
INSTITUTE FOR ELECTRONIC SYSTEMS

AALBORG UNIVERSITY

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE d
FREDRIK BAJERS VEJ 7 DK 9220 AALBORG � DENMARK Phone + 45 98 15 85 22

Telex 69790 aub dk

Telefax + 45 98 15 81 29

Tiger

Reference Manual
1

Michael B�ohlen

boehlen@cs.auc.dk

Tiger is an period-timestamped bitemporal database system run-

ning as a frontend to the commercial (relational) database system

Oracle. It implements ATSQL [BJ96], a temporal extension of SQL.

Temporal requests (i.e., ATSQL commands) are compiled into SQL-

commands that are executed by the commercial database backend.

Special care was given to the design of a system that allows for a

seamless integration of time into legacy database application. Specif-

ically, this means that Tiger allows you to use existing applications

without a single change. This was achieved by making upward com-

patibility and temporal upward compatibility design goals. Next,

the concept of sequentiality ensures a wholesale and powerful sup-

port for temporal database requests based on snapshot reducibility.

Finally the concept of nonsequential statements permits the formu-

lation of arbitrary temporal relationships.

Tiger fully exploits state-of-the-art technology to make its services

available to an international community. HTML, CGI, JavaScript,

and Expect are used to support interactive accesses through the

world wide web.

1Draft version. Not complete yet.

Contents

1 Introduction 3

1.1 Copyright and Warranty . 3

2 Access & Initialization 4

3 System Architecture 6

4 ATSQL 9

4.1 Data Model . 9

4.2 Crucial concepts . 10

4.2.1 Upward Compatibility (UC) 10

4.2.2 Temporal Upward Compatibility (TUC) 10

4.2.3 Sequentiality (SEQ) . 11

4.2.4 Nonsequentiality (NONSEQ) 13

4.3 Syntax . 13

4.3.1 Reserved Words . 13

4.3.2 Temporal Built-Ins . 14

4.3.3 Flags . 15

4.4 Semantics . 19

5 Oracle MetaDB Tables 26

6 Command Overview 28

6.1 Miscellaneous Commands . 28

6.2 ATSQL Commands . 29

7 Test Files 36

7.1 Migrating Databases . 36

7.2 Data Manipulation Statements 39

8 Conclusions and Future Plans 41

9 Acknowledgements 42

1

Bibliography 42

Index 43

2

Chapter 1

Introduction

Tiger has been designed and developed to promote and further the understand-

ing of temporal databases in general and ATSQL, a temporal extension of SQL,

in particular. The main goals were to exploit existing database technology and

to achieve substantial support for temporal requests with little syntactic over-

head.

1.1 Copyright and Warranty

Tiger is freely useable for educational and research purposes. Any commercial

usage requires the written agreement of M. B�ohlen, Department of Computer

Science, Aalborg University, Fredrik Bajers Vej 7E, DK-9220 Aalborg Ost, Den-

mark.

This software is provided \as is" and without any express or implied war-

ranties, including, without limitation, the implied warranty of merchantability

and �tness for a particular purpose.

The Tiger system is distributed in the hope that it will be useful. We ask

that you identify any changes you make. We do intend to continue to develop

and maintain the system as resources permit, and would like to hear of any

problems.

3

Chapter 2

Access & Initialization

In contrast to other software packages downloadable over the internet there's

no installation required to use Tiger. It is freely accessible through

the world wide web and the necessary initialization steps have been per-

formed before-hand. Connect to either http://www.cs.auc.dk/~boehlen or

http://www.cs.auc.dk/general/DBS/software. There you �nd links to the

Tiger system. You're of course also welcome to add a reference to one of your

own web pages. The recommended way is to add some JavaScript code to your

home page. This is very simple. First, add

<SCRIPT LANGUAGE="JavaScript">

<!--

function start_tiger() {

tiger = window.open(

'http://www.cs.auc.dk/~boehlen/Software/Tiger/x.html',

'tiger',

'toolbar=no,location=no,directories=no,status=yes,\

menubar=no,scrollbars=yes,resizable=yes,\

copyhistory=no,width=700,height=700');

}

//-->

</SCRIPT>

to your HTML header and then add a reference of the form

Tiger

to the body of your HTML document. This starts up Tiger in a separate, frill-

less window. Of course it is also possible to reference Tiger directly via the URL

http://www.cs.auc.dk/~boehlen/Software/Tiger/x.html.

4

For Tiger to run a few meta tables are required. When you connect, a

database account with these tables prede�ned is automatically assigned to you.

Although there are basic checks to prevent these tables from being manipulated

or dropped it is still possible to do so. (Tiger addresses the research community

and functionality is given priority over security.) If this is done by someone and

you happen to get assigned the \corrupted" account later on you might not �nd

these tables present. In this case please issue the following statements to create

the meta tables.

CREATE TABLE TDB$ICS (

NAME VARCHAR2(32) PRIMARY KEY,

QUERY LONG

);

CREATE TABLE TDB$DEPS (

OBJECT VARCHAR(32),

TYPE VARCHAR(32),

BASE_OBJECT VARCHAR(32),

IS_VIEW CHAR(1),

IS_PROHIBITIVE CHAR(1)

);

CREATE SEQUENCE TDB$S0;

CREATE TABLE TDB$VIEWS (

NAME VARCHAR(32) PRIMARY KEY,

ATSQL_QUERY LONG NOT NULL

);

5

Chapter 3

System Architecture

Tiger is a temporal database system front-end written in SWI Prolog. The Tiger

front-end consists of thirteen modules which contain a total of about 4000 lines

of (dense) code. Figure 3.1, depicts the module structure of Tiger. An arrow

indicates the direction of an import (e.g., module `meta' imports services from

module `unparser'). In the sequel, we briey describe the functionality of the

depicted modules.

tiger De�nition of global data structures and variables.

Code size: 5KByte (source code)

interpret The main module acts as a dispatcher and controller. It receives the

output from the parser (i.e., the parse tree) and determines the appropriate

actions to be performed.

Code size: 10KByte (source code)

scanner Exports predicates to read input from standard IO and to scan text

strings.

Code size: 10KByte (source code)

parser Parses a token list. Uses the de�nite clause grammar (DCG) notation of

Prolog [CM87]. Standard parsing techniques from the literature [Wir86]

have been employed to build a parse tree (i.e., one symbol lookahead (there

are some exceptions) and recursive descent). Although backtracking is an

inherent feature of Prolog and DCGs, it is used sparingly. Experience has

shown that the (extensive) use of backtracking results in mediocre runtime

performance [Bur92, p.15�].

Code size: 18KByte (source code)

rewrite Normalizes ATSQL commands, e.g., determines missing table aliases.

Performs also logical rewriting of commands to simplify/optimize the sub-

6

tiger

interpret

scanner rewrite deps

constraint

eval

views

meta

trans error

unparser

parser

Oracle

Figure 3.1: The architecture of Tiger

7

sequent translation.

Code size: 22KByte (source code)

deps Checks and handles dependencies implied by views, integrity constraints,

and assertions.

Code size: 6KByte (source code)

trans Translates ATSQL queries to SQL queries. SQL queries are represented

as Prolog structures so that they can be manipulated easier.

Code size: 9KByte (source code)

dml Handles ATSQL data manipulation statements. Particularly the handling

of transaction time is done in this module.

Code size: 12KByte (source code) code)

views Handling of views. Right now limited to the migration of upward com-

patible views to temporal upward compatible views.

constraint Responsible for integrity constraints and assertions. Provides sup-

port for migrating upward compatible integrity constraints. Checks the

consistency of the database.

Code size: 11KByte (source code)

meta Controls Oracle database accesses in general and access to the meta

data of Tiger in particular. In its responsibility are di�erent optimiza-

tion strategies for meta data access. For example, parts of the meta data

is cached in main memory. Also some commands are precompiled and as-

sociated with permanent cursors (see the cursor facility of Oracle [Nev86]

for details).

Code size: 7KByte (source code)

unparser Generation of SQL strings. Responsible for the handling of periods.

Code size: 15KByte (source code)

8

Chapter 4

ATSQL

4.1 Data Model

Tiger is a bitemporal period-timestamped database system. At the conceptual

level relations are extended with a valid time and transaction time dimension.

At the physical level four additional attributes are added to each relation, trans-

action time start, transaction time end, valid time start, and valid time end.

Valid time denotes the time when a statement was, is or will be valid in the

real world. Thus, valid time is always associated with a piece of information.

This property distinguishes valid time from explicit time which is an entity on

its own (e.g., a birth date). Whether to employ valid time or explicit time in

order to model the time is usually a design decision. For example, if we have to

model the life-time of persons, two basically di�erent approaches are possible.

1) life-time can be represented as valid time of person entities or 2) life-time can

be represented by extending the person entity with an explicit attribute that

captures birth date and date of death. Case 2) is appropriate whenever we just

want to store and retrieve temporal information, and maybe do a few simple

computations, such as determining the age of a person. However, as soon as

more sophisticated reasoning about time is required (e.g., searching persons who

lived at the same time), valid time should be used to model life-time.

Transaction time denotes the time during which a statement is or was current

to the database. Like valid time, transaction time is always associated with a

piece of information. The time point when the information was inserted into the

database is the transcation time start point whereas the time point when it was

either deleted or superseded by an updated tuple is the transaction time end

point. As a result, transaction time is not provided by the user. If a statement

is inserted into the database, the start point is set to the insertion time (= the

time when the enclosing transaction commits) whereas the end point is set to

now. Similarly, when a statement is deleted (or updated) the transaction time

9

end point is changed from now to the deletion time.

4.2 Crucial concepts

This chapter is to some degree an excerpt of [BJ96]. Please consult this paper

for further explanations and details.

4.2.1 Upward Compatibility (UC)

Perhaps the most important aspect of ensuring a smooth migration of appli-

cation code is to guarantee that all code without modi�cation will work with

the new model, exactly with the same functionality as with the existing system.

We de�ne a data model to be syntactically upward compatible with another

data model if all the data structures and legal query expressions of the latter

model are contained in the former model. It then holds true that, if a model is

syntactically upward compatible with a legacy data model, then all existing ap-

plication code will remain syntactically correct. ATSQL is syntactically upward

compatible with SQL-92. Thus, the bulk of legacy SQL-92 application code is

not a�ected by the transition to ATSQL.

There is one unintended rami�cation of the above de�nition. Any temporal

extension that includes new reserved keywords will violate upward compatibility.

The reason is that legacy query language statements may have employed such

keywords as identi�ers. Under the semantics of the new model, such statements

will be illegal. Reserved words are added in all temporal query languages,

and it is impractical to exclude them. This also holds for non-temporal query

languages. For example, SQL{92 added some 112 reserved keywords to the

115 reserved keywords of its predecessor, SQL{891. One proposed solution

is to use quoted identi�ers in legacy code where identi�ers conict with new

reserved keywords and in new code, to avoid future problems. In conclusion,

to follow current practice and to avoid being overly restrictive, we consider

upward compatibility to be satis�ed even when new keywords are added in the

extension.

4.2.2 Temporal Upward Compatibility (TUC)

While essential, upward compatibility is only a �rst step. Upon adopting a

temporal data model, the bene�ts of the built-in temporal support are only

realized incrementally, by modifying existing application code or developing

new application code that exploits the temporal capabilities. A next step is

thus to formulate requirements that aim at ensuring a harmonious coexistence

of legacy application code and new, temporally-enhanced application code.

1Reference [MS93] provides a list of 10 items with incompatibilities among SQL{89 and

SQL{92, with the keyword aspect being one item.

10

Note that there's no friction between existing code and new code if disjoint

sets of relations are used. Rather, the potential problem occurs when new

application code needs to use a combination of existing and new, temporal

relations or needs to change existing relations to become temporal.

Based on this observation, temporal upward compatibility states that exist-

ing applications on snapshot relations must continue to work unmodi�ed when

the relations are altered to become temporal. Intuitively, the requirement is

that a query q must return the same result on an associated snapshot database

db as on the temporal counterpart of the database, T (db). Further, updates

should not a�ect this.

De�nition 1 (temporal upward compatibility) Let a temporal and a snap-

shot data model be given by MT = (DST ; QLT) and MS = (DSS ; QLS), re-

spectively. Also, let T be an operator that changes the type of a snapshot

relation to the temporal relation with the same explicit attributes. Next, let

U = u1; u2; : : : ; un (n � 0) denote a sequence of update operations. With these

de�nitions, model MT is temporal upward compatible with model MS i�

� MT is upward compatible with MS and

� 8dbS 2 DSS (8 U (8qS 2 QLS (hhqS(U(dbS))iiMS
= (hhqS(U(T (dbS)))iiMT

)))).

4.2.3 Sequentiality (SEQ)

The sequentiality requirement aims at protecting the investments in programmer

training and at ensuring continued e�cient, cost-e�ective application develop-

ment upon migration to a temporal model. This is achieved by exploiting the

fact that programmers are likely to be comfortable with the non-temporal query

language, e.g., SQL{92.

The requirement states that, for each query in SQL-92, ATSQL must o�er a

syntactically similar temporal query that is its \natural" generalization. With

this requirement satis�ed slightly modi�ed versions of the SQL{92 queries on

temporal relations are temporal queries with semantics that are easily (\natu-

rally") understood in terms of the semantics of the the corresponding SQL{92

queries on snapshot relations. The familiarity of the similar syntax and \nat-

urally" extended semantics is intended to make it possible for programmers to

immediately and easily write a wide range of temporal queries, with little need

for expensive training, few errors, and no signi�cant initial drop in productivity.

An inherent part part of sequential statements is snapshot reducibility. We

�rst de�ne the notion of snapshot reducibility among query languages. We

will use r and rbi for denoting a snapshot and a bitemporal relation instance,

respectively. Similarly, db and dbbi are sets of snapshot and bitemporal relation

instances, respectively.

Snapshot reducibility implies that for all query expressions q in the snapshot

model, there must exist a query qbi in the temporal model so that for all dbbi

11

and for all time arguments, the commutativity diagram shown in Figure 4.1

holds.

?

-

?

-

dbbi

�
M

bi
;M

(ctt;cvt)
(dbbi)

qbi(dbbi)

q(�
M

bi
;M

(ctt;cvt)
(dbbi)) = �

M
bi
;M

(ctt;cvt)
(qbi(dbbi))

qbi

q

� at (ctt; cvt) � at (ctt; cvt)

Figure 4.1: Snapshot reducibility of query qbi with respect to query q

Observe that qbi being snapshot reducible with respect to q poses no syn-

tactical restrictions on qbi. It is thus possible for qbi to be quite di�erent from

q, and qbi might be very involved. This is undesirable, as we would like the

temporal model to be a straight-forward extension of the snapshot model. Con-

sequently, we require that qbi and q be syntactically similar. Speci�cally, we

require that there exist two (possibly empty) strings, S1 and S2, such that each

query qbi in QLbi that is snapshot reducible with respect to a query q in QL is

syntactically identical to S1qS2.

Figure 4.2 illustrates snapshot reducibility. The temporal query q0 is snap-

shot reducible to the snapshot query q. Query q0 is applied to the temporal

relation (the sequence of states across the top of the �gure) and results in a

temporal relation, which is represented by the sequence of states across the

bottom.

...

q

...

qqqqq’ =

Figure 4.2: Evaluation of a Snapshot Reducible Temporal Query q0 on a Tem-

poral Relation

12

4.2.4 Nonsequentiality (NONSEQ)

In a sequential query, the information in a particular state of the resulting

temporal relation is derived solely from information in the state at that same

time of the source relation(s). However, there are many reasonable queries

that cannot be expressed as sequenced queries. Such queries are illustrated in

Figure 4.3, in which each state of the resulting relation requires information from

possibly all states of the source relation. We term these queries nonsequenced

ones. With these queries included, we have the full functionality that may be

expected from a temporal query language.

q’

...

......

Figure 4.3: Evaluation of a nonsequenced temporal query q0 on a temporal

relation

In Figure 4.3, two temporal relations are shown, one consisting of the states

across the top of the �gure, and the other, the result of the query, consisting

of the states across the bottom of the �gure. A single query q performs the

possibly complex computation, with the information usage illustrated by the

downward pointing arrows. Whenever the computation of a single state of the

result relation may utilize information from a state at a di�erent time, that

query is non-sequenced.

4.3 Syntax

4.3.1 Reserved Words

keyword("BEGIN",begin). keyword("NONSEQUENCED",nonsequenced).

keyword("BEGINNING",beginning). keyword("NOW",now).

keyword("CONTAINS",con). keyword("OVERLAPS",over).

keyword("CURRENT",current). keyword("PERIOD",period).

keyword("DATE",date). keyword("PRECEDES",pre).

keyword("DAY",day). keyword("SECOND",second).

13

keyword("END",end). keyword("SEQUENCED",sequenced).

keyword("FIRST",first). keyword("SYSDATE",sysdate).

keyword("FOREVER",forever). keyword("TIMESTAMP",timestamp).

keyword("HOUR",hour). keyword("TO",to).

keyword("INTERVAL",interval). keyword("TRANSACTION",transaction).

keyword("LAST",last). keyword("TTIME",ttime).

keyword("MEETS",mee). keyword("VALID",valid).

keyword("MINUTE",minute). keyword("VTIME",vtime).

keyword("MONTH",month). keyword("YEAR",year).

4.3.2 Temporal Built-Ins

Most built-ins were chosen to be consistent with TSQL2 and/or the SQL stan-

dard.

We �rst illustrate the syntax of periods.

PERIOD '1992/4/21 - 1997/5/31'

PERIOD '1992/4/21 - NOW'

PERIOD 'CURRENT - 1999/5/17'

PERIOD 'CURRENT - NOW'

PERIOD '1995/4/21'

Periods are assumed to be closed. CURRENT is a shorthand for the current time

and is replaced whereas NOW denotes a moving point on the time line. The

last example is a shorthand for PERIOD '1995/4/21-1995/4/21'. In the future

there will be support for di�erent granularities and multiple timestamp formats.

We continue with a list of built-in functions to access and manipulate periods.

� VTIME(r) returns the valid time of relation r

� VTIME(r) returns the transaction time of relation r

� BEGIN(P) returns the start point of a period

� END(P) returns the end point of a period

� FIRST(TP1; TP2) returns the earlier of two time points

� LAST(TP1; TP2) returns the later of two time points

� DURATION(P;Gran) returns the duration of a period at the speci�ed gran-

ularity

Finally, a set of built-in temporal predicates allows to conveniently relate

periods. Their semantics is given of terms of conventional relationships on start

and end points.

� P1 = P2 i� P�
1
= P�

2
and P+

1
= P+

2

14

� P1 CONTAINS P2 i� P�
1
� P�

2
and P+

1
� P+

2

� P1 MEETS P2 i� succ(P+

1
) = P�

2

� P1 OVERLAPS P2 i� P�
1
� P+

2
and P�

2
� P+

1

� P1 PRECEDES P2 i� P+

1
< P�

2

4.3.3 Flags

We now discuss the syntactic constructs of ATSQL to achieve UC, TUC, SEQ,

and NONSEQ. We provide an EBNF syntax for each of our speci�c extensions to

SQL{92. We thus focus on the temporal extensions and gloss over the details of

SQL{92. In addition, we will focus on queries, which are the most complex state-

ments, but will also consider other statements. In the EBNF productions that

follow, terminals are of the form "xxx", i.e., enclosed in quotation marks. Non-

terminals of the form <xxx> derive from the SQL{92 standard [MS93, p.481�],

and new non-terminals are of the form xxx (without quotation marks). Omit-

ting these new non-terminals yields the original (slightly simpli�ed) SQL{92

productions.

� In queries and cursor expressions (termed <cursor specification> in

SQL{92) the ags are placed at the outermost level, right at the beginning.

<cursor specification> ::=

flags <query expression> [<order by clause>] |

"(" flags <query expression> ")" coal

[<order by clause>]

The scope of the semantics implied by the ags is all parts of the query

(e.g., including nested queries), with the exception of derived table ex-

pressions in the from clause. The non-terminal coal is used for specifying

coalescing, to be discussed later in this section.

� In views, the ags are placed immediately following the AS keyword.

<view definition> ::=

"CREATE" "VIEW" <table_name>

["(" <view column list> ")"] "AS"

(flags <query expression> |

"(" flags <query expression> ")" coal)

15

� Flags can be associated with derived table expressions in from clauses.

The motivation is that derived tables may be meaningfully computed in-

dependently of the computation of the remainder of the containing query.

Put di�erently, derived table expressions have their own scope and may

be replaced by views or auxiliary tables. This presents an opportunity to

allow derived tables expressions to have their own individual ags. This

adds exibility to the language and improves its usefulness. As a syntactic

shorthand, coalescing is also allowed after table names in the from clause

(in order to facilitate point-based queries).

<table reference> ::=

<table name> coal [["AS"] <correlation name>] |

"(" flags <query expression> ")" coal ["AS"]

<correlation name>

Note that, while syntactically similar, derived tables in the from clause

are quite di�erent from subqueries in the where clause. Subqueries can be

correlated with the main query and cannot be evaluated independently.

� In an assertion, the ags are placed right after the CHECK keyword.

<assertion definition> ::=

"CREATE" "ASSERTION" <constraint Name>

CHECK flags "(" <search condition> ")"

� Table and column constraints are syntactic shorthands for assertions. The

ags are placed right in front of the table and column constraints, respec-

tively.

<column definition> ::=

<column name> flags <column constraint definition>

<table constraint definition> ::=

<constraint name definition> flags <table constraint>

� As with queries, the ags are placed in front of modi�cation statements.

<SQL data change statement> ::=

flags <insert statement> |

flags <delete statement> |

flags <update statement>

16

Summarizing, ags are associated with all \statements" that can be evaluated

meaningfully on their own. Examples include queries, data manipulation state-

ments, assertions, integrity constraints, and views. In general, ags are placed

in front of statements to emphasize their impact upon the entire statement.

Before we exemplify the di�erent statement classes with a guided tour, we

continue with an EBNF syntax for the ags and discuss their meaning.

flags ::= [flag ["AND" flag]] ["SET" "VALID" vt_range]

flag ::= [modifier] dimension [domain]

modifier ::= "SEQUENCED" | "NONSEQUENCED"

dimension ::= "TRANSACTION" | "VALID"

domain ::= period_constant

vt_range ::= period_expression

The meaning of the ags naturally divides into four orthogonal parts, namely

the speci�cation of the core semantics, the time-domain speci�cation, the time-

range speci�cation, and speci�cation of coalescing. We discuss each in turn.

The following three types of ags determine the core semantics of ATSQL

statements. Each of the three types of ags apply independently to valid time

and transaction time.

<empty ag> A missing ag for a time dimension (i.e., valid or transaction)

dictates upward compatibility (UC) when neither of the underlying ar-

gument relations support that time; otherwise, evaluation according to

temporal upward compatibility (TUC) is dictated. For queries, the time

dimension will not be present in the result relation.

SEQUENCED When this keyword is present for a time dimension, evaluation con-

sistent with sequenced semantics (SEQ), i.e., built-in timestamp-related

processing, is dictated for the time dimension. The time dimension will

be present in relations that result from queries.

NONSEQUENCED This keyword signals nonsequenced semantics (NONSEQ), i.e.,

timestamp processing that is controlled by the application rather than

the temporal DBMS. The a�ected time dimension is not present in query

results (with this ag, the time e�ectively becomes an explicit attribute

that can be included in the result similarly to how other explicit attributes

are included).

With two time dimensions, the three cases lead to a total of nine kinds of

statements, as summarized in Table 4.1. For simplicity, we have omitted per-

mutations of the valid and transaction time ag, and we abbreviate VALID by

VT, TRANSACTION by TT, SEQUENCED by SEQ, and NONSEQUENCED by NS.

The next step is to add time-domain and time-range speci�cations. The

time domain is a period constant that may be placed right after the VALID and

TRANSACTION keywords, respectively. It restricts the database to the part that

17

syntax semantics

vt tt

<SQL{92> (T)UC (T)UC

SEQ VT <SQL{92> SEQ (T)UC

NS VT <SQL{92> NONSEQ (T)UC

SEQ TT <SQL{92> (T)UC SEQ

NS TT <SQL{92> (T)UC NONSEQ

SEQ VT AND SEQ TT <SQL{92> SEQ SEQ

SEQ VT AND NS TT <SQL{92> SEQ NONSEQ

NS VT AND SEQ TT <SQL{92> NONSEQ SEQ

NS VT AND NS TT <SQL{92> NONSEQ NONSEQ

Table 4.1: The Basic Usage of Flags in ATSQL

is valid or current during the respective period. A domain restriction is applied

prior to the evaluation of a statement, i.e., in a preprocessing step.

For valid time, it can be meaningful to specify the valid time of the result,

i.e., the time range. The SET VALID clause is used for this purpose. Note that

it makes no sense to provide a similar clause for transaction time. Transaction-

time semantics forbids this kind of user interaction [SA85]. The time range is

set in a postprocessing step, i.e., after the evaluation of a query. Examples of

time-domain and time-range speci�cations will be given in the guided tour that

follows.

Finally, coalescing merges tuples with overlapping or adjacent timestamps,

and identical corresponding attribute values (termed value equivalent), into a

single tuple. Coalescing is allowed at the levels where the ags are also allowed.

In addition, as a syntactic shorthand, a coalescing operation is permitted di-

rectly after a relation name in the from clause. In this case a coalesced instance

of the relation, rather than the uncoalesced one, is considered.

coal ::= { "(" dimension ")" }

dimension ::= "valid" | "transaction"

The semantics of coalescing depends on the type of relation it is applied to. A

snapshot relation cannot be coalesced. A valid-time relation can be coalesced in

valid time only, and the equivalent is true for transaction-time relations. With

a single time dimension, coalescing degenerates to a merging of value-equivalent

tuples with overlapping or adjacent time period [BSS96]. With bitemporal re-

lations the semantics is more subtle. Here, overlapping or adjacent time regions

(rectangles) of value-equivalent tuples have to be merged. In the general case,

overlapping rectangles do not coalesce into a single rectangle, which means that

several result tuples have to be generated. This can be done in two ways: with

the resulting rectangles maximized in valid time or in transaction time. We

18

use (VALID) for the former and (TRANSACTION) for the latter. These two basic

operations can be combined to (TRANSACTION)(VALID), which means that we

�rst coalesce in transaction time and then in valid time. As exempli�ed by

the last two pictures, the sequence of coalescing operations matters. The se-

quence (TRANSACTION)(VALID) results in maximal valid-time periods, whereas

(VALID)(TRANSACTION) results in maximal transaction-time periods.

4.4 Semantics

We de�ne the semantics of ATSQL in terms of a mapping to standard and

temporal relational algebra, both of which are de�ned here. To avoid the tedious

complications related to duplicates, which have been explored in the past, we

assume a set-based framework. This yields a concise coverage where the novel

aspects of the general approach stand out more clearly. However, we emphasize

that ATSQL follows the data model of SQL{92 and is thus not set-based.

The translation to (temporal) relational algebra expressions consists of two

parts. First, we consider constructs at the level of functions and predicates. This

step is straightforward and is discussed in the �rst section. The translation at

the statement level, i.e., the translation of statements enhanced with ags, is

much more involved (and important!). It is discussed in the subsequent three

sections.

Constructs for Timestamp Manipulation

Temporal query languages generally de�ne a variety of constructs to manipu-

late their various timestamp types. These include constructors (to create in-

stances of the timestamp types), extractors (to extract constituent parts from

timestamps), predicates (boolean-valued, for comparison), and operations (to

create new timestamps from existing ones). Many constructs exist in the liter-

ature [Sno95, pp. 251{291]. They are relatively easy to de�ne, and adding one

more construct to a language has only a localized e�ect on the language design.

Therefore, we only de�ne a relatively small number of constructs here.

We will assume the timestamp representation adopted in Tiger where four

TIMESTAMP attributes (VTS, VTE, TT$S, and TT$E, denoting valid time start,

valid time end, transaction time start, and transaction time end, respec-

tively) are used to represent valid and transaction time. This representa-

tion leads to the de�nitions given in Table 4.2, where tp and iv, possibly in-

dexed, denote a time point of type TIMESTAMP and a time duration of type

INTERVAL, respectively. Also, per is a shorthand for PERIOD 'tp1 � tp2' and

granule 2 fYEAR; MONTH; WEEK; DAY; HOUR; MINUTE; SECONDg denotes a granularity.
The constructs VTIME and TTIME that extract timestamps return errors if the

tuple variables they are applied to do not support valid time and transaction

time, respectively. Note also that INTERSECT returns an illegal period if the

19

ATSQL Semantics

[[PERIOD 'tp1 � tp2']]ATSQL TIMESTAMP'tp1'; TIMESTAMP'tp2'

[[FIRST(TIMESTAMP'tp1'; TIMESTAMP'tp2')]]ATSQL min(tp1; tp2)
[[LAST(TIMESTAMP'tp1'; TIMESTAMP'tp2')]]ATSQL max(tp1; tp2)

[[VTIME(r)]]ATSQL TIMESTAMP'r:VT$S'; TIMESTAMP'r:VT$E'

[[TTIME(r)]]ATSQL TIMESTAMP'r:TT$S'; TIMESTAMP'r:TT$E'

[[BEGIN(per)]]ATSQL [[FIRST([[per]]ATSQL)]]ATSQL
[[END(per)]]ATSQL [[LAST([[per]]ATSQL)]]ATSQL

[[per1 PRECEDES per2]]ATSQL [[END(per1)]]ATSQL < [[BEGIN(per2)]]ATSQL

[[per1 MEETS per2]]ATSQL [[END(per1)]]ATSQL = [[BEGIN(per2)�
granule 1]]ATSQL

[[per1 OVERLAPS per2]]ATSQL [[END(per1)]]ATSQL � [[BEGIN(per2)]]ATSQL ^
[[END(per2)]]ATSQL � [[BEGIN(per1)]]ATSQL

[[per1 CONTAINS per2]]ATSQL [[BEGIN(per2)]]ATSQL � [[BEGIN(per1)]]ATSQL ^
[[END(per2)]]ATSQL � [[END(per1)]]ATSQL

[[per + INTERVAL'iv']]ATSQL [[BEGIN(per)]]ATSQL + iv;

[[END(per)]]ATSQL + iv

[[INTERSECT(per1; per2)]]ATSQL max([[BEGIN(per1)]]ATSQL; [[BEGIN(per2)]]ATSQL);
min([[END(per1)]]ATSQL; [[END(per2)]]ATSQL)

[[DURATION(per; granule)]]ATSQL [[END(per)]]ATSQL �
granule [[BEGIN(per)]]ATSQL)

Table 4.2: De�nition of Simple ATSQL Constructs

20

two argument periods do not overlap. We will use the constructs de�ned in Ta-

ble 4.2 throughout, including in relational algebra expressions, e.g., in selection

predicates. This makes the expressions more readable. It is straightforward to

adapt these de�nitions to di�erent representations, e.g., a representation that is

based on the PERIOD data type of the evolving part SQL/Temporal of the SQL3

standard.

Query Expressions

Recall that we de�ne the meaning of ATSQL query expressions by translating

them to well-de�ned algebraic expressions. As a precursor, we introduce the

notation that we will use in the algebra expressions.

We use hti, htjjV T i, htjjTT i, and htjjV T; TT i to denote tuple variables ranging
over snapshot, valid-time, transaction-time, and bitemporal relations, respec-

tively. The vertical double-bar \jj" is used to separate the explicit attributes

from the implicit timestamps. The valid time is referred to as V T , the transac-

tion time as TT .

In the de�nitions, we need auxiliary operators that timeslice relations and

turn timestamps into regular, explicit attributes. These operators are over-

loaded to apply to valid-time, transaction-time, and bitemporal relations, and

they have variants for both valid and transaction time. There are two timeslice

operations. The �rst, �tp, selects all tuples in the argument relation with a

timestamp that overlaps time point tp. The time dimension used in this selec-

tion is not present in the result relation. The second timeslice operation, �per,

returns all argument tuples that overlap with period per. The timestamp of a

result tuple is the intersection of per with the tuple's original timestamp. The

snapshot operation SN turns a time dimension into an explicit attribute. Note

that SN is not needed at the implementation level, where all attributes are

explicit (cf. Section 4.4).

With these conventions in place, Table 4.3 gives the semantics for core AT-

SQL statements (cf. Table 4.1). In the table, [[<SQL{92>]]SQL�92 evaluates

to the standard relational algebra expression that corresponds to <SQL{92>

[?, GT91]. Next, [[<SQL{92>]]T , where T 2 fvt; tt; big, evaluates to the same al-

gebraic expression as does [[<SQL{92>]]SQL�92, except that every nontemporal

relational algebra operator (e.g., �; �; �) is replaced by the corresponding tem-

poral relational algebra operator (e.g., �T ; �T ; �T). The algebras are de�ned in

Section ??. The following two examples illustrate the de�nition.

Example 1 The ATSQL query, Q1, below is an example of a non-sequenced

query. The argument relations are assumed to be bitemporal.

NONSEQUENCED VALID

SELECT p.X

FROM p, q

WHERE p.X = q.X

21

[[<SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]SQL�92(�
tt
now(�

vt
now(r1)); : : : ; �

tt
now(�

vt
now(rn)))

[[SEQ VT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]vt(�
tt
now(r1); : : : ; �

tt
now(rn))

[[NS VT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]SQL�92(�
tt
now(SN

vt(r1)); : : : ; �
tt
now(SN

vt(rn)))

[[SEQ TT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]tt(�
vt
now(r1); : : : ; �

vt
now(rn))

[[NS TT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]SQL�92(�
vt
now(SN

tt(r1)); : : : ; �
vt
now(SN

tt(rn)))

[[SEQ VT AND SEQ TT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]bi(r1; : : : ; rn)

[[SEQ VT AND NS TT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]vt(SN
tt(r1); : : : ; SN

tt(rn))

[[NS VT AND SEQ TT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]tt(SN
vt(r1); : : : ; SN

vt(rn))

[[NS VT AND NS TT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]SQL�92(SN
tt(SN vt(r1)); : : : ; SN

tt(SN vt(rn)))

Table 4.3: Semantics of Core ATSQL Queries

22

AND VTIME(p) PRECEDES VTIME(q)

This query is de�ned by the relational algebra expression given next.

[[Q1]]ATSQL(p; q) =

�p:X(�p:X=q:X (�VTIME(p)PRECEDES VTIME(q)(SN
vt(� ttnow(p))� SNvt(� ttnow(q)))))

Note that the mapping from SQL{92 queries to relational algebra is still the

same. The temporal selection condition can be viewed as a syntactic shorthand

for a standard selection condition (cf. Table 4.2). The only addition is the \ad-

justment" of the relations (SNvt and � ttnow) to �t the non-sequenced evaluation

mode in valid time dimension and the temporal upward compatible evaluation

mode in transaction time dimension.

Example 2 The following ATSQL query, termed Q2, is sequenced in both valid

and transaction time.

SEQUENCED VALID AND SEQUENCED TRANSACTION

SELECT p.X

FROM p, q

WHERE p.X = q.X

It is de�ned by the following temporal relational algebra expression.

[[Q2]]ATSQL(p; q) = �bip:X(�
bi
p:X=q:X (p�

bi q))

Apart from the superscripts, which are added to the relational algebra operators,

the translation between SQL{92 queries and relational algebra expressions has

not changed at all.

Domain and Range Speci�cations

Next, we de�ne the semantics of domain and range speci�cations. A time-

domain restriction restricts the argument relations in a query to contain only

tuples that are valid during a speci�c period. Thus, only the parts of argument

tuples that intersect with the time-domain restriction are considered when the

query is evaluated. This is formalized in Table 4.4.

Next, we can also specify a time range, using the ag \SET VALID <range>"

where <range> is period valued, that determines the valid times of the re-

sult tuples. There are two di�erent situations. First, if the core statement is

a SEQUENCED VALID statement then the automatically computed valid time is

replaced by the value resulting from evaluating the time-range speci�cation.

Second, for all other core statements, prepending SET VALID <range> results

in the inclusion of valid time into the result. Because these core statements

return results that do not contain valid-time timestamps, the type of the result

is changed. The valid time of a tuple is that resulting from evaluating <range>.

The details are given in Table 4.5.

23

[[<modi�er> VALID <domain> <ATSQL>]]ATSQL(r1; : : : ; rn)
4
=

[[<modi�er> VALID <ATSQL>]]ATSQL(�
vt
<domain>

(r1); : : : ; �
vt
<domain>

(rn))

[[<modi�er> TRANSACTION <domain> <ATSQL>]]ATSQL(r1; : : : ; rn)
4
=

[[<modi�er> TRANSACTION <ATSQL>]]ATSQL(�
tt
<domain>

(r1); : : : ; �
tt
<domain>

(rn))

Table 4.4: De�nition of ATSQL Domain Restrictions

[[SET VALID <range><ATSQL>]]ATSQL(r1; : : : ; rn)
4
=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

fhtjjV T i j hti 2 [[<ATSQL>]]ATSQL(r1; : : : ; rn) ^
V T = <range>(t)g

if [[<ATSQL>]]ATSQL(r1; : : : ; rn)

evaluates to a snapshot relation

fhtjjV T i j htjjV T 0i 2 [[<ATSQL>]]ATSQL(r1; : : : ; rn) ^
V T = <range>(t)g

if [[<ATSQL>]]ATSQL(r1; : : : ; rn)

evaluates to a valid-time relation

fhtjjV T; TT i j htjjTT i 2 [[<ATSQL>]]ATSQL(r1; : : : ; rn) ^
V T = <range>(t)g

if [[<ATSQL>]]ATSQL(r1; : : : ; rn)

evaluates to a transaction-time relation

fhtjjV T; TT i j htjjV T 0; TT i 2 [[<ATSQL>]]ATSQL(r1; : : : ; rn) ^
V T = <range>(t)g

if [[<ATSQL>]]ATSQL(r1; : : : ; rn)

evaluates to a bitemporal relation

Table 4.5: De�nition of ATSQL Range Speci�cations

24

Coalescing

Any ATSQL query that returns a temporal relation may be coalesced. To de�ne

coalescing, let <ATSQL> denote any ATSQL query. If this query returns a

valid-time relation, it may be modi�ed to (<ATSQL>)(VALID), to return the

coalesced version of the valid-time relation. The obvious corresponding result

holds when replacing valid time by transaction time. If the query returns a

bitemporal relation, it may be coalesced in valid time, in transaction time, or

in a combination of the two. Table ?? provides the de�nitions. De�nitions of

representative versions of operator coal will be given shortly.

[[<ATSQL>(VALID)]]ATSQL(r1; : : : ; rn)
4
=

8>>>>>>><
>>>>>>>:

coalvt([[<ATSQL>]]ATSQL(r1; : : : ; rn))

if [[<ATSQL>]]ATSQL(r1; : : : ; rn)

evaluates to a valid-time relation

coalbivt([[<ATSQL>]]ATSQL(r1; : : : ; rn))

if [[<ATSQL>]]ATSQL(r1; : : : ; rn)

evaluates to a bitemporal relation

[[<ATSQL>(TRANSACTION)]]ATSQL(r1; : : : ; rn)
4
=

8>>>>>>><
>>>>>>>:

coaltt([[<ATSQL>]]ATSQL(r1; : : : ; rn))

if [[<ATSQL>]]ATSQL(r1; : : : ; rn)

evaluates to a transaction-time relation

coalbitt([[<ATSQL>]]ATSQL(r1; : : : ; rn))

if [[<ATSQL>]]ATSQL(r1; : : : ; rn)

evaluates to a bitemporal relation

25

Chapter 5

Oracle MetaDB Tables

For a comprehensiove description of the Oracle meta database please consult

Oracle documentation. Here we just provide the descriptions of those table that

help you to get started and those tables/views that are used explicitly by Tiger.

SQL> desc cat;

Name Null? Type

------------------------------- -------- ----

TABLE_NAME NOT NULL VARCHAR2(30)

TABLE_TYPE VARCHAR2(11)

SQL> desc user_tab_columns;

Name Null? Type

------------------------------- -------- ----

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

DATA_TYPE VARCHAR2(9)

DATA_LENGTH NOT NULL NUMBER

DATA_PRECISION NUMBER

DATA_SCALE NUMBER

NULLABLE VARCHAR2(1)

COLUMN_ID NOT NULL NUMBER

DEFAULT_LENGTH NUMBER

DATA_DEFAULT LONG

NUM_DISTINCT NUMBER

LOW_VALUE RAW(32)

HIGH_VALUE RAW(32)

DENSITY NUMBER

26

SQL> desc user_constraints

Name Null? Type

------------------------------- -------- ----

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

CONSTRAINT_TYPE VARCHAR2(1)

TABLE_NAME NOT NULL VARCHAR2(30)

SEARCH_CONDITION LONG

R_OWNER VARCHAR2(30)

R_CONSTRAINT_NAME VARCHAR2(30)

DELETE_RULE VARCHAR2(9)

STATUS VARCHAR2(8)

SQL> desc user_cons_columns

Name Null? Type

------------------------------- -------- ----

OWNER NOT NULL VARCHAR2(30)

CONSTRAINT_NAME NOT NULL VARCHAR2(30)

TABLE_NAME NOT NULL VARCHAR2(30)

COLUMN_NAME NOT NULL VARCHAR2(30)

POSITION NUMBER

SQL> desc user_dependencies

Name Null? Type

------------------------------- -------- ----

NAME NOT NULL VARCHAR2(30)

TYPE VARCHAR2(12)

REFERENCED_OWNER VARCHAR2(30)

REFERENCED_NAME NOT NULL VARCHAR2(30)

REFERENCED_TYPE VARCHAR2(12)

REFERENCED_LINK_NAME VARCHAR2(128)

SQL> desc user_views

Name Null? Type

------------------------------- -------- ----

VIEW_NAME NOT NULL VARCHAR2(30)

TEXT_LENGTH NUMBER

TEXT LONG

27

Chapter 6

Command Overview

This chapter provides a quick tour through Tiger commands. First, miscella-

neous commands, e.g., commands to open and close a database and commands

to query meta information, are discussed. Then a guided tour is presented that

illustrates many of the core features of Tiger.

The sections is kept informal. Usually we put one or several examples to

illustrate a command. A formal syntax can be found in chapter ??.

6.1 Miscellaneous Commands

open The command

open 'scott/tiger';

connects to the database scott with password tiger. If you connect through the

world wide web you do not have to worry about databases and passwords|they

are handled transparantly.

verbose The command

verbose on;

switches to verbose mode. This means that the generated SQL statements will

be displayed on the screen. (Usually, only a dot appears on the screen instead

of the actual SQL statement.) Switch the verbose mode o� by typing

verbose off;

check The

check;

checks the consistency of the database.

28

close The command

close;

closes the database you are currently connected to. Note that it makes no sense

to use this command if you do not have an account and a password.

6.2 ATSQL Commands

This section provides the complete guided tour that illustrates various aspects

of ATSQL. The guided tour corresponds to the one that is available online.

Additional explanations are given where appropriate.

/* First it is a good idea to check out the content of the DB.

In Oracle you do so by executing the following command.

*/

SELECT * FROM cat;

/* See the Oracle documentation for more information about

Oracle's meta tables. This command should return a few

object names starting with 'TDB$'. They are meta table used

by Tiger. If they are not there you cannot proceed.

*/

/* If someone else has been running the guided tour before it

is likely that some objects are left which are created during

the guided tour. Issue the following sequence to drop them.

*/

DROP ASSERTION not_prozac_and_morphine;

DROP VIEW addicted;

DROP TABLE drug;

DROP TABLE prescription;

DROP TABLE patient;

SELECT * FROM cat;

First, we employ upward compatible statements to de�ne a small example

database and to populate it. Note that the concept of upward compatibility

ensures that all legacy Oracle-SQL statements keep being valid. Feel free to

add your own statements or to modify the given ones. Whatever is a legal

Oracle statement is also a legal Tiger statement.

CREATE TABLE patient (

Id INTEGER PRIMARY KEY,

Name VARCHAR(32),

Address VARCHAR(90),

Birthdate DATE);

29

CREATE TABLE prescription(

Patient_Id INTEGER REFERENCES patient(Id),

Drug_Id INTEGER,

Doctor VARCHAR(32),

Issue_Date DATE);

INSERT INTO patient VALUES (

5596544,

'Bob Marley',

'Miami',

'1945/02/06');

INSERT INTO patient VALUES (

1846549,

'Jim Morison',

'Paris',

'1943/12/08');

INSERT INTO patient VALUES (

9734859,

'Jerry Garcia',

'Forest Knolls',

'1942/08/01');

INSERT INTO patient VALUES (

1734654,

'Janis Joplin',

'San Francisco',

'1943/01/19');

INSERT INTO prescription VALUES (

5596544, 45477, 'Dr Quincy', '1992/7/22');

INSERT INTO prescription VALUES (

5596544, 17575, 'Dr Hook', '1992/8/15');

INSERT INTO prescription VALUES (

1734654, 16584, 'Dr Jekyll', '1991/12/25');

SELECT * FROM patient;

SELECT * FROM prescription;

CREATE VIEW addicted (Patient_Name, Num_Of_Prescriptions) AS

SELECT Name, COUNT(*)

FROM patient, prescription

WHERE patient.Id = prescription.Patient_Id

GROUP BY Name

HAVING COUNT(*) > 1;

30

SELECT * from addicted;

Next we employ temporally upward compatible (TUC) statements. Syntac-

tically, TUC statements are identical to UC statements (apart from an extended

alter statement which is used to add a time dimension to a table).

Another thing noteworthy is the CHANGE SYSDATE clause that is used below.

This clause permits you to set the system time. Of course in a production

system such a clause is not available (at least not to regular users). It is only

provided for your convenience so that you can make your input independent of

the actual time. If you don't like this feature simply omit the CHANGE SYSDATE

clause. In this case Tiger will automatically choose the actual time.

CHANGE SYSDATE TO '1992/08/15';

ALTER TABLE patient ADD VALID;

ALTER TABLE prescription ADD VALID;

ALTER TABLE prescription ADD TRANSACTION;

CHANGE SYSDATE TO '1993/04/05';

DELETE FROM prescription

WHERE Patient_Id = 1734654 AND Drug_Id = 16584;

CHANGE SYSDATE TO '1993/04/10';

INSERT INTO patient VALUES (

8839782,

'Frank Zappa',

'Los Angeles',

'1940/12/21');

COMMIT;

CHANGE SYSDATE TO '1994/01/03';

INSERT INTO patient VALUES (

9365822,

'Kurt Cobain',

'Seattle',

'1967/02/20');

COMMIT;

/* Next we use TUC queries to query the current state of

relations and views

*/

SELECT * FROM patient;

SELECT * FROM prescription;

SELECT * FROM addicted;

31

/* With TUC queries we can only access the current state; it is

impossible to retrieve historical or future information. To

view the entire content of the database we employ two sequenced

queries (see below).

*/

SEQUENCED VALID SELECT * FROM patient;

SEQUENCED VALID AND SEQUENCED TRANSACTION SELECT * FROM prescription;

INSERT INTO patient VALUES (

5596544, 'Freddie Mercury', 'London', '1946/09/05');

COMMIT;

INSERT INTO prescription VALUES (

7356378, 45477, 'Dr Quincy', SYSDATE);

COMMIT;

With TUC we can smoothly migrate a nontemporal database into a non-

temporal database. TUC ensures that legacy applications don't have to change

a single line when existing tables are altered to become temporal.

However TUC also heavily limits the bene�ts we can get from a temporal

database. To exploit temporal information we have to employ sequenced and

nonsequenced statements. We �rst explain sequenced statements, which provide

lots of built-in support for statements that are based on snapshot-reducibility.

CHANGE SYSDATE TO '1994/01/04';

SET VALID PERIOD '1994/01/05 - 1994/01/10'

INSERT INTO prescription VALUES (

9365822, 17575, 'Dr Hook', '1994/01/03');

COMMIT;

CHANGE SYSDATE TO '1994/01/08';

SET VALID PERIOD '1994/01/13 - 1994/01/20'

INSERT INTO prescription VALUES (

9365822, 38799, 'Dr Quincy', '1994/01/08');

COMMIT;

/* Dr Hook corrects an erroneous DB entry */

CHANGE SYSDATE TO '1994/01/12';

SEQUENCED VALID

DELETE FROM prescription

WHERE Patient_Id = 9365822

AND Drug_Id = 17575;

SET VALID PERIOD '1994/1/5 - 1994/1/15'

32

INSERT INTO prescription VALUES (

9365822, 17575, 'Dr Hook', '1994/01/03');

COMMIT;

CHANGE SYSDATE TO '1996/06/12';

SET VALID PERIOD '1984/6/26 - 1984/11/30'

INSERT INTO patient VALUES (

7565836, 'John Lennon', 'London', '1940/10/09');

SET VALID PERIOD '1984/6/26 - 1984/11/30'

INSERT INTO prescription VALUES (

7565836, 38799, 'Dr Hook', '1984/7/11');

SET VALID PERIOD '1996/6/20 - NOW'

INSERT INTO patient VALUES (

7565836, 'John Lennon', 'New York City', '1940/10/09');

SET VALID PERIOD '1996/6/20 - NOW'

INSERT INTO prescription VALUES (

7565836, 69111, 'Dr Hook', '1996/6/12');

COMMIT;

SEQUENCED VALID AND SEQUENCED TRANSACTION PERIOD '1994/1/8'

SELECT * FROM prescription;

SEQUENCED VALID

UPDATE patient

SET Name = 'Jim Morrison'

WHERE Name = 'Jim Morison';

COMMIT;

SEQUENCED VALID

SELECT p1.Patient_Id

FROM prescription p1, prescription p2

WHERE p1.Patient_Id = p2.Patient_Id

AND p1.Doctor <> p2.Doctor;

SEQUENCED VALID

SELECT * FROM patient;

SEQUENCED VALID AND SEQUENCED TRANSACTION

SELECT * FROM prescription;

SEQUENCED VALID

SELECT proz.Doctor, VTIME(proz), morph.Doctor, VTIME(morph)

FROM prescription proz, prescription morph

WHERE proz.Drug_Id = 17575 /* Prozac */

AND proz.Patient_Id = 9365822 /* Kurt Cobain */

33

AND morph.Drug_Id = 38799 /* Morphine */

AND morph.Patient_Id = 9365822/* Kurt Cobain */;

SEQUENCED TRANSACTION AND SEQUENCED VALID

SELECT *

FROM prescription

WHERE Patient_Id = 9365822/* Kurt Cobain */;

CREATE TABLE drug(Drug_Id INTEGER SEQUENCED VALID PRIMARY KEY,

Name VARCHAR(32),

Supplier VARCHAR(32) NOT NULL) AS VALID;

CREATE ASSERTION not_prozac_and_morphine CHECK

SEQUENCED VALID PERIOD '1996/7/1 - NOW'

(NOT EXISTS (SELECT *

FROM prescription proz, prescription morph

WHERE proz.Drug_Id = 17575 /* Prozac */

AND morph.Drug_Id = 38799 /* Morphine */

AND morph.Patient_Id = proz.Patient_Id));

CHANGE SYSDATE TO '1996/08/23';

(SEQUENCED VALID

SELECT Patient_Id, Name

FROM prescription, patient

WHERE prescription.Patient_Id = patient.Id

)(VALID);

Finally, nonsequenced statements account for temporal statements that re-

quire the speci�cation of special temporal relationships.

NONSEQUENCED VALID

SELECT p1.Patient_Id

FROM prescription p1, prescription p2

WHERE p1.Patient_Id = p2.Patient_Id

AND p1.Doctor <> p2.Doctor

AND VTIME(p1) PRECEDES VTIME(p2);

CHANGE SYSDATE TO '1996/10/15';

NONSEQUENCED VALID

SELECT Patient_Id, Name, DURATION(VTIME(some_prescription), MONTH)

FROM (SEQUENCED VALID

SELECT patient.Patient_Id, Name

FROM prescription, patient

34

WHERE prescription.Patient_Id = patient.Patient_Id

)(VALID) AS some_prescription

WHERE DURATION(VTIME(some_prescription), MONTH) > 20;

DROP ASSERTION not_prozac_and_morphine;

DROP VIEW addicted;

DROP TABLE drug;

DROP TABLE prescription;

DROP TABLE patient;

35

Chapter 7

Test Files

This chapter consists of a set of �les that are used to test Tiger. Browsing

through these �les gives you an idea of the (current) functionality of Tiger.

7.1 Migrating Databases

create table p(a integer)

*** Executing an UC statement ***.

statement processed

insert into p values(6)

....*** Executing an UC statement ***.

1 tuple processed

insert into p values(7)

....*** Executing an UC statement ***.

1 tuple processed

alter table p add valid

......

Table altered

drop table p

.......

Table dropped

create table p1(a integer primary key)

*** Executing an UC statement ***.

statement processed

36

create table q1(b integer references p1(a))

.*** Executing an UC statement ***.

statement processed

create table r1(b integer references p1)

.*** Executing an UC statement ***.

statement processed

insert into p1 values(7)

....*** Executing an UC statement ***.

1 tuple processed

insert into q1 values(7)

....*** Executing an UC statement ***.

1 tuple processed

commit

.

Transaction commited

insert into r1 values (8)

....*** Executing an UC statement ***.

check

.

No integrity constraints violated

commit

.

Transaction commited

alter table p1 add valid

...................

Table altered

drop table q1

......*** Executing an UC statement ***.

statement processed

drop table r1

......*** Executing an UC statement ***.

statement processed

drop table p1

37

.......

Table dropped

create table p(a integer)

*** Executing an UC statement ***.

statement processed

insert into p values(8)

....*** Executing an UC statement ***.

1 tuple processed

insert into p values(7)

....*** Executing an UC statement ***.

1 tuple processed

insert into p values(5)

....*** Executing an UC statement ***.

1 tuple processed

create view v as select * from p where a>6

.*** Executing an UC statement ***.

statement processed

select * from v

.*** Executing an UC statement ***.

A

--

8

7

alter table p add valid

............

Table altered

select * from v

.*** Executing an UC statement ***.

A

--

8

7

delete from p where a =7

38

......

1 tuples deleted

select * from v

.*** Executing an UC statement ***.

A

--

8

drop view v

......*** Executing an UC statement ***.

statement processed

drop table p

.......

Table dropped

7.2 Data Manipulation Statements

ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY/MM/DD'

*** Executing an UC statement ***.

statement processed

create table p(a integer) as valid

.

Table created

insert into p values(2)

.....

1 tuples inserted

insert into p values(4)

.....

1 tuples inserted

insert into p values(8)

.....

1 tuples inserted

delete from p where a=4

.....

39

1 tuples deleted

nonsequenced valid delete from p where a=4

.....

1 tuples deleted

nonsequenced valid period '9-22' delete from p where a=4

.drop table p

.......

Table dropped

create table pbi(a integer) as valid and transaction

.

Table created

delete from pbi where a=4

......

0 tuples deleted

drop table pbi

.......

Table dropped

40

Chapter 8

Conclusions and Future

Plans

I hope you enjoy working with Tiger and I also hope that it helps you to get an

understanding of crucial concepts of ATSQL.

41

Chapter 9

Acknowledgements

I'd like to thank Renato Busatto and Christina Zennaro who contributed to

the development of Tiger. Renato worked on various aspects of Tiger and he

also contributed to the formalization of the semantics of ATSQL. Christina

developed a �rst version of the world wide web interface.

My very special thanks to Robert Marti who was my PhD advisor at ETH

Zrich when I started working on ChronoLog, a temporal deductive database

system that provided many valuable input to Tiger and ATSQL. Special thanks

also to Hans-Jrg Schek for co-advising this work. Next, I'm indebted to Rick

Snodgrass who hosted me as a postdoc at the University of Arizona. He let me

take part in his work and together with him I started to work on the language

design of ATSQL. My very special thanks to Christian Jensen. We closely

collaborate in the database group at Aalborg University where we completed

the design of ATSQL.

42

Bibliography

[BJ96] M. H. B�ohlen and C. S. Jensen. A Seamless Integration of Time into

SQL. submitted to ACM Transactions on Database Systems, December

1996.

[BSS96] M. H. B�ohlen, R. T. Snodgrass, and M. D. Soo. Coalescing in Tempo-

ral Databases. In T. M. Vijayaraman, A. Buchmann, C. Mohan, and

N. L. Sarda, editors, Proceedings of the Twenty-second International

Conference on Very Large Data Bases, pages 180{191. Morgan Kauf-

mann Publishers, Inc., Mumbai (Bombay), India, September 1996.

[Bur92] J. Burse. ProQuel: Using Prolog to Implement a Deductive Database

System. Technical Report 191, Departement f�ur Informatik, ETH

Z�urich, Switzerland, December 1992.

[CM87] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer

Verlag, Berlin, 3rd edition, 1987.

[GT91] A. Van Gelder and R. W. Topor. Safety and Translation of Relational

Calculus Queries. ACM Transactions on Database Systems, 16(2):235{

278, June 1991.

[MS93] J. Melton and A. R. Simon. Understanding the new SQL: A Complete

Guide. Morgan Kaufmann Publishers, San Mateo, California, 1993.

[Nev86] D. Neville. ORACLE Pro*C User's Guide. Oracle Corporation, Bel-

mont, California, USA, 1.0 edition, 1986.

[SA85] R. T. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In

Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, 1985.

[Sno95] R. T. Snodgrass. The TSQL2 Temporal Query Language. Kluwer

Academic Publishers, Boston, 1995.

[Wir86] N. Wirth. Compilerbau. Teubner Sudienb�ucher, Informatik, B. G.

Teubner, Stuttgart, 1986.

43

