Visualizing Graphs as Maps with Contiguous Regions

Stephen G. Kobourov

Sergey Pupyrev

Paolo Simonetto

The Problem

Unnecessary overlap

Unnecessary overlap

Disconnected regions

Visualizing Graphs as Maps with Contiguous Regions

Contiguity

- Theoretically, no instance is discontiguous
- Pratically, most instances are difficult to draw

Aim:

_

convert the input into configurations easy to draw

Drawback: the input changes

Visualizing Graphs as Maps with Contiguous Regions

The Two Approaches

Embedding-based

- Preserves embedding
- Recomputes clusters

2

6

5

3

1

Cluster-based

- Preserves clusters
- Adjusts embedding

Visualizing Graphs as Maps with Contiguous Regions

Embedding Based Approach

- Preserve node positions
- Recompute clusters
 - Compute *k*-means [Lloyd, 1982]
 - Refine clusters by pulling-in connected nodes
- How to choose k
 - Use same *k* of existing clustering
 - Provide it as a parameter
 - Compute a suitable value
 [Sugar *et al.*, 2003]

Visualizing Graphs as Maps with Contiguous Regions

Clustering Based Approach

- Preserve clusters

Adjust node positions

- Compute barycenter graph
- Remove overlaps [Dwyer *et al.*, 2007]
- Bound countries and scale nodes in
- Run FDA that keeps nodes in countries
- ImPrEd [Simonetto *et al.*, 2011]
 - Boundaries are uncrossable and flexible
 - Additional force: attraction to original node positions

Visualizing Graphs as Maps with Contiguous Regions

Analysis

EBA effect on clustering

- Metrics

- Modularity [Brandes *et al.*, 2003]
- Coverage [Schaeffer, 2007]
- Conductance [Brandes et al., 2003]

Results

- On average, 20% reduction in cluster quality
- Better results for small graphs
- Timing: Very fast

CBA effect on embedding

- Metrics

- Stress [Gansner et al., 2004]
- Distortion
- Neighborhood preservation
 [Venna *et al.*, 2010]
- Results
 - On average, 10% reduction in embedding quality
- Timimg: Relatively slow

Visualizing Graphs as Maps with Contiguous Regions

Original vs EBA

Visualizing Graphs as Maps with Contiguous Regions

Original vs CBA

Visualizing Graphs as Maps with Contiguous Regions

Conclusions and System

- Conclusions
 - Two approaches for contiguous, non-overlapping drawings with existing techniques
 - Different application scenarios
 - Characteristics to preserve
 - Time
- Future work
 - Fragmentation can be meaningful
 - Effect of cluster and embedding quality on understanding

- System
 - On-line implementation
 - Source code available
 - Gmap, EBA, CBA, and more

gmap.cs.arizona.edu

Visualizing Graphs as Maps with Contiguous Regions

