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Fig. 1: Boundary smoothing for existing Euler diagrams. (a) General Euler diagram [21, Figure 6b] reproduced. (b) The result of
the improvement (c) An Untangled diagram [20, Fig. 5b] reproduced. (d) The result of the improvement.

Abstract— General methods for drawing Euler diagrams tend to generate irregular polygons. Yet, empirical evidence indicates that
smoother contours make these diagrams easier to read. In this paper, we present a simple method to smooth the boundaries of
any Euler diagram drawing. When refining the diagram, the method must ensure that set elements remain inside their appropriate
boundaries and that no region is removed or created in the diagram. Our approach uses a force system that improves the diagram
while at the same time ensuring its topological structure does not change. We demonstrate the effectiveness of the approach through
case studies and quantitative evaluations.

Index Terms—Euler diagrams, Boundary Improvement, Force-Directed Approaches

1 INTRODUCTION

Euler diagrams [12] are an intuitive way to visualize sets and their
contents, because they visualize this information in the most straight-
forward way possible: sets in these diagrams are regions; if the regions
overlap, the sets intersect. Recent techniques aim at automating the
process of drawing Euler diagrams with closed curves to directly vi-
sualize the intersections between sets. Given a list of sets and their
intersections, these general techniques produce a drawing for any input
instance [3, 9, 20, 21, 24, 25]. Euler diagrams have been applied in
various fields, such as bioinformatics [4, 13], digital humanities [32],
social networks [18], multimedia database queries [31], and others.

These general techniques are powerful, but the shape of the regions
that they generate can often be jagged and elongated due to the large
number of constraints that the drawing must satisfy to be valid. At
the same time, smoother regions are more aesthetically pleasing, and
there is empirical evidence that smooth closed curves pop out visu-
ally [5, 14, 19, 30]. Also, early empirical evidence indicates that Euler
diagrams are more readable when they have smooth set contours [7].
Thus, an approach able to improve diagrams in general can make these
techniques more applicable and practical.

In this paper, we introduce a simple method that can improve the
boundaries of any Euler diagram drawing approach (or any other
method using polygons and their overlap to indicate the relationship
between sets). The approach proposed is a form of curve shortening
flow for shape improvement [8, 10, 28, 29, 35] applied to the problem
of Euler diagram drawing. These techniques are commonplace in ge-
ometry processing, graphics, and scientific visualization. However, to
the best of our knowledge, curve shortening flow has not been applied
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to the problem of Euler diagram drawing and is not as well known
in information visualization. The essence of our approach is a novel
force system based on boundary curvature. This force system can be
applied in conjunction with diagram constraints to greatly improve the
appearance of the Euler diagrams while ensuring a correct drawing.

The primary contribution of this paper is an algorithm that combines
a form of curve shortening flow with Euler diagram drawing methods
to improve the smoothness of any Euler diagram drawn with curves.
The approach we propose is general and can be applied to the output of
all Euler diagram drawing methods (as well as related methods). Our
approach is more scalable than existing techniques that improve the
smoothness of Euler diagrams. More importantly, the refined drawing
has the same topology as the Euler diagram provided as input, and at no
point are intersections between the polygons created or destroyed dur-
ing refinement. Finally, the approach is easy to implement, consisting
of only four forces, greatly simplifying the algorithm when compared
to competitive approaches. We demonstrate the effectiveness of this
method through case studies and metric evaluations that compare our
proposed technique to those in the state-of-the-art.

2 RELATED WORK

There are two main areas of research that are related to our proposed
technique: shape improvement and Euler diagram drawing. In this
section, we describe this related work and how these areas relate to
each other.

2.1 Shape Improvement and Mean Curvature Flow
Mean curvature flow is a classic method for smoothing shapes. Each
point on the curve (in two dimensions) or the surface (in three di-
mensions) is moved in the direction of the normal in a way that is
proportional to its curvature. This process flattens the object [10]. Un-
fortunately, mean curvature flow also tends to shrink the object (in fact,
differential geometers refer to this process as a curve-shortening flow),
and this shortening may not be desired. Taubin’s λ -µ smoothing is a
classic method to avoid surface shrinking [28,29]. The approach works
by alternating the direction of improvement at every other step. Taubin
shows that his proposed algorithm can smooth out rough parts of the
model while preserving volume through an elegant analogy to Fourier



space operations — the algorithm essentially reduces the amount of en-
ergy in high-frequency components while preserving the total amount
of energy in the system. In this paper, we use the principle behind
λ -µ smoothing to move vertices of the boundary along the direction of
curvature. However, as set elements are located inside the diagram, we
can use the repulsive forces of the elements for area preservation.

2.2 Euler Diagram Drawing

Methods for visualizing sets and their intersections has been an ac-
tive area of research in recent years with many novel visualization
approaches developed for this purpose [3]. As the algorithm we pro-
pose in this work improves diagrams that represent sets as polygons, we
focus on these methods for set visualization in this section. However, it
is important to note that other approaches exist for visualizing sets and
their intersections that are based on circles [13, 26, 33], ellipses [16],
and approaches that are not based on closed curves at all [1, 2, 15, 23].

A number of approaches are able to produce a drawing for every in-
put instance. Rodgers et al. introduce a method for drawing a subclass
of Euler diagrams [22] and then extend this research to work on any
input instance [21]. In these approaches, the dual graph of the Euler
diagram is transformed into a planar graph for drawing. Then, a trian-
gulation is used to route set contours, creating a diagram. Simonetto et
al. [25] propose a force-directed solution that is guaranteed to produce a
correct drawing, if one exists. In this approach, a planar representation
of the Euler diagram is computed and drawn initially with a planar
graph drawing algorithm. Subsequently, the drawing is improved using
a modification of the PrEd [6] algorithm to ensure that the structure
of the Euler diagram does not change, nodes and edges do not cross
boundaries during force-directed refinement, and that elements of the
sets stay in their proper zones. This approach was further improved in
ImPrEd [24], allowing for boundaries with adaptive complexities and
faster convergence. Collins et al. [9] describe a method for drawing
Euler diagrams when the elements of the sets have fixed positions. The
approach relies on marching squares and implicit curves to derive the
boundaries for each set. Riche and Dwyer [20] describe a method that
prioritizes the containment of sets and splits sets in the diagram, when
required, connecting them with edges. Stapleton et al. [27] present a
method for inductively adding curves to a diagram and preserving well-
formedness properties in the drawing. We demonstrate our technique
operating on the output of many of these algorithms [9, 17, 20, 21, 25].

Dwyer et al. [11] propose a method for topology-preserving con-
strained layout, improving a variant of stress by alternated coordinate-
wise gradient projection steps. This method is notable in that their
stress variant is measured by the length of the connector, rather than
the distance between vertex pairs. This allows polyline edges to be
optimized, potentially shortening them. As we have already pointed
out above that “smoothing is curve shortening”, this would appear
to be a method for smoothing curves. However, the presence of non-
differentiable shapes (from the node boxes) in their method means
that in their setting, “jagged” polylines that route around node corners
can be considered “smooth”. Because our method uses forces as soft
constraints, it tends to create shapes without sharp angles, which we
argue are closer to our intuitive understanding of smoothness.

The closest work to our own is eulerForce [17] where boundaries
and curve positions have been modified to improve the readability of
the Euler diagram. This approach is based on a force system, consisting
of fourteen forces, to optimize the shape of the curves in the diagram,
driving them towards circular shapes.

In contrast, the approach presented in this paper is fundamentally
different than this approach. Our force system is simpler, consisting of
only four forces, which helps improve complexity in terms of execution
speed and implementation. The results are more scalable and able to
refine Euler diagrams of realistic complexity beyond the five or so sets
of eulerForce. Finally, and most importantly, our approach can be
configured to never produce an invalid drawing when it starts from a
valid one – that is, we can impose constraints such that no new zones
are created or destroyed by the refinement procedure.

Fig. 2: Curve Shortening Flow. (a) In the original formulation of
the problem, each point of the curve moves towards the centre of its
osculating circle with speed proportional to the curvature at that point.
(b) We adapt this problem to polylines by moving each point u of a
boundary to the centroid of the triangle 4tuv, where t and v are the
neighbour bends of u. (c) and (d) An evolution of the above curves
after three iterations. The curves are smoothed from their initial to their
final configuration (increasing saturation).

3 METHOD

In this section, we present a description of the proposed approach.
Firstly, we describe how our simplified version of curve shortening flow
can be adapted in order to optimize the smoothness of polygons. Then,
we will analyse differences and similarities between the original and
the adapted formulation of this method. Finally, we identify additional
requirements needed in order to successfully apply this method to the
optimisation of Euler diagrams.

3.1 Discrete Curve Shortening Flow

Curve shortening flow is defined on a continuous curve and in con-
tinuous time, ideally requiring the computation of infinite number of
points for infinitesimal increments of time (see Fig. 2a). However, this
algorithm operates in discrete time and space, as vertex positions can
only be optimized on a discrete basis and the curves are modelled as
polylines. Thus, we must adapt the original method to:

• Discrete Space. The concept of curvature, which is well defined
for a sufficiently smooth curve, cannot be directly applied to a
vertex u of a polygon . . . tuv . . . . The centre of curvature should
be placed perpendicular to the line normal at u, but this line is
not uniquely defined as the slope of the secant for a left and right
increment from u only correspond when t, u, v are collinear.

• Discrete Time. In continuous curve shortening flow, the move-
ment speed of a point can approach infinity when the radius of
the osculating circle approaches zero. In continuous time, this
problem is instantaneously corrected, as the speed of the vertex is
re-calculated after an infinitesimally small period of time in the
new lower stress position of the vertex. However, in discrete time,
the time period t cannot be infinitesimally small, and therefore
points with high speed will cause abrupt movements. Put simply,
we require a more conservative approach to node movement in
order to reduce the impact of large movements.

When defining our method for computing direction and intensity of
movement, the properties of the original formulation must be preserved
as much as possible. This formulation should be easy to implement
and fast to compute. A solution that adequately satisfies all of these
requirements computes the movement of a vertex u in . . . tuv . . . along
the vector that connects u to the centroid of the triangle 4tuv (see
Fig. 2b).



Fig. 3: Smoothing a concave polygon. (a) The smoothing operation of
a vertex u would cause a self-intersection. (b) The chance of creating
a self intersection is reduced by re-sampling the polygon to obtain
smaller edges with uniform length. By adding the new bends (purple
circles), the previous smoothing operation has no self intersections.

Definition 1. Given a polygon p = p0 . . . pn, we define smoothing
on pi as the operation that transforms p into p′ = p0 pi−1bpi+1 . . . pn
where b is the centroid of4pi−1 pi pi+1.

Definition 2. Given a polygon p = p0 . . . pn, we define smoothing on
p as the application of smoothing on each polygon vertex pi.

3.2 Comparison with Curve Shortening Flow
We now describe properties of the centroid smoothing technique defined
above and discuss similarities and differences between the definitions
of discrete and continuous curve shortening flow.

Theorem 1. Given a convex polygon p, by performing smoothing on
any of its vertices, we obtain a polygon p′ that is still convex.

Proof. A polygon is convex iff all its internal angles are equal or less
than 180°. Let p= . . . tuv . . . and u be the vertex selected for smoothing.
Since p is convex, the internal angles of t, u and v are equal or less
than 180°. By performing smoothing on u, we substitute u with the
centroid b of4tuv. This operation does not increase the internal angle
of vertices t and v, which will still be equal or less than 180°. Also,
since the centroid of4tuv is contained in4tuv, the angle ∠ tbv is not
greater than 180°. Since all other internal angles remain unchanged,
all the internal angles of the polygon are not greater than 180°, which
means p′ is still convex.

Lemma 1. Given a convex polygon p, by performing smoothing on
any of its vertices, we obtain a polygon p′ whose boundary do not
self-intersect.

Proof. As p is convex, p′ is also convex and therefore simple.

Theorem 2. Each polygon p asymptotically converges to a single point
by repeatedly applying smoothing on p.

Proof. Let us consider a vertex u of a polygon . . . tuv . . . . If u is not
collinear with t and v, by moving u to the centroid b of 4tuv, the
polygon edge tu becomes tb and the polygon edge uv becomes bv, both
of which are shorter than the original edges (or tu+uv > tb+bv). If u
collinear with t and v, the edges computed after smoothing u will have
a total length equal to the original edges (tu+uv = tb+bv). Since not
all polygon vertices pi can be collinear with the line defined by pi−1
and pi+1, repeated application of smoothing on the polygon results
in a sequence of polygons p, p′, p′′ . . . of strictly decreasing perimeter.
Since the polygon edges have positive lengths, the perimeter tends to
zero or exactly one point.

The previous theorems show that discrete curve shortening preserves
the non-crossing properties for convex polygons, and that the asymp-
totic results of the two flows correspond for any polygon. However, the
first property does not hold for concave polygons, as shown in Fig. 3a.

Algorithm 1 EulerSmooth.

for numberOfIterations do

for all v ∈V do
force

(
v
)
← 0

constraint
(
v
)
←+∞

. FORCE COMPUTATION
for all ForceDef in ForceSystem do

force← force+ForceDef.compute()

. CONSTRAINT COMPUTATION
for all ConstraintDef in ConstraintSystem do

constraint←min
(
constraint,ConstraintDef.compute()

)
. NODE MOVEMENT

for all v ∈V do
if magnitude

(
force(u)

)
> constraint(u) then

force(u)← force(u)∗ constraint/magnitude
(
force(u)

)
position(u)← position(u)+ force(u)

. POST-ITERATION
for all PostIteration in PostIterationSteps do

PostIteration.compute()

By re-sampling the polygon boundaries the chance of self intersec-
tion is reduced, as shown in Fig. 3b. The re-sampling procedure is
sufficient to avoid self-intersections in all of our tested cases. How-
ever, we can enable an algorithm [24] used in previous approaches
to provably avoid self-intersections. This algorithm checks for these
intersections and reduces node movement to a safe distance. In prac-
tice, these checks are not required in most cases, causing an increase
in computational complexity and running time. However, they can
provide other benefits in a broad application scenario, motivating their
inclusion in our algorithm (see Surrounding Edges in Section 4.3).

Boundary re-sampling provides a second, crucial advantage. When
a polygon is over-sampled, the refinement of the boundaries is impeded.
In fact, if a vertex u is very close to neighbours t and v, the triangle
4tuv is small and therefore its centroid is close to u. Therefore, the
re-sampling can reduce curve complexity, improving the speed of the
computation.

3.3 Preservation of Diagram Properties
Discrete curve shortening flow provides a method for curve simplifica-
tion. However, it cannot be used directly for Euler diagrams improve-
ment without first ensuring that it will preserve fundamental diagram
properties such as the presence or absence of set intersections and ele-
ment containment. First, boundaries should not shrink to a point. As
Euler diagrams contain set elements inside the curves, we use these
elements as a backstop, allowing set boundaries to nicely shrink around
the elements they contain. These elements prevent the diagram from
collapsing to a single point. In section 4, we discuss this in further
detail.

Secondly, sufficient spacing between set elements as well as between
set elements and set boundaries needs to be ensured. Therefore, we
propose to model discrete curve shortening flow using a force-directed
algorithm, allowing us to use other forces to ensure proper spacing.

Finally, we must prevent set elements from crossing boundaries
and ensure that set intersections in the diagram are neither created
nor destroyed. This property is accomplished by constraining node
movement using ImPrEd [24].

4 IMPLEMENTATION

In this section, we describe the implementation of a force-directed
algorithm that can be used to improve the appearance of Euler diagrams



Fig. 4: The input diagram. (a) The original diagram the algorithm aims to improve. (b) The diagram is modelled as a graph. In green, the
junctions. Polyline edges define the set boundaries. (c) For each set, we identify a subgraph containing all graph elements contained by that
set. This subfigure shows the subgraph for set C. (d) We can choose to use independent boundaries, allowing for a less constrained refinement.
Junctions and edges shared between subgraphs are duplicated (e.g. u is duplicated in uB and uC), allowing for separate refinement.

through discrete curve shortening flow. First, we explain how the input
diagram, the output of any Euler diagram drawing method, is encoded
into a graph. Then, we present the algorithm itself, EulerSmooth.
Finally, we discuss how the algorithm can be configured to improve the
diagrams presented in this paper.

4.1 Input Diagram
The input diagrams are modelled as graphs with polyline edges. These
graphs have two sets of nodes: the set elements and the boundary junc-
tions. The set elements have zero degree and have position, colour, size
and labels. The junctions identify crossing points between boundaries
of the original diagram. These nodes are connected with polyline edges
that follow the boundary contours with arbitrary precision. Sets with
no boundary crossings still have a singular junction that is placed on a
random point of the set boundary, closing a polyline loop (see Figs. 4a
and 4b). For each set, we identify a subgraph formed by all the ele-
ments contained in that set, and all junctions and edges that compose
its boundary (see Fig. 4c).

This construction ensures that any crossings and concurrent bound-
aries are modified simultaneously over all sets, preserving the original
topology of the graph. We define this condition as dependent bound-
aries. Whenever this behaviour is considered too restrictive, is it possi-
ble relax these constraints, duplicating junctions and shared edges. The
duplicated elements share the same initial position but are free to evolve
separately. We define this configuration as independent boundaries (see
Fig. 4d). In this paper, all the input diagrams have been constructed by
manually tracing over output images, constructing the input graph.

4.2 EulerSmooth

The proposed algorithm can be considered a modular version a force-
directed approach. In the implementation (see Algorithm 1), forces,
constraints, and post-iterations steps are modules that can be plugged
into or removed from the algorithm.

The input corresponds to the Euler diagram represented as a graph
composed of polyline edges. Polyline bends and segments are treated
by most modules as if they were standard nodes and edges. However,
we support polyline edges to differentiate elements of the drawing that
can be added/removed (polyline bends and segments) versus those that
must remain in the drawing (nodes and whole edges). All modules use
a QuadTree data structure to accelerate the computation time.

We now discuss these modules, starting with the forces, then the
constraints, and finally the post processing steps. Certain modules
derive directly from ImPrEd, (EdgeContraction, NodeNodeRepul-
sion, SurroundingEdges, FlexibleEdges). Others have been substan-
tially modified (EdgeNodeRepulsion). All remaining forces are new
to EulerSmooth. Furthermore, the modular nature of the algorithm
allows for greater flexibility than in ImPrEd. It is now possible, for
example, to insert multiple instances of the same force as is done for
EdgeNodeRepulsion in Section 4.3.

Most modules contain parameters that are fixed to constants. These
constants were chosen empirically and based on common sense. They

can be modified depending on the application. Further experiments
should be run in order to determine appropriate values given a class of
input or the desired properties of the output.

4.2.1 Forces

EulerSmooth allows flexibility in defining the force system to be
used. In particular, for all the forces it is possible to indicate subsets of
the graph elements to which the force is applied. Multiple instances of
the same force can be loaded, allowing for different ideal distances to
be enforced between different pairs of elements in the drawing.

In the following, we indicate with pppu ∈ R2 the position of the node
u. If e = (u,v) is an edge, we denote the line segment between pppu and
pppv as pppe.

EdgeContraction(d) This force attracts the extremities of an edge
toward each other, decreasing the length of the edge. The parameter d
is the ideal edge length. The force F c

u acting on node u by the edge
e = (u,v) is:

F c
u (e,d) =

(
‖pppu− pppv‖

d

)
(pppv− pppu)

NodeNodeRepulsion(d) This force repels two nodes from each
other. The parameter d is the ideal distance between nodes. As is typical
for force-directed algorithms, the edge contraction and extremities
repulsion forces balance in d. The repulsive force F r

u is:

F r
u (u,v,d) =

(
d

‖pppu− pppv‖

)2
(pppu− pppv)

EdgeNodeRepulsion(d) This force repels nodes from nearby
edges. The parameter d is the ideal distance between a node and a edge.
This force has been modified from its original formulation in ImPrEd
to improve its stability when nodes are not contained in the projection
of an edge (Fig. 5). Let u be a node and e = (v,w) be an non-incident
edge (u /∈ e). Let p be the projection of u onto the line defined by e. We
define v as the closest edge extremity to u. The repulsive force F e

u is:

F e
u (u,e,d) =


(

d
‖pppu− pppp‖

)2

(pppu− pppp) if p ∈ pppe

F r
u (u,v,d) otherwise

The forces on the segment extremities are:

F e
v (u,e,d) =


−F e

u (u,e,d)
‖pppp− pppw‖
‖pppv− pppw‖

if p ∈ pppe

−F r
u (u,v,d) if p /∈ pppe



Fig. 5: Edge repulsion force modifications. (a) The related ImPrEd
force is null if the node projection is not contained in the edge. As a
result, a node might alternate between being affected or not by edge
repulsion even with the slightest modification of position. The problem
is solved by incorporating a repulsion force between the node and the
closest edge extremity when the node projection is not contained in the
edge. (b) The forces exerted on the edge extremities depend on their
distance to p, providing a balancing effect on the forces.

Fig. 6: Surrounding edge constraint. The module defines a line l that
separates a node and and edge that should not be crossed. We ensure
crossings will not occur by restricting the nodes movements to be
smaller than the collision distance between cx with l. When the force
does not point towards l, no constraint is necessary. (a) Constraint
computation for p when it lies on the edge. (b) Constraint computation
for p when it lies outside the edge. Note that inverting the edge (v,w)
is impossible when the edge forms part of a boundary as either v or w
would need to cross an adjacent edge.

F e
w(u,e,d) =


−F e

u (u,e,d)
‖pppp− pppv‖
‖pppv− pppw‖

if p ∈ pppe

000 if p /∈ pppe

The factor introduced in the first equation intensifies the repulsive force
on the closest edge extremity and decreases it on the furthest one, better
approximating the analogue physical system (see Fig. 5b).

CurveSmoothing This force applies the smoothing effect of the
discrete curve shortening flow. The force moves a node toward the
centroid of the triangle formed by its neighbours. Therefore, the force
F s

u that acts on a node u with neighbours t and v is:

F s
u =

2
3

(
pppt + pppv

2
− pppu

)
4.2.2 Constraints

These modules control node movements and/or avoid movements that
could compromise diagram properties that we want to preserve. In this
section, we describe these constraints.

DecreasingMaxMovement(d) This constraint gradually de-
creases the maximal movement a node can take in a time period, al-
lowing for more precise final positioning. The initial value for this
movement is set to d for all nodes and linearly decreases as the compu-
tation progresses.

Fig. 7: Flexible edges contraction and expansion. (a) Contraction.
Since b1 previous bend (u) and following bend (b2) are closer than dc
and no nodes are in the triangle4ub1b2, the bend b1 and its incident
segments are substituted by the green segment. (b) Expansion. Since
the first edge segment is longer than de, a new bend b∗ is introduced
and the segment is substituted by the two green ones.

MovementAcceleration(d) This constraint increases or decreases
the speed of node movement according to consistency with the previous
iteration, reducing oscillations. For a node v, the ci(u) is updated
according to the angle a between consecutive iterations:

ci(u) =


d if i = 0
ci−1(1+2(1− a

60° )) if a < 60°
ci−1 if 60≤ a < 90°
ci−1/(1+4( a

90° −1)) if a≥ 90°

Thus, the constraint is multiplied by a factor in [1,3] for movement in
the same direction and divided by a factor in [1,5] for movement in an
opposite direction.

PinnedNodes This module constrains nodes to their input posi-
tions by setting their movement constraint to 0 throughout the compu-
tation.

SurroundingEdges This module constrains node movement so
that nodes cannot cross edges denoted as surrounding edges. More
specifically, given a set of nodes V and a set of edges E, this module
ensures no u ∈V crosses any edge e ∈ E. For a node u and e = (v,w),
the module computes a line l that divides the plane into two halves. If
the projection p of u lies in the edge (p ∈ pppe), the line l is identified as
the axis of symmetry for the segment up. If the projection lies outside
the edge, l is the axis of symmetry of the segment uv, with v being the
closest endpoint to u. This module ensures that u does not cross e by
limiting movement to a distance between u and l where they cannot
collide along the direction of movement (see Fig. 6).

4.2.3 Post-Iteration Steps
Post-iteration modules can process the the output of an iteration.

FlexibleEdges(dc,de) This module re-samples the set boundaries.
This re-sampling allows for set boundaries to grow and shrink, depend-
ing on the space required. Given an edge set E, the module increases
or decreases the number of bends, depending on the stress of its edge
segments. Given an edge e, the module first tries to remove bends or
contract the edge, and then it tries to add bends or expand the edge.
When contracting an edge, the module marks b1 . . .bn for removal. The
bend bi is removed if the distance between its previous bend bi−1 (edge
source, if i = 1) and the next bend bi+1 (edge target, if i = n) is less than
a distance dc and the triangle formed by the three bends is empty (see
Fig. 7a). When expanding an edge, the segments e1 . . .en are checked
for expansion. A segment is expanded when its length is greater than a
distance de by inserting a new bend at its midpoint (see Fig. 7b).

4.3 Algorithm Configuration
In order to ensure comparable results, we run the same configuration of
EulerSmooth for all the diagrams in the paper. We select a single
distance parameter d∗ and set three Boolean variables. The parameter



Fig. 8: Example diagrams optimised with EulerSmooth. (a,d) The
original diagrams. (b,e) The diagrams optimised while keeping the
nodes in their original position (Fix,Dep). (c,f) The diagrams opti-
mised while allowing elements move (Mov,Dep).

d∗ can be thought of as an ideal distance between set elements and
between set elements and boundaries. This parameter is proportional
to the scale of the imported diagram.

The core modules used for diagram improvement in this paper are:
CurveSmoothing
EdgeNodeRepulsion(d∗) between elements and boundary edges
EdgeContraction(0.7 d∗) for boundary edges
DecreasingMaxMovement(d∗)
MovementAcceleration(d∗)
FlexibleEdges(1.45 d∗, 1.5 d∗)

The first Boolean parameter sets whether dependent or independent
boundaries are required (see Section 4.1). We denote Dep to indicate
dependant boundaries and Ind to indicate independent boundaries:

if Dep then
SurroundingEdges between all nodes and boundaries.

else
SurroundingEdges between elements and boundaries.

Surrounding edges prevent set elements from crossing boundaries.
For boundary nodes, we can relax this constraint, allowing for the
creation or destruction of new zones not present in the input diagram.
The result is generally a smoother diagram, where new empty zones
are created. To our knowledge, no human centred experimentation
exists that evaluates if these empty zones impede diagram readability.
However, if this behaviour is not desired and the zones in the input
diagram need to be preserved exactly, the surrounding edge constraint
can be applied to all nodes in the drawing, including boundary nodes,
ensuring that no new zone is created or destroyed during refinement.

The second Boolean parameter pins element movement. We use
Fix to indicate the position of all set elements are fixed and Mov to
indicate if they can move freely:

if Fix then
PinnedNodes on set elements

else
NodeNodeRepulsion(d∗) between set elements

Pinning elements is particularly useful when refining drawings where
elements are specific locations, as in Bubble Sets [9]. Otherwise, the
positions of set elements can be optimized for better distribution.

The final Boolean parameter allows concurrent boundaries to be
relaxed. We use Sep to indicate the activation of this parameter:

if Sep then
EdgeNodeRepulsion(d∗ / 15) between boundary nodes and edges

When set, a local repulsive force is inserted between nodes and
unrelated boundary edges, separating collinear boundaries. This option
improves the readability of diagram but can generate stress and bound-
ary irregularity on diagrams that do not contain concurrent boundaries.

Fig. 9: Optimization of a Set Visualiser diagram [34]. (a) The
input diagram. (b) The diagram optimised while keeping the nodes in
their original position (Fix,Ind). (c) The diagram optimised while
allowing elements move (Mov,Ind).

Fig. 10: Comparison of diagrams optimised with EulerSmooth
and with eulerForce. In order to preserve the zone spacing with
EulerSmooth, a dummy node have been inserted in each depicted
zone. First row, example diagram with three sets (instance ID 1).
Second row, example diagram with four sets (instance ID 1). Third
row, example diagram with five sets (instance ID 2). (a,d,g) The in-
put diagrams. (b,e,h) The diagrams optimised with EulerSmooth
(Mov,Dep,Sep). (c,f,i) The diagrams optimised with eulerForce.

Fig. 10e shows how this option causes this separation between bound-
aries to form. Unnecessary tension is present top part of the turquoise
set. Without separation enabled, the boundaries would almost overlap,
similar to Fig. 10f, between the bottom of the green and grey sets.

For all images, we specify which Booleans are set to generate them.

Number of Iterations A final parameter is the number of iterations
applied. A larger number of iterations is usually required for larger in-
put. For all the examples, the number of iterations has been empirically
determined. However, it is possible to modify the implementation to
iterate until the user is satisfied or when a global graph improvement
metric is reached.

5 ANALYSIS

To evaluate the effectiveness of EulerSmooth, we extracted dia-
grams published in previous work and improved them with our tech-
nique. The initial diagrams have been created by tracing contours and
adding set elements as prescribed by the output images. Then, these
diagrams have been optimized using appropriate parameters for the
given case. For example, when improving the Manhattan Bubble Sets
diagram (see Fig. 13), we use fixed node positions as they correspond
to locations on the map. Whenever applicable, we show the variety of
outputs possible with EulerSmooth.



Contour Based Diagrams Euler diagrams drawing approaches
might or might not show set elements, causing significant differences
in how a diagram is created and interpreted. For example, in a diagram
that does not represent set elements (contour based), the existence of
a overlap in the diagram implies that the given intersection contains
elements. On the other hand, this requirement is not imposed for
element based approaches as the elements are either visible in the
region or the region is empty.

For this reason, contour and element based approaches are not always
directly comparable. In our case, since the algorithm assumes the
diagram is element based and requires set elements to limit shrinking,
we add dummy elements into the regions of contour-based approaches
as shown in Fig. 10.

Testing Hardware and Software All images and results in this
section are generated by a Java implementation of EulerSmooth,
which includes a testing GUI that animates diagram smoothing, com-
putes diagram statistics, and records running times. The source code of
the application is available as supplimentary material1.

All of our diagrams were created on a desktop machine equipped
with an Intel Core i7-2600 processor, 8GB of RAM, and running KDE
4.14 on Arch Linux.

5.1 Qualitative Evaluation
Fig. 8 shows the results of EulerSmooth on two basic diagrams: one
with a single set and a second with two overlapping sets. We notice
how the contour regularity is improved regardless, but EulerSmooth
achieves a better result when node movement is enabled.

Fig. 9 shows an improved version of a diagram generated with
Set Visualiser [34]. By using independent boundaries, we can
eliminate empty zones (blue-only region in the top-centre) which might
make the original diagram less readable. We notice little difference
between the results obtained with fixed versus movable elements as the
initial positions of set elements do not require much refinement.

Fig. 10 shows the same input diagram improved with
EulerSmooth and eulerForce. The diagrams improved with
eulerForce appear more regular as our quantitative analysis in
the next section can confirm. However, the shapes obtained with
EulerSmooth are smooth and readable.

Fig. 11 shows the optimization of a diagram from Euler Represen-
tation [25, Figure 9a] consisting of twenty sets. This figure illustrates
the difference between dependent and independent boundaries. In the
first case, all regions of the original diagrams are preserved throughout
the smoothing process, meaning that no new zones are created or de-
stroyed. This forces concurrent boundaries to be preserved, limiting
improvement. In particular, consider the blue set at the top of Fig. 11b:
on the right side, the set crosses two other boundaries (green and red)
at a single point. Since the point is required to satisfy the constraints of
three different curves simultaneously, sharp angles are present in the
drawing (blue and green).

If there is flexibility in preserving the exact topology of the input
diagram, we enable independent boundaries and obtain the result in
Fig. 11c. By enabling this option, we introduce new regions not present
in input drawing (in Fig. 11c, the blue-only triangular region in the
centre of the drawing). However, none of these new regions will contain
elements and the boundaries are much easier to follow.

In Fig. 12, EulerSmooth is applied to an Untangled Euler dia-
gram [20, Figure 1a]. The algorithm transforms it into a more classical
looking diagram with regular boundaries.

Finally, Fig. 13 shows application of our method to the Manhattan
Bubble Sets [9, Figure 9]. Although the shape of the sets in the fi-
nal drawing are not circles, EulerSmooth can simplify boundaries
even in these constrained circumstances, improving the readability of
contours at the expense of additional occlusion of the background map.

5.2 Quantitative Evaluation
We evaluated the effectiveness of EulerSmooth by computing the
average initial and final isoperimetric quotient for all set boundaries

1http://hdc-arizona.github.io/EulerSmooth/

Diagram Fig. Opt. Iter. Qi Qs Time
% % (s)

General Euler 1b MD 300 75.3 96.5 3.35
Untangled Small 1d MI 100 36.7 76.3 2.42
Single 8b FD 120 39.7 90.3 1.83

8c MD 99.6 1.96
Double 8e FD 120 45.7 85.3 1.88

8f MD 98.5 2.07
Imdb20 — FD 25 56.9 74.6 6.52

— FI 40 84.6 9.67
11b MD 25 73.9 6.71
11c MI 40 86.0 10.15

BubbleSet 13b FI 50 4.5 10.2 6.43
Untangled 12b FI 100 47.1 79.2 5.25

12c MI 82.8 5.21
SetVis 9b FI 50 77.3 92.3 1.22

9c MI 93.3 1.19

Table 1: Statistics for the execution of EulerSmooth over the dia-
grams in this paper. The statistics for EulerForce diagrams (Figs. 10
and 14) are collected in Table 2. Constraints activated are indicated
by their first letter (F for Fix, M for Mov, D for Dep, I for Ind).
Iterations shows the number of smoothing cycles performed. Qi is the
initial average isoperimetric quotient. Qs is the average isoperimetric
quotient for the improved diagram. The running time is the average
running time over five runs of the approach.

in the diagrams. Given a closed curve `, the isoperimetric quotient
computes the ratio between the area enclosed by the line and that of a
circle with equal circumference: Q = 4π area(`) / length(`)2. Since a
circle is the shape that maximizes the closed area for a given perimeter,
all simple closed curves will have an isoperimetric quotient between 0
and 1. One can view the isoperimetric quotient as an indication of how
close the closed curve is to a circle. We employ the average isoperi-
metric quotient to evaluate the quality of the contours as previous work
reports that smooth shapes [5], and circles in particular [7], increase
diagram readability.

Improvements over Various Techniques Table 1 reports the en-
abled options, running time, and initial and final average isoperimetric
quotient for the diagrams in this paper. We notice that our approach
improves Q for all cases with larger improvements when less restrictive
options are enabled (Mov instead of Fix, Ind instead of Dep). A low
value is obtained for Bubble Sets (Fig. 13), as the diagram is heavily
constrained and difficult to improve.

Running time and Complexity The reported running times are
averaged over five executions and are in the range of one to twelve
seconds. Times of this magnitude are acceptable for an interactive
environment, as long as the data is only updated every few seconds.
As expected, larger diagrams and independent boundaries are gener-
ally responsible for increased computation times. However, relatively
simple diagrams might still require a high number of iterations. When
observing the smoothing over time, we notice that boundary shapes are
rapidly smoothed, but that a large amount of time is spent shrinking the
contours to snugly fit the set elements. In fact, the shrinking process is
slower on regular shapes.

Comparison with eulerForce We run a direct compari-
son between EulerSmooth and eulerForce. The authors of
eulerForce provide a software that can generate an initial random
diagram consisting of three, four, or five sets. We generate five di-
agrams for each (a total of 15 diagrams) and optimize them using
EulerSmooth and eulerForce. We compare the resulting aver-
age isoperimetric quotient and record the average running time for both
algorithms. Table 2 reports this data.

The computed metrics indicate a higher set boundary regular-
ity for eulerForce, as suggested by visual inspection. The val-
ues are high and about the same for both EulerSmooth and

http://hdc-arizona.github.io/EulerSmooth/


Fig. 11: Optimization of the Imdb20 Euler diagram [25, Figure 9a]. (a) The input diagram. (b) The diagram optimised while allowing elements to
move (Mov,Dep). (f) The diagram optimised allowing elements move and sets evolve independently (Mov,Ind).

Fig. 12: Optimization of an Untangled Euler Diagram [20, Figure 1a]. (a) The input diagram. (b) The diagram optimised while pinning elements
in their input positions (Fix,Ind). (c) The diagram optimised while allowing elements to move (Mov,Ind).

Fig. 13: Improvement of the Bubble Sets diagram over the Manhattan map [9, Figure 9]. (a) The input diagram. (b) The diagram optimised with
EulerSmooth (Fix,Ind).



Fig. 14: Optimization of two five-set diagrams unsupported by eulerForce. (a,c) The input diagrams. (b,d) The diagrams optimised with
EulerSmooth (Mov,Dep,Sep). The dummy elements have been removed to create a contour based diagram.

Sets Id Qi Qs Q f Times Time f
% % % (s) (s)

3 1 58.3 95.5 99.0 3.6 2.35
2 57.0 95.6 98.5 3.5 3.48
3 51.3 96.1 98.6 3.6 2.25
4 51.0 96.2 97.4 4.6 2.57
5 58.5 95.5 98.8 5.9 2.57

4 1 53.6 96.2 98.1 5.4 4.85
2 38.4 93.9 94.0 5.7 5.85
3 45.5 94.9 97.2 6.2 4.63
4 41.9 93.3 93.0 4.5 6.14
5 53.6 95.6 98.5 5.1 5.85

5 1 36.5 84.9 Invalid 8.6 32.89
2 41.7 95.2 98.2 8.2 16.64
3 43.0 95.6 95.0 8.2 14.53
4 44.3 86.2 Invalid 13.9 25.67
5 42.6 85.6 Invalid 13.5 22.47

Table 2: Statistics for the improvement of diagrams with
EulerSmooth and eulerForce. Qx is the average isoperimet-
ric quotient. Subscript i indicates initial, s indicates EulerSmooth,
f indicates eulerForce. Q f has not been computed for the three
5-sets instances (ID 1, 4 and 5) as eulerForce produced invalid
drawings. On all diagrams, we run EulerSmooth with the option
Mov, Dep and Sep. For 3 and 4 sets, 350 iterations were sufficient.
For 5 sets, we ran 500 iterations.

Sets Fig. 1.2−2 1.2−1 1.21 1.22

% % % %

3 10a Time 181 126 73 57
Qs 103 102 97 89

4 10d Time 188 137 77 57
Qs 99 100 99 97

5 10g Time 223 147 70 52
Qs 101 101 96 87

Table 3: Scalability of the approach in terms of the change in running
time and isoperimetric quotient. We tested five levels of sampling
where the number of points on the boundary is multiplied by factors
of 20% (1.2i for i ∈ {−2,−1,0,1,2}). The first two factors increase
whereas the last two factors reduce the number of samples with respect
to the original input diagram. All changes are normalized relative to the
original input diagram, and all levels are run for a total of 350 iterations.
This data quantifies running time and drawing quality trade-offs for
finer and coarser samplings of the boundary.

eulerForce, indicating that all output diagrams are of high quality.
However, eulerForce does not always produce a valid diagram.
eulerForce produces invalid diagrams (zones are created or de-
stroyed during execution) for three out of five instances of the five set
data set. The authors explain that an increase in diagram complexity
increases the probability of invalid diagrams, resulting in a success rate
of 61% for diagrams of five sets. As seen in this paper, we can scale to

diagrams of twenty sets.
EulerSmooth, due to its simple force system, can gener-

ate correct and pleasant diagrams even for the instances not sup-
ported by eulerForce (see Fig. 14). Also, the running time of
EulerSmooth is faster than eulerForce for diagrams of four to
five sets, indicating that it has increased scalability.

Scalability of EulerSmooth An algorithmic complexity for
EulerSmooth is difficult to formalize as the number of boundary
nodes, and thus the number of nodes in the diagram, are constantly
changed by re-sampling. Typically, the computation time per iteration
decreases as the algorithm progresses, as boundaries are usually sim-
plified by the approach and fewer points are necessary to define them.
When the algorithm converges, often the boundaries are as simple as
possible.

To quantify the scalability of our approach, along with the trade-
off between drawing quality and running time, we test a number of
sampling levels for three Euler diagrams. Table 3 reports these results.
These results are obtained by first increasing and then decreasing the
number of points on the boundaries. Finer boundary sampling leads to a
much higher running time with a slight increase in drawing quality. On
the other hand, coarser boundary sampling drastically reduces running
time at the expense of diagram quality.

In order to provide a fair comparison between all levels, we run 350
iterations for each level. This number of iterations is not always suffi-
cient to reach a stable drawing for boundaries with a finer sampling and
is more than enough for boundaries with a coarser sampling. Therefore,
in the first case, we can run more iterations of the algorithm to increase
diagram quality. Conversely, we can run fewer iterations in the second
case to further improve the running time. For these reasons, the level of
sampling can be used to mitigate scalability issues. In particular, when
the standard sampling level leads to excessive running times in large
diagrams.

6 CONCLUSION

In this paper, we present a simple approach for Euler diagram improve-
ment based on a simplification of curve shortening flow. We translate
this method into a force system that can be used to improve the output
of any Euler diagram drawing method using polygonal curves and set
elements. The approach has been demonstrated on a variety of meth-
ods [9, 17, 20, 21, 25] for drawing Euler diagrams and evaluated against
competitive approaches.

As future work, it would be interesting to see if we can extend
other aspects of curve shortening flow and vector field design to the
improvement of Euler diagrams in general. As methods exist that do
not use a force system to optimize the input shape, it may be beneficial,
in terms of computation time, to use these methods instead of a force
system to optimize Euler diagrams.

Furthermore, an area of future work would be to provide evidence of
effectiveness of this refinement through human centred experimentation.
Although curves with high isoperimetric quotients often correspond to
more readable curves, our contour optimization technique can affect
other aesthetic criteria in the diagram, influencing the readability of the
drawing.
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