions
on the interior of these circles, we are guaranteed that the
node and edge regions of the grid graph do not overlap.

For these reasons, we choose an R which is less than half
the minimum node-to-node and edge-to-node distance. In
our system, we use:

R = min

 min
v,w∈V,v6=w

d(v,w)

3
,

min
v∈V,e={w,z}∈E,v6=w,z

d(v,e)

3

where I = (V,E) is the intersection graph and d is a function
which defines the distance between elements.

3.2.2. Constructing the Node-Regions

We will now inscribe a polygonal region on the interior of
each circle, defining the node-regions. To guarantee that the
centre of the circle is inside the polygonal region, adjacent
polygon vertices in a anticlockwise traversal form a maximal
central angle of 2π/3 denoted α.

Let us consider a circle centred on each node of the in-
tersection graph. Each edge of the intersection graph divides
the circle into several sectors. More formally, consider the
set G ⊆ E of edges incident to a node v ∈ V of an intersec-
tion graph I = (V,E). As the layout of the intersection graph
is fixed, we can consider each edge e j = (v,w j) of G as a vec-
tor ej = −→vw j. If we sort the |G| vectors by increasing angle
from the x-axis into the ordered sequence e1,e2, . . .ek,ek+1,
e1 = ek+1, adjacent elements define sectors around v. When
v has no incident edges, we will consider the entire circle as
a single sector.

For each sector (ei,ei+1), we select a set of dγ/αe poly-
gon vertices where γ is the central angle of the sector. The
polygon vertices are evenly spaced δ radians apart on the cir-
cumference of the circle. The process is shown in Figure 5.

3.2.3. Constructing the Edge-Regions

When constructing the node-regions, the circle around each
node of the intersection graph is divided into ordered sec-
tors. Thus, each edge of the intersection graph is a bound-
ary of an ordered sector. Given a node of the intersection
graph n ∈ V and edge of the intersection graph e ∈ E, with
e incident to n, we will denote c(n,e) and a(n,e) as the
rays emanating from n that bound e on clockwise and an-
ticlockwise traversals of the polygon vertices respectively.

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2009)

P. Simonetto, D. Auber and D. Archambault / Fully Automatic Visualisation of Overlapping Sets 5

e1

e2

e3

(a)

e1

e2

e3

δ/2

δ/2

δ
f 1

f 2

(b) (c)

Figure 5: Constructing a node-region. (a) The edges inci-
dent to the node of the intersection graph define three sec-
tors, bounded by (e1,e2), (e2,e3), and (e3,e1). (b) Consider-
ing only the red sector, we are able to define the vectors f1, f2
δ radians apart. (c) The intersections between the vectors fi
and the circumference of the circle are taken as vertices of
the node-region.

Let pc(n,e) and pa(n,e) be the polygon vertices supporting
these rays. The edge-region for the edge e = (v,w) of the in-
tersection graph is therefore bounded by the following four
edges of the grid graph: (pa(v,e), pc(v,e)), (pa(w,e), pc(w,e)),
(pa(v,e), pc(w,e)), and (pa(w,e), pc(v,e)). An example of an
edge region is shown in fig. 6.

3.3. Element Insertion and Boundary Refinement

Once an initial planar layout of the grid graph is defined, we
will run PrEd to refine the drawing. But before we run it a
second time, we insert the elements inside the classes and
compute the edges that will be used in the drawing of the
class boundaries. Figure 4(d) shows the result after this step.

Inserting elements into their respective zones is relatively
straightforward. Each zone in the grid graph is bounded by a
polygon inscribed on the interior of a circle of radius R and
the maximum permissible central angle is 2π/3. Thus, the
closest a polygon edge can ever be to the centre of the circle
is R/
√

3. Thus, the set elements are randomly placed inside
a circle of this radius.

To determine which edges of the grid graph define a class
boundary, we have to consider subgraphs of the intersection
graph or class schema as defined precisely in Simonetto and
Auber [SA08]. A class schema is an induced subgraph on
the intersection graph such that it includes all the nodes be-
longing to the same class. The grid graph edges that define
a class are the edges that enclose the schema without cross-
ing it. If we consider the edge (v,w) in Figure 6 as its own
class, then the class schema will be formed just by v, w and
e. We can therefore remove the grid graph edges (a4,a1) and
(b2,c1), because they intersect e. Of course these grid graph
edges may be used by other classes, so we must consider all
classes before deleting these edges.

a1

a2

a3 a4

c1

c2

b1b2

e
v

w
A

C

B

Figure 6: Construction of an edge-region. An edge of the
intersection graph divides the circles into the sectors A, B
and C. The polygon vertices computed in the previous step
are ordered clockwise and anticlockwise. In the diagram, the
edges of the grid graph which define the edge-region of e are:
(a4,a1), (b2,c1), (a4,c1), and (b2,a1).

3.4. Euler Diagram Rendering

Many Euler diagram generation algorithms stop after the
class boundaries have been identified by closed curves, and
elements are placed inside their appropriate zones. How-
ever, as our drawings are intended for visualisation tasks,
we should pay close attention the rendering of the diagram.
In this section, we discuss how we select colours, textures,
and bounding curves for classes.

3.4.1. Colour Selection

Humans have trouble distinguishing more than about six to
eight colours [War00] in a complex diagram. If we use trans-
parency and allow colours mix at each intersection, we can
see why minimising the number of colours used becomes a
priority. On the other hand, different colours should be used
for different classes in the diagram.

To circumvent this problem, we generate another graph
where each node is a class of the diagram and an edge in-
dicates that two classes overlap. We run the node colouring
heuristic of Welsh and Powell [WP67] on this graph. The
output of this algorithm suggests a small number of colours
and textures that can be assigned to the classes of the di-
agram. Assuming that the graph can be coloured with less
than c colours and we have c colours and textures at our dis-
posal, it is guaranteed that no two sets which overlap will
be assigned the same colour and texture combination. Cur-
rently, we use c = 8.

3.4.2. Textures

We implemented the work of Byelas and Telea [BT08] to se-
lect textures regions of the classes overlap. By using textures
in addition to colour, we are better able to represent regions
more distinctly than by simply using colours or class bound-
aries alone. Intersection patterns between the textures also
can help indicate the classes to which a zone belongs and
helps the approach scale to larger Euler diagrams.

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2009)

6 P. Simonetto, D. Auber and D. Archambault / Fully Automatic Visualisation of Overlapping Sets

{X}

{X}

B'

B

P'1

P2

P = P'3 0

(a)

{X}

{X,Y}

B'

B

P'=P''1 1

P2

B''

P = P' = P''3 0 0

{Y}

(b)

acde
{X,Z}

{X,Y}

B'

B

P2

B''

P = P' = P''3 0 0

{Y,Z}
P'1 P''1

(c)

Figure 7: Construction of smooth Bézier curves at grid
graph vertices. (a) Case 1: if two incident edges e1 and e2 of
the grid graph share the same set of classes, the orientation
of l is given by the line perpendicular to the bisector of the
angle between e1 and e2. (b) Case 2: if three or more inci-
dent edges, ei, i = 1 . . .n, are associated with different sets
of classes, and there exists an edge ek that is the union of all
these classes, the orientation of l is the orientation of ek (c)
Case 3: if neither of the above-cases apply, we cannot have
continuous Bézier curves at this grid graph vertex. Thus, we
place the control points along their associated grid graph
edges. That way, no new boundary intersections are intro-
duced.

3.4.3. Bounding Curves

We convert the polygonal boundaries of classes into contin-
uous Bézier curves, making them easier to follow. We trans-
form each edge of the grid graph into its own Bézier curve,
respecting the following properties:

• do not introduce any new set boundary intersections or
change inclusion or exclusion of the set elements
• smoothly join Bézier curves at grid graph vertices

The curve drawn for each edge e = (v,w) has a control
polygon of four control points: P0, . . .P3. The points P0 and
P3 are always coincident with the nodes v and w. The posi-
tion of v is also used to calculate the position of P1 and the
position of w is also used to calculate the position of P2. For
this reason, we say P1 is related to v and P2 is related to w.

In order to respect all the above conditions, we must
choose the positions of P1 and P2 in such a way that:

• no control polygon overlaps with another control polygon
or set element
• when two control polygon edges meet at a common grid

graph vertex, they must be collinear along the line l

The line l can have any orientation in the plane. The ori-
entation of l is calculated individually for each grid graph
vertex in the following way as shown in Figure 7:

1. if two incident edges e1 and e2 of the grid graph share
the same set of classes, the orientation of l is given by the
line perpendicular to the bisector of the angle between e1
and e2

2. if three or more incident edges, ei, i = 1 . . .n, are associ-
ated with different sets of classes, and there exists an edge

Figure 8: A diagram showing sixty highest rated movies in
IMDB with full credited cast.

ek that is the union of all these classes, the orientation of
l is the orientation of ek

3. if neither of the above-cases apply, we cannot have con-
tinuous Bézier curves at this grid graph vertex. Thus, we
place the control points along their associated grid graph
edges. That way, no new boundary intersections are in-
troduced

We calculate the maximum displacement of each control
point along l that does not introduce any new crossings. This
displacement is calculated using a function of PrEd [Ber99].

4. Results on Real World Data

We tested our approach on a few real world datasets. The
Internet Movie Database (IMDB) is an online database of
information related to films, actors, and the cinema. It also
ranks films according to viewer ratings.

To show how our approach can scale to larger datasets,
Figure 8 is the diagram generated for sixty of the top sev-
enty films of the database with full credited casts for each
film. All the discarded films were non-overlapping. The dia-
gram categorises over two thousand actors. Although the di-
agram is complex, it is still fairly readable. Subsequently, we
selected a subset of twenty films from the top forty highest
ranked films. For each film, we considered the first twenty
actors in credits order. Figure 9 shows how the films, the
sets in the diagram share cast members. In this diagram, we
can make a few interesting discoveries. First of all, there are
three set of classes, labelled {A, B, C}, {N, Q} and {H, L},
that have extensive overlaps. These films are actually film
trilogies: “The Lord of the Rings”, “Star Wars” and “The

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2009)

P. Simonetto, D. Auber and D. Archambault / Fully Automatic Visualisation of Overlapping Sets 7

A

B C

D

E F
G

H
I

J

K

L

M

N

O

P

Q

R
S

T

(a) (b)

Figure 9: An Euler diagram of IMDB movies composed by about twenty movies. (b) An overall look. The sets have been labelled
with capital letters. A - The Lord of the Rings - Part II (2002). B - The Lord of the Rings - Part I (2001). C - The Lord of the
Rings - Part III (2003). D - American History X (1998). E - The Matrix (1999). F - Taxi Driver (1976). G - Goodfellas (1990). H
- The Godfather: Part II (1974). I - Fight Club (1999). J - Raiders of the Lost Ark (1981). K - Apocalypse Now (1979). L - The
Godfather (1972). M - Se7en (1995). N - Star Wars: Episode V (1980). O - The Shawshank Redemption (1994). P - The Dark
Knight (2008). Q - Star Wars (1977). R - The Usual Suspects (1995). S - American Beauty (1999). T - Léon (1994). Capital
letters labelling sets are placed manually, but every other part of the diagram generation was automatic. (b) A close-up of part
of the diagram. In these figures, images of the actors are shown when they are available in the directory.

Godfather”. It makes these sets of films would share many
actors in common. Secondly, it’s also interesting to see that
stars, such as Harrison Ford, Marlon Brando, Robert De
Niro, Brad Pitt and Morgan Freeman naturally stand out in
the diagram. They are contained in the intersection of many
classes with other elements. Finally, it is important to note
that textures greatly improve the readability of the diagram.
In Figure 9(b), we can distinguish the many classes that are
sharing the zone of Harrison Ford, even though the bound-
aries of the classes are not clearly visible.

For our second example, shown in Figure 10, we show the
full credited cast of the “The Lord of the Rings” trilogy. First
off, all the major protagonists are in a single zone as shown
in Figure 10(a) and in the close-up in Figure 10(b). This zone
corresponds to the intersection of the three movies. Miranda
Otto, the actor who plays Eowyn, appears only in “The Two
Towers” and “Return of the King”, is an exception in the
upper left corner of the figure. We can also see that Billy and
Katie Jackson, the children of the director, Peter Jackson,
made cameo appearances in all three films.

5. Future work

Our algorithm for drawing Euler-like diagrams can be im-
proved in many ways. As seen in Figure 11, it is often possi-
ble to compute better shapes for classes. The best way to get

well formed contours more consistently would be to improve
the force-directed algorithm stages of our system. We would
also like to improve the execution and convergence speed
of PrEd. As PrEd comprises nearly 95% of the computation
time, speeding up this algorithm would greatly improve the

(a) (b)

Figure 10: Cast of the trilogy “The Lord of the Rings”. (a)
The diagram generated. “The Fellowship of the Ring” is red,
“The Two Towers” is green, and “The Return of the King” is
blue. (b) The zone shared by all three films. In these figures,
images of the actors are shown when they are available in
the directory.

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2009)

8 P. Simonetto, D. Auber and D. Archambault / Fully Automatic Visualisation of Overlapping Sets

Figure 11: Direction for future work. The original diagram
can be improved simplifying the shape of the curves. This
mock-up was created with a version of the algorithm that is
under development. As seen in this picture, at the moment
we cannot guarantee that new regions will not be created.

execution speed of our system and allow us to scale to even
larger datasets.

In this work, we focused primarily on algorithmic contri-
butions required to draw collections of sets. There are many
other problems associated with the visualisation of sets that
have yet to be explored: interactive manipulation of sets,
how sets could be extended into multi-level settings, and the
visualisation of dynamically changing sets. Moreover, we
should investigate how this technique could be applied to
applications in the humanities, sciences, social sciences, as
well as many other fields. More specifically, we would like
to apply this technique to the problem of visualising overlap-
ping graph clusters, which arise in pathway visualisation of
metabolic networks or protein complexes in protein-protein
interaction networks.

6. Conclusions

Our work provides a fully automatic method for the genera-
tion of Euler-like diagrams. The system produces a drawing
for any collection of input sets. It uses the work of Simonetto
and Auber [SA08, SA09] as a basis. In order to circumvent
undrawable instances, it must disconnect regions or intro-
duce holes into them. Our approach easier to implement than
other competitive previous work, because it does not try to
prevent collinear boundaries. By using colours and textures
more effectively, we are no longer required to solely rely on
contours, allowing us to scale to larger dataset sizes.

Acknowledgements

This research is partially funded by ANR-BBSRC Systryp
project and the INRIA Gravité project.

References
[Ber99] BERTAULT F.: A force-directed algorithm that preserves

edge crossing properties. In Graph Drawing (1999), Lecture
Notes in Computer Science, Springer, pp. 351–358.

[BH03] BADER G. D., HOGUE C. W.: An automated method
for finding molecular complexes in large protein interaction net-
works. BMC Bioinformatics 4, 2 (Jan. 13 2003), 27.

[BT08] BYELAS H., TELEA A.: Texture-based visualization of
metrics on software architectures. In SoftVis08. Proceedings of
the 4th ACM symposium on Software visuallization (New York,
NY, USA, 2008), ACM, pp. 205–206.

[Cho07] CHOW S. C.: Generating and drawing area-
proportional Euler and Venn diagrams. PhD thesis, 2007.

[DFPP90] DE FRAYSSEIX H., PACH J., POLLACK R.: How to
draw a planar graph on a grid. Combinatorica 10 (1990), 41–51.

[Eul61] EULER L.: Lettres à une princesse d’allemagne, letters
no. 102-108, 1761.

[FFH08] FLOWER J., FISH A., HOWSE J.: Euler diagram gen-
eration. Journal of Visual Languages and Computing 19 (Dec.
2008), 675–694.

[FH02] FLOWER J., HOWSE J.: Generating Euler diagrams. Lec-
ture Notes in Computer Science 2317 (2002).

[FS] FISH A., STAPLETON G.: Defining Euler diagrams: choices
and consequences. Euler Diagrams 2005.

[FS06] FISH A., STAPLETON G.: Formal issues in languages
based on closed curves. In Distributed Multimedia Systems,
Knowledge Systems Institute (2006), pp. 161–167.

[JS91] JOHNSON B., SHNEIDERMAN B.: Treemaps: a space-
filling approach to the visualization of hierarchical information
structures. In Proc. of the 2nd International IEEE Visualization
Conference (1991), pp. 284–291.

[KMBG07] KOENIG P.-Y., MELANÇON G., BOHAN C., GAU-
TIER B.: Combining DagMaps and Sugiyama layout for the
navigation of hierarchical data. In IV (2007), IEEE Computer
Society, pp. 447–452.

[PDFV05] PALLA G., DERÉNYI I., FARKAS I., VICSEK T.: Un-
covering the overlapping community structure of complex net-
works in nature and society. Nature 435 (2005), 814–818.

[RZF08] RODGERS P., ZHANG L., FISH A.: General Euler dia-
gram generation. vol. 5223, Springer, pp. 13–27.

[RZSF08] RODGERS P., ZHANG L., STAPLETON G., FISH A.:
Embedding wellformed Euler diagrams. 12th International Con-
ference on Information Visualisation (2008), 585–593.

[SA08] SIMONETTO P., AUBER D.: Visualise undrawable Euler
diagrams. In IV08 (July 2008), IEEE Computer Society, pp. 594–
599.

[SA09] SIMONETTO P., AUBER D.: An heuristic for the con-
struction of intersection graphs. In IV09 (July 2009), IEEE Com-
puter Society.

[SMO∗04] SHANNON P., MARKIEL A., OZIER O., BALIGA
N. S., WANG J. T., RAMAGE D., AMIN N., SCHWIKOWSKI
B., IDEKER T.: Cytoscape: A software environment for inte-
grated models of biomolecular interaction networks.

[SRHT] STAPLETON G., RODGERS P., HOWSE J., TAYLOR J.:
Properties of Euler diagrams. Electronic Communications of the
EASST.

[VV04] VERROUST A., VIAUD M.-L.: Ensuring the drawability
of extended Euler diagrams for up to 8 sets. In Diagrams 2004,
3rd International Conference. (2004), vol. 2980 of Lecture Notes
in Computer Science, Springer, pp. 128–141.

[War00] WARE C.: Information Visualization: Perception for De-
sign. Morgan Kaufmann Publishers, San Francisco, 2000.

[WP67] WELSH D., POWELL M.: An upper bound for the chro-
matic number of a graph and its application to timetabling prob-
lems. The Computer Journal 10, 1 (1967), 85–86.

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2009)

