Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

Visualisation of Overlapping Sets and Clusters with Euler Diagrams

Paolo Simonetto

LaBRI, Université Bordeaux 1 INRIA Bordeaux Sud-Ouest

2nd December 2011

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

The Concepts in the Title

Visualisation of

The science that studies the visual representation and analysis of data.

Overlapping Sets and Clusters

Groups of elements that might share some of their elements.

with Euler diagrams

The most natural graphical representation for sets.

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

The Problem Addressed

We aim to

design an automatic method that:

- visually represents data,
- depicts overlapping sets,
- uses Euler diagrams.

Main task

Generation of the representation:

- identify the overlaps,
- displace the elements,
- identify the set boundaries.

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

Outline of the Presentation

Introduction

- basic Euler diagram theory,
- related work.

Euler Representations

- basic graph drawing theory,
- diagram construction.

ImPrEd

- introduce PrEd,
- explain improvements,
- present results.

Software and Examples

- present implementation,
- discuss diagrams produces.

Euler Representations

ImPrEd

Software and Examples

Conclusions

Basic Euler Diagram Concepts

Interpretation

- every set is associated to a region,
- disjoint regions = disjoint sets,
- included regions = subsets,
- partial overlaps = intersections.

Definitions

- *clusters* = sets to be represented,
- *zones* = intersections formed.

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

Properties of Euler Diagrams

Constraints

- show the expressed zones,
- use simple cluster curves,
- no disconnected zones,
- no disconnected clusters.

Features

- depiction of elements,
- colours and shading,
- area-proportionality.

0000000

Untangled ED

Bubble sets

Euler diagrams generation

5

4

2

[Flower, Howse, Stapleton, Rodgers, Fish, 2002–2011] [Verroust, Viaud, 2004] [Chow, 2007] Untangled Euler diagrams

[Riche, Dwyer, 'Untangling Euler Diagrams',

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

Euler Representations

Constraints

- show the expressed zones,
- use simple cluster curves,
- no disconnected zones,
- no disconnected clusters.

Characteristics

- depict elements,
- transparency and textures,
- area-proportionality,
- high curves concurrency.

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

Part 2

Generation of Euler Representations

Euler Representations

ImPrEd

Software and Examples

Conclusions

Basics Concepts of Graph Drawing

Graphs

- nodes,
- edges.

Graph drawing

Displace elements so that

- regular spacing,
- avoid crossings...

Planarity

Drawing without crossings

- might be impossible,
- hard to draw nicely.

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

Graph Drawing and Euler Diagrams

Diagrams to graphs

- a node for each zone,
- an edge for proximity.

Graphs to diagrams

- identify nodes and edges,
- draw the graph,
- trace boundaries.

Planarity

- the graph must be planar,
- not always possible with connected clusters.

Euler Representations

ImPrEd

Software and Examples

Conclusions

Generation of Euler Representations

Steps

Final diagram

Zone graph generation

- one node per expressed zone,
- edges to enforce proximity,
- keep planarity.

Euler Representations

ImPrEd

Software and Examples

Conclusions

Step 1 - Zone graph generation

Nodes

- find expressed zones,
- add a node per zone.

Edges

Have a metric that evaluates

- cluster connections,
- configuration aesthetic.

Edge insertion

- consider best edge,
- insert if still planar,
- update metrics.

[Simonetto, Auber, 'An Heuristic for the Construction of Intersection Graphs', *IV09*, 2009.]

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

Step 2 — Zone graph drawing

First drawing

We draw zGraph with FPP

[De Fraysseix, Pach, Pollack, 1990]

- planar,
- low aesthetics,
- fast.

Improvement

We improve zGraph with ImPrEd

[Simonetto, Archambault, Auber, Bourqui, 2011]

- preserves planarity,
- improve aesthetics,
- considerably slower.

Euler Representations

ImPrEd

Software and Examples

Conclusions

Step 3 — Grid graph generation

Enclose zNodes

We place nodes and edges

- in a circle,
- to divide zEdges,
- to limit central angles.

Eclose zEdges

We place nodes and edges

- to split the zEdge,
- to surround it.

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

Step 4 — Grid graph drawing

Modifications

- insert elements,
- remove zGraph.

Drawing

We apply ImPrEd

- preserve positions,
- improve aesthetics,
- high computational cost.

Euler Representations

ImPrEd

Software and Examples

Conclusions

Step 5 — Final drawing

Cluster curves

We apply Bézier curves

- transforming gEdges,
- enforcing smooth junctions.

Colours and textures

- low number,
- different colours/textures for overlapping clusters,
- coprime.

[Simonetto, Auber, Archambault, 'Fully Automatic Visualisation of Overlapping Sets', *Computer Graphics Forum* (EuroVis09), 2009.]

Euler Representations

ImPrEd •00000 Software and Examples

Conclusions

Part 3 ImPrEd

Euler Representations

ImPrEd

Software and Examples

Conclusions

PrEd, the original algorithm

Force directed

- node-node repulsion,
- edge attraction,
- node-edge repulsion.

Movement limitation

- 8 movement sectors,
- bounded by edges,
- movement bounded by sector amplitude.

[Bertault, 'A Force-Directed Algorithm that Preserves Edge Crossing Properties', Information Processing Letters, 2000.]

Euler Representations

ImPrEd

Software and Examples

Conclusions

Advantages and Disadvantages of PrEd

Advantages

- peculiar property,
- good on small graphs,
- intuitive and simple.

Disadvantages

- high computational cost,
- over-restrictive movement,
- low aesthetics for large and sparse graphs,
- low control on output.

Euler Representations

ImPrEd

Software and Examples

Conclusions

Improved PrEd

Movement and Force Cooling

- gradually increase local effect,
- gradually decrease energy,
- promote stability and reliability.

Euler Representations

ImPrEd

Software and Examples

Conclusions

ImPrEd's Drawing Quality

PrEd

ImPrEd

Euler Representations

ImPrEd

Software and Examples

Conclusions

ImPrEd's Performances

[Simonetto, Archambault, Auber and Bourqui, 'ImPrEd: An Improved Force-Directed Algorithm that Prevents Nodes from Crossing Edges', *Computer Graphics Forum* (EuroVis11), 2011.]

Euler Representations

ImPrEd

Software and Examples

Conclusions

Part 4 Software and Examples

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

EulerView: a Tulip Plug-in

EulerView

- Tulip view plug-in,
- provide alternative view for clustered graphs.

[Tulip Data Visualisation Software, http://tulip.labri.fr]

Interaction

- inherited functions,
- selection,
- contextual information.

Euler Representations

ImPrEd

Software and Examples

Conclusions

Selection Features

List Selection

- click on cluster list in left panel,
- identify set positions.

Euler Representations

ImPrEd

Software and Examples

Conclusions

Contextual Information

Selection Tooltip

- cluster names,
- small to avoid obstructing.

Euler Representations

ImPrEd

Software and Examples

Conclusions

Example: IMDb7

Features

- 7 selected films,
- full credited cast,
- 322 actors.

[Internet Movie Database, http://www.imdb.org]

Remarks

- example diagram,
- relatively small,
- very simple intersections.

Euler Representations

ImPrEd

Software and Examples

Conclusions

Example: IMDb60

Features

- 60 top rated films,
- full credited cast,
- 2263 actors.

[Internet Movie Database, http://www.imdb.org]

Remarks

- high aesthetics,
- very large,
- simple intersections.

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

Euler Representations on Graph Clustering

Graph Clustering

Collection of graph nodes

- originally: partitions,
- recently: overlapping,
- differ from sets for edges.

Combine metaphors

- ED: containment,
- graph: connection,
- optimise both is challenging.

Euler Representations

ImPrEd

Software and Examples

Conclusions

Path-Preserving Meta-nodes

Metanodes

- condense elements,
- reduce clutter,
- might mislead on connectivity.

Path-Preservation

- group connected elements,
- avoid to mislead.

[Archambault, Munzner, Auber, 'GrouseFlocks: Steerable Exploration of Graph Hierarchy Space', *TVCG*, 2008.]

Euler Representations

ImPrEd

Software and Examples

Conclusions

Example: Gene Interaction

Features

- 10 clusters,
- 176 genes,
- 296 interactions.

[Itoh, Muelder, Ma, Sese, 'A Hybrid Space-Filling and Force-Directed Layout Method for Visualizing Multiple-Category Graphs', *PacificVis09*, 2009.]

Remarks

- edges contribute,
- meta-node reduce cluttering.

Euler Representations

mPrEd

Software and Examples

Conclusions

Example: Carsonella

Features

- 35 pathways,
- metabolites (red),
- enzymes (green),
- 224 nodes and 335 edges.

[Metabolic Data of Endosymbiontic, Parasitic and Free Bacteria, Université Lyon 1]

Remarks

- complex intersections,
- high graph cluttering.

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

Interaction Mitigates the Drawing Complexity

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions •00

Conclusions

Euler Representations

Visualisation for overlapping data

- based on Euler diagrams,
- working on every input,
- sufficiently fast for non interactive use.

ImPrEd

Graph improvement algorithm

- achieve high aesthetics,
- faster than PrEd,
- very useful in ED generation.

Software

Software implementation

- features some interaction,
- mitigates the limitation of the representation.

Examples

We showed output examples

- sets and clusters,
- small and large instances,
- simple and complex.

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

Future Work

Drawing Readability

- more regular curves,
- reduce concurrency,
- speed/quality trade-off.

Running Time (ImPrEd)

- reduce complexity,
- reduce input instance,
- change algorithm.

[Dwyer et al., Constrained FDL]

Validate

Run usability studies

- on Euler Representation,
- on combining metaphors.

Extensions

- more interaction,
- on-line redrawing,
- first overview, then diagram,
- . . .

Euler Representations

ImPrEd 000000 Software and Examples

Conclusions

Thank you for your attention.

Any questions?

Detailed information in the thesis and in:

Simonetto, Auber, 'Visualise Undrawable Euler Diagrams', *IV08*, 2008.

Simonetto, Auber, 'An Heuristic for the Construction of Intersection Graphs', IV09, 2009.

Simonetto, Auber, Archambault, 'Fully Automatic Visualisation of Overlapping Sets', Computer Graphics Forum (EuroVis09), 2009.

Simonetto, Auber, Archambault, Bourqui, 'ImPrEd: An Improved Force-Directed Algorithm that Prevents Nodes from Crossing Edges', *Computer Graphics Forum* (EuroVis11), 2011.