
Seamless Integration of Time into SQL

Michael H. B�ohlen Christian S. Jensen

Department of Computer Science

Aalborg University

Fredrik Bajers Vej 7E

DK{9220 Aalborg �st, DENMARK

<boehlen j csj>@cs.auc.dk

Abstract

A wide range of database applications manage time-varying data. Although temporal database
technology has reached a level of maturity and sophistication where it is evident that these
applications may bene�t substantially from built-in temporal support in the database man-
agement system, these applications typically run on top of conventional relational systems.
This state of a�airs may be explained by the fact that it is not clear how, or even \that,"
it is possible to smoothly migrate from a non-temporal to a temporal DBMS. Enterprises
generally maintain bulks of legacy application code that must be dealt with appropriately.

This paper investigates how to smoothly migrate from a conventional relational system
to a temporal system, a topic that has only received scant attention so far, but nonetheless
is vital in order to unlock the potential of temporal technology for application in prac-
tice. At the outset, important requirements to a temporal system that may facilitate a
smooth transition are motivated, formalized, and discussed. No temporal data model and
query language satis�es the requirements. It is then demonstrated how it is possible to
temporally extend SQL{92 while ful�lling each of the requirements. It is emphasized how
the requirements shape the language, termed ATSQL. ATSQL is formally de�ned via a
denotational-semantics-style mapping to well-de�ned algebraic expressions. Speci�cally, a
temporal relational algebra along with a correct mapping from ATSQL to a combination of
this and the relational algebra is given. A prototype implementation of ATSQL is publicly
accessible.

1 Introduction

A wide variety of prominent applications manage substantial amounts of time-varying data.

They include �nancial applications such as portfolio management, budgeting, accounting, and

banking; record-keeping applications, such as personnel, medical-record, insurance policies, and

inventory; and they include travel applications such as airline, train, and hotel reservations and

schedule management.

Thus, numerous database applications manage substantial quantities of time-varying data.

This has held true for as long as databases have been maintained [Wie73, Sno90]. Along with

the continued improvement of storage technologies and new, data-intensive applications such as

decision support and data warehousing, old versions of data are retained longer in the databases.

This yields very large databases with all data exhibiting a prominent temporal dimension.

In stark contrast, conventional relational database technology provides only little support

for temporal data management and is incapable of exploiting the time dimension to achieve

better performance. In response to this unful�lled potential for improvement, much work on

temporal database management has been conducted over the past decade or two, leading to,

e.g., a wide variety of data models and query languages and to numerous performance-enhancing

1

implementation techniques. Recent query languages (e.g., IXSQL [Lor93, LM96], TempSQL

[Gad88], and TSQL2 [Sno95]) demonstrate that temporal application development may bene�t

substantially from built-in temporal support in the query language.

However, whether or not temporal database technology will gain wide acceptability in prac-

tice is not only determined by the availability and quality of temporal languages and features

galore, but also (and perhaps mainly!) by the ease of transitioning from the existing technology.

Despite its importance, this issue has never been discussed thoroughly. In this paper, we identify

crucial transitioning requirements.

We assume that prospective users of temporal database technology are already users of non-

temporal database technology|relational technology, to be speci�c|and must protect large

investments in bulks of legacy code. It is thus of essence that legacy code remains operational

when transitioning to a temporal database system; otherwise, adoption of temporal technology

may not be feasible. Brie
y, the �rst requirement, upward compatibility, guarantees that re-

placing the existing DBMS with a new, temporal DBMS does not a�ect the functioning of any

application code.

When transitioning to a temporal system, the advantages of that system are not harvested in-

stantaneously, but only incrementally, as new code is developed and legacy code revised. Hence,

it is important that old and new code can coexist harmoniously. This occurs when existing ap-

plications are insensitive to their underlying relations being changed to become temporal. The

requirement, temporal upward compatibility, guarantees exactly that.

In combination, the two requirements mentioned so far provide protection of the large invest-

ments in legacy code while allowing for a gradual exploitation of the new database technology.

Next, the temporal extension should exploit the programmers' familiarity with the existing sys-

tem. This may be accomplished by o�ering, for each non-temporal query, a syntactically similar,

temporal statement that \naturally" generalizes the non-temporal query to yield a temporal

result. The requirement that the temporal data model be a syntactically similar, snapshot-

reducible extension of the existing data model guarantees that a core subset of the temporal

data model maximally builds on the existing data model, making the temporal query language

easy to use for programmers familiar with the existing query language. This requirement thus

aims at protecting the investments in programmer expertise and training.

When developing a general-purpose temporal data model and query language, two temporal

aspects of data attract special attention. The valid time of a database fact (e.g., a tuple) is

the times when the fact was or will be true in the modeled reality. The transaction time of a

database fact is the times when the fact has been stored as current in the database. All database

facts have a valid time and a transaction time, and we consider both of these times in this paper.

However, there is no requirement that a database explicitly records either of these aspects for

its facts. We will use the modi�ers temporal or time-varying for databases if one or both of valid

and transaction time are associated with their facts.

The paper shows how a systematic and comprehensive temporal extension, ATSQL, of the

current SQL standard may be designed so that it satis�es the requirements. ATSQL, in addition

to select statements, includes data de�nition of relations with duplicates (in the sense of SQL{

92); it includes modi�cation statements; and it includes integrity constraints.

Three complementing descriptions of the language are provided. First, it is shown how the

requirements shape the skeleton of ATSQL. Second, a guided tour (that runs on the prototype

implementing ATSQL) is included to convey a practical feel for the features of the language and

their underlying concepts. Third, a formal de�nition of the semantics of the query language is

provided by means of a denotational-semantics-style mapping to well-de�ned algebraic expres-

sions. This mapping assumes a mapping of SQL{92 to relational algebra and de�nes ATSQL

statements in terms of their mapping to well-de�ned relational and temporal relational algebra

expressions. The temporal relational algebra used here is e�ciently implementable in that the

2

evaluation of its expressions relies only on the end points of periods and not on intermediate

points, making evaluation granularity independent.

Upon having de�ned ATSQL, its properties are subjected to scrutiny. First, it is shown

that its de�nition indeed satisfy the migration-related requirements. Second, the additional

properties given to the language are considered. In particular, it is argued that the language is

suitable for managing both so-called point-based and interval-based temporal data. Coalescing

is available for point-based data management; and without coalescing, the language is faithful

to, or respects, the particular periods associated with the tuples.

A prototype system implementing ATSQL is accessible from Aalborg University's web server,

via URL http://www.cs.auc.dk/general/DBS/software.

The paper is structured as follows. The next section is concerned with the formulation

of the requirements to a temporal data model that, when satis�ed, will guarantee a smooth

transition of legacy applications from a non-temporal DBMS to a temporally enhanced DBMS.

Section 3 then proceeds by illustrating how the current SQL standard my be systematically

enhanced to provide built-in support for temporal database management. First, it is shown how

the requirements from Section 2 shape the design of the temporal SQL, termed ATSQL. Then,

a guided tour illustrates the concepts and language features of ATSQL. Having provided the

rationale and intuition behind the language design, Section 4 gives a concise and yet precise

and comprehensive semantics for the language. This provides a solid footing for the exploration

of language properties|the topic of Section 5. Related research is explored in some detail

in Section 6. Finally, Section 7 summarizes and points to promising opportunities for future

research. A number of appendices with detailed technical matter complete the paper.

2 The Smooth Migration to a Temporal DBMS

Initially, an overview and a description of the assumed context is given. The subsequent sections

explore the problems that may occur when migrating database applications from an existing to

a new temporal DBMS, and they precisely formulate a number of requirements to the temporal

DBMS that must be satis�ed to facilitate a smooth migration.

2.1 Overview and Context

The potential users of temporal database technology are enterprises with applications1 that

manage potentially large amounts of time-varying data. These applications may bene�t sub-

stantially from built-in temporal support in the DBMS. Temporal queries that are shorter and

more easily formulated are among the potential bene�ts. This leads to improved productivity,

correctness, and maintainability. It is also a matter of fact that these enterprises are already

managing time-varying data, with the applications already in place and working. Indeed, the

uninterrupted operation of the existing applications is likely to be of vital importance to any en-

terprise. The question is then how the enterprise can smoothly migrate from its current DBMS

to a temporal DBMS.

We assume that the DBMS interface is captured in a data model and thus talk about the

migration of application code using an existing data model to using a new data model. We

will adopt the convention that a data model consists of two components, namely a set of data

structures and a language for querying the data structures [TL82]. For example, the central

data structure of the relational model is the relation, and the central, user-level query language

is SQL. As we progress, it should be clear that the de�nitions and discussions of this section

1
We use \database application" nonrestrictively, for denoting any software system that uses a DBMS as a

standard component.

3

also apply to views and integrity constraints, although for simplicity we will not address these

explicitly.

Notationally, M = (DS, QL) then denotes a data model, M, consisting of a data structure

component, DS, and a query language component, QL. Thus, DS is the set of all databases,

schemas, and associated instances, expressible by M, and QL is the set of all update and query

statements in M that may be applied to some database in DS. We use db to denote a database;

a statement is denoted by s and is either a query q or an update u (in SQL{92, any modi�cation,

i.e., INSERT, DELETE, or UPDATE, statement).

As the existing model is given, the focus is on formulating requirements to the new data

model. The de�nitions are conceptually applicable to the transition from any data model to a

new data model. However, we have found it convenient to assume that the transition is from

a non-temporal to a temporal data model, speci�cally from the SQL{92 standard [MS93] to

(some) temporal SQL.

2.2 Upward Compatibility

Perhaps the most important aspect of ensuring a smooth migration of application code is to

guarantee that all code without modi�cation will work with the new model, exactly with the

same functionality as with the existing system. The next two de�nitions capture the essence of

what is needed for that to be possible.

We de�ne a data model to be syntactically upward compatible with another data model if all

the data structures and legal query expressions of the latter model are contained in the former

model.

De�nition 2.1 (syntactical upward compatibility) Let M1 = (DS1; QL1) and M2 =

(DS2; QL2) be two data models. Model M1 is syntactically upward compatible with model

M2 i�

� 8db2 2 DS2 (db2 2 DS1) and

� 8s2 2 QL2 (s2 2 QL1).

When transitioning from one system to a new system, it is important that the new data model

contains the existing data model. If that is the case, all existing application code will remain

syntactically correct.

For a query language expression s and an associated database db, both legal elements of QL

and DS of data model M = (DS;QL), de�ne hhs(db)iiM as the result of applying s to db in

data model M . With this notation, we can precisely describe the requirements to a new model

that guarantee uninterrupted operation of all application code. In addition to the previous

syntactical requirement, we add the requirement that all queries expressible in the existing

model must evaluate to the same results in the existing and new models.

De�nition 2.2 (upward compatibility) Let M1 = (DS1; QL1) and M2 = (DS2; QL2) be

two data models. Model M1 is upward compatible with model M2 i�

� M1 is syntactically upward compatible with M2, and

� 8db2 2 DS2 (8s2 2 QL2 (hhs2(db2)iiM2
= hhs2(db2)iiM1

)).

This concept captures the conditions that need to be satis�ed in order to allow a smooth tran-

sition from a current system, with data model M2, to a new system, with data model M1.

The �rst condition implies that all existing databases and query expressions in the old system

4

are also legal databases in the new system. The second condition guarantees that all existing

queries compute the same results in the new system as in the old system. Thus, the bulk of

legacy application code is not a�ected by the transition to a new system.

There is one unintended rami�cation of the above de�nition. Any temporal extension that

includes new reserved keywords will violate upward compatibility. The reason is that legacy

query language statements may have employed such keywords as identi�ers. Under the seman-

tics of the new model, such statements will be illegal. Reserved words are added in all temporal

query languages, and it is impractical to exclude them. This also holds for non-temporal query

languages. For example, SQL{92 added some 112 reserved keywords to the 115 reserved key-

words of its predecessor, SQL{892. One proposed solution is to use quoted identi�ers in legacy

code where identi�ers con
ict with new reserved keywords and in new code, to avoid future prob-

lems. In conclusion, to follow current practice and to avoid being overly restrictive, we consider

upward compatibility to be satis�ed even when new keywords are added in the extension.

To explore the relationship between SQL{92 and a temporal extension of it that satis�es

the requirements, a series of �gures will be introduced. In Figure 1, a conventional relation is

denoted with a rectangle. The current state of this relation is the rectangle in the upper-right

corner. Whenever a modi�cation is made to this relation, the previous state is discarded; hence,

at any time only the current state is available. The discarded, prior states are denoted with

dashed rectangles; the right-pointing arrows denote the updates that take the relation from one

state to the next.

u...

Time

q

u u u u

Figure 1: Evaluation of an SQL{92 Query on a Snapshot Relation

When a query q is applied to the current state of a relation, a resulting relation is computed,

shown as the rectangle in the bottom right corner. While this �gure only concerns queries over

single relations, the extension to queries over multiple relations is clear.

Upward compatibility states that (1) all instances of relations in SQL{92 are instances of

relations in the temporal extension, (2) all SQL{92 modi�cations to relations in SQL{92 result

in the same relations when the modi�cations are performed by the temporal system, and (3)

all SQL{92 queries result in the same relations when the queries are evaluated by the temporal

system.

By requiring that a temporal extension is a strict superset (i.e., only adding constructs and

semantics), it is relatively easy to ensure that the temporal extension is upward compatible with

SQL{92. Still, it should be noted that upward compatibility does place strict constraints on the

2
Reference [MS93] provides a list of 10 items with incompatibilities among SQL{89 and SQL{92, with the

keyword aspect being one item.

5

temporal extension. The temporal language must be \in the spirit" of and must live with any

peculiarities of the language it extends. As a simple example, when extending SQL{92|which

does not have an interval data type|with a data type for intervals, the string \interval" cannot

be used in the syntax because this string is already used for the data type of durations.3

With each of the requirements that we present, we associate a subset of the functionality

of a temporal extension of SQL{92. This leads to a division of the functionality of a tempo-

ral extended model into four levels, with each level adding functionality to the previous part.

With upward compatibility, we associate the SQL{92 subset of the temporal extension. As the

requirements are de�ned, we characterize the consequent levels.

2.3 Temporal Upward Compatibility

While essential, upward compatibility is only a �rst step. Upon adopting a temporal data model,

the bene�ts of the built-in temporal support are only realized incrementally, by modifying exist-

ing application code or developing new application code that exploits the temporal capabilities.

A next step is thus to formulate requirements that aim at ensuring a harmonious coexistence of

legacy application code and new, temporally-enhanced application code.

There is no friction between existing code and new code if disjoint sets of relations are used.

Rather, the potential problem occurs when new application code needs to use a combination of

existing and new, temporal relations or needs to change existing relations to become temporal.

To understand the problem, assume that the new temporal model is in place. No application

code has been modi�ed, and all relations are thus snapshot relations. Now, an existing or new

application needs support for the temporal dimension of the data in one of the existing relations.

To accommodate this need, there are two options.

The �rst is to create a completely new temporal relation. At �rst, this appears to not

a�ect existing application code, but considering update reveals a problem. When the existing

application updates the snapshot relation, those updates should also be re
ected in the temporal

relation. The new application cannot know when the existing application updates the snapshot

relation, so the only solution is to modify the existing application to also update the temporal

relation when the snapshot relation is updated. In addition, this possibility introduces data

redundancy that may lead to consistency problems and may adversely a�ect performance.

The second possibility is to change the existing snapshot relation to become a temporal

relation (using the alter statement of SQL{92). This alternative is attractive because it avoids

replicating data and because the modi�cations (relevant) to existing application code (i.e., the

alter statement) are isolated and kept at a minimum. But note that it is very undesirable

to be forced to change the (legacy) application code that accesses the snapshot relation that is

replaced by a temporal relation.

Based on this observation, we formulate a requirement stating that the existing applications

on snapshot relations must continue to work unmodi�ed when the relations are altered to become

temporal. Intuitively, the requirement is that a query q must return the same result on an

associated snapshot database db as on the temporal counterpart of the database, T (db). Further,

updates should not a�ect this. The precise de�nition is given next and is explained in the

following.

De�nition 2.3 (temporal upward compatibility) Let a temporal and a snapshot data

model be given by MT = (DST ; QLT) and MS = (DSS; QLS), respectively. Also, let T be

an operator that changes the type of a snapshot relation to the temporal relation with the same

explicit attributes. Next, let U = u1; u2; : : : ; un (n � 0) denote a sequence of update operations.

With these de�nitions, model MT is temporal upward compatible with model MS i�

3
This is the reason why we generally use the SQL3 term \period" for intervals.

6

� MT is upward compatible with MS and

� 8dbS 2 DSS (8 U (8qS 2 QLS (hhqS(U(dbS))iiMS
= (hhqS(U(T (dbS)))iiMT

)))).

Figure 2 illustrates the idea in the requirement. With the temporal data model in place, the

results of queries (i.e., qS) in legacy code that also includes updates (as indicated by U) are not

a�ected by (hence the \=") changes to the type of relations (the transformation T); and update

statements on the new relations have the same e�ects on query results as the corresponding

update statements on the original relations.

?

-

-

6

dbS

T (dbS)

T

U ; qS

U ; qS

hhqS(U(dbS))iiMS
= hhqS(U(T (dbS)))iiMT

hhqS(U(T (dbS)))iiMT

Figure 2: Illustration of Temporal Upward Compatibility

Using the graphical notation introduced in the previous section, temporal upward compat-

ibility is illustrated in Figure 3. When temporal support is added to a relation, the history is

preserved, and modi�cations over time are retained. In this �gure, the rightmost dashed state

was the current state when the relation was made temporal. All subsequent modi�cations, de-

noted by the arrows, result in states that are retained, and thus are solid rectangles. Temporal

upward compatibility ensures that the current states will have identical contents to those states

resulting from modi�cations of the snapshot relation.

T ...

Time

q

...u u u uu

Figure 3: Evaluation of an SQL{92 Query According to Temporal Upward Compatibility

The query q is an SQL{92 query. Due to temporal upward compatibility, the semantics of

this query must not change when it is applied to a temporal relation.

The subset of the functionality of a temporal data model that corresponds to temporal

upward compatibility consists of all SQL{92 language constructs, the ability to create temporal

relations, and the ability to apply SQL{92 queries and updates to temporal relations.

7

It is instructive to consider temporal upward compatibility in more detail. When designing

larger information systems, two general approaches have been advocated. In the �rst approach,

the system design is based on the function of the enterprise that the system is intended for (the

\Yourdon" approach [You82]); in the second, the design is based on the structure of the reality

that the system is about (the \Jackson" approach [Jac83]). It has been argued that the latter

approach is superior because structure may remain stable when the function changes while the

opposite is generally not possible. Thus, a more stable system design, needing less maintenance,

is achieved when adopting the second design principle. This suggests that the data needs of

an enterprise are relatively stable and only change when the actual business of the enterprise

changes.

Enterprises currently use non-temporal database systems for database management, but

that does not mean that enterprises manage only non-temporal data (a comprehensive list of

temporal-data management applications was given earlier). Temporal data may be accommo-

dated by non-temporal database systems in several ways. For example, a pair of explicit time

attributes may encode a valid-time period associated with a tuple.

Temporal database systems o�er increased user-friendliness and productivity, as well as po-

tentially signi�cantly better performance, when managing temporal data. The typical situation,

when replacing a non-temporal system with a temporal system, is one where the enterprise is not

changing its business, but wants the extra support o�ered by the temporal system for managing

its temporal data. Thus, it is atypical for an enterprise to suddenly desire to record temporal

information where it previously recorded only snapshot information. Such a change would be

motivated by a change in the business.

The typical situation is likely to be rather more complicated. The non-temporal database

system is likely to already manage temporal data, which is encoded using snapshot relations,

in an ad hoc manner. When adopting the new system, upward compatibility guarantees that

it is not necessary to change the database schema or application programs. However, without

changes, the bene�ts of the added temporal support are also limited. Only when de�ning new

relations or modifying existing applications, can the new temporal support be exploited. The

enterprise then gradually bene�ts from the temporal support available in the system.

Nevertheless, the concept of temporal upward compatibility is still relevant, for several rea-

sons. First, it provides an appealing, intuitive notion of a temporal relation: the semantics of

queries and modi�cations are retained from snapshot relations; the only di�erence is that inter-

mediate states are also retained. Second, in those cases where the snapshot relation contained

no temporal information, temporal upward compatibility a�ords a natural means of migrating

to temporal support. In such cases, not a single line of the application need be changed when the

relation is made temporal. Third, snapshot relations that do contain temporal information and

that have been converted to temporal relations can still be queried and modi�ed by conventional

SQL{92 statements in a consistent manner.

In summary, with temporal upward compatibility, existing applications containing both

queries and update statements are not a�ected when relations are made temporal. New ap-

plications that use temporal relations may thus coexist with existing applications. This ability

of non-temporal legacy relations and associated code to coexist with temporal relations makes

it feasible for new applications to take incrementally advantage of the built-in temporal support

now available in the DBMS.

2.4 Syntactically Similar, Snapshot Reducible Temporal Extensions

The reducibility requirement presented here aims at protecting the investments in programmer

training and at ensuring continued e�cient, cost-e�ective application development upon migra-

tion to a temporal model. This is achieved by exploiting the fact that programmers are likely

8

to be comfortable with the non-temporal query language, e.g., SQL{92.

The requirement states that the query language of the temporally extended data model must

o�er, for each query in the non-temporal query language, a syntactically similar temporal query

that is its \natural" generalization. With this requirement satis�ed and assuming that SQL{92 is

the non-temporal query language, slightly modi�ed versions of the SQL{92 queries on temporal

relations are temporal queries with semantics that are easily (\naturally") understood in terms

of the semantics of the the corresponding SQL{92 queries on snapshot relations. The familiarity

of the similar syntax and \naturally" extended semantics is intended to make it possible for

programmers to immediately and easily write a wide range of temporal queries, with little need

for expensive training, few errors, and no signi�cant initial drop in productivity.

We �rst de�ne the notion of snapshot reducibility among query languages. We will use r

and rbi for denoting a snapshot and a bitemporal relation instance, respectively. Similarly, db

and dbbi are sets of snapshot and bitemporal relation instances, respectively.

The de�nition uses a bitemporal timeslice operator �
Mbi;M

(ctt;cvt)
(e.g., [Sch77, BM94]) which takes

as arguments a bitemporal relation rbi (in the data modelM bi) and a bitemporal instant (ctt; cvt)

and returns a snapshot relation r (in the data model M) containing all tuples current at time

ctt and valid at time cvt. In other words, r consists of all tuples of rbi whose associated time

includes the time instant (ctt; cvt), but without the valid and transaction time.

De�nition 2.4 (snapshot reducibility) [Sno87] Let M = (DS;QL) be a snapshot relational

data model, and let M bi = (DSbi; QLbi) be a bitemporal data model. Data model M bi is

snapshot reducible with respect to data model M if

8q 2 QL (9qbi 2 QLbi (8dbbi 2 DSbi (8c (�
Mbi;M

(ctt;cvt)
(qbi(dbbi)) = q(�

Mbi;M

(ctt;cvt)
(dbbi)))))).

Graphically, snapshot reducibility implies that for all query expressions q in the snapshot model,

there must exist a query qbi in the temporal model so that for all dbbi and for all time arguments,

the commutativity diagram shown in Figure 4 holds.

?

-

?

-

dbbi

�
Mbi;M

(ctt;cvt)
(dbbi)

qbi(dbbi)

q(�
Mbi;M

(ctt;cvt)
(dbbi)) = �

Mbi;M

(ctt;cvt)
(qbi(dbbi))

qbi

q

timeslices at (ctt; cvt) timeslice at (ctt; cvt)

Figure 4: Snapshot Reducibility of Query qbi with respect to Query q

Observe that qbi being snapshot reducible with respect to q poses no syntactical restrictions

on qbi. It is thus possible for qbi to be quite di�erent from q, and qbi might be very involved.

This is undesirable, as we would like the temporal model to be a straight-forward extension of

the snapshot model. Consequently, we require that qbi and q be syntactically similar.

De�nition 2.5 (syntactically similar snapshot-reducible extension) [BJS95] Let M =

(DS;QL) be a snapshot data model, and let M bi = (DSbi; QLbi) be a bitemporal data model.

Data model M bi is a syntactically similar snapshot-reducible extension of model M if

1. data model M bi is snapshot reducible with respect to data model M and

2. there exist two (possibly empty) strings, S1 and S2, such that each query qbi in QLbi that

is snapshot reducible with respect to a query q in QL is syntactically identical to S1qS2.

9

If the two strings S1 and S2 are both the empty string, the extension is termed a syntactically

identical snapshot reducible extension.

If the temporal data model treats temporal relations as new types of relations, it is possible

to use the same syntactical constructs (i.e., qbi and q are identical) for querying snapshot and

temporal relations. In this case, the type of the argument relations determine the meaning of

the construct.

Next, note that temporal upward compatibility implies that a non-temporal query on snap-

shot relations and the same temporal query, i.e., where the argument snapshot relations have

been altered to be temporal, return the same result. Making the reasonable assumptions that

temporal queries return temporal relations and that there is no separate, global context, it is thus

not possible to achieve an extension that is both temporal upward compatible and syntactically

identical snapshot-reducible.

The requirement speci�ed above has associated the subset of the functionality of a tempo-

rally extended data model that extends the functionality previously introduced to include the

snapshot reducible syntactically similar counterparts of the functionality of the model being

extended.

Figure 5 illustrates snapshot reducibility. The temporal query q0 is snapshot reducible to the

snapshot query q. Query q0 is applied to the temporal relation (the sequence of states across

the top of the �gure) and results in a temporal relation, which is represented by the sequence

of states across the bottom.

...

q

...

qqqqq’ =

Figure 5: Evaluation of a Snapshot Reducible Temporal Query q0 on a Temporal Relation

We would like the semantics of q0 to be easily understood by the SQL{92 programmer.

Satisfying snapshot reducibility along with the syntactical similarity requirement makes this

possible. Speci�cally, the meaning of q0 is precisely that of evaluating the syntactically similar

SQL{92 query q at each state of the argument temporal relation, producing a state of the

output relation for each such evaluation. As a result, temporal queries are easily formulated and

understood.

Consider a temporal query q0 that reduces to a snapshot query q. Figure 5 illustrates how

the reducibility requirement constrains the result of query q0 to be given as some integration

into a temporal relation of the sequence of snapshot results obtained from evaluating query q on

a sequence of snapshot states. Two comments are in order.

First, motivated by the sequences of states in Figure 5, we will use the term sequenced for

queries that respect the reducibility requirement.

Second, it should be noted that the reducibility requirement merely constrains the de�ni-

tion of sequenced queries|it does not de�ne them. Stated brie
y, many di�erent results of a

10

sequenced temporal query may satisfy reducibility, the di�erence being the timestamps of the

result tuples. As a simple example, if a result f< X jj 1�5 >g satis�es reducibility, so does the

result f< X jj 1�2 >;< X jj 3�5 >g (symbol X denotes explicit attribute values and symbol jj

separates them from the implicit timestamps).

To further constrain the language design with the purpose of providing appropriate times-

tamps of the result tuples, additional requirements may (and should!) be imposed. Speci�cally,

two di�erent requirements have been proposed, namely the point-based and the interval-based

language approaches4 [BJS95, Tom96].

In a point-based language, the di�erence among results such as the two above are considered

insigni�cant. More generally, snapshot equivalent relations [JCE+94, JSS94] are considered to

have the same information content in a point-based language. Thus, point-based languages

often employ temporal elements as timestamps (e.g., TSQL2 [Sno95] and TempSQL [Gad88]),

but may also employ points or periods.

In contrast, relations only have the same information content in an interval-based language

when the relations are identical. In interval-based languages, special care therefore must be

taken when deciding what timestamps should be given to result tuples.

Sequenced queries may be either point-based or interval-based. Some researchers prefer

point-based languages, while other researchers prefer interval-based languages. In ATSQL, we

will thus pursue an approach that is interval-based by default; and in addition, we will provide

the option of coalescing argument and result relations. (In coalescing, value-equivalent tuples are

merged when the union of their timestamps is a legal timestamp value (see, e.g., [Sno87, BSS96]);

further details are given in Sections 3 and 4.) This yields a
exible language that integrates the

two views, leaving the choice of a point or an interval basis to the user. We will revisit these

issues when we de�ne and study the language design.

The reducibility requirement also applies to modi�cations, as illustrated in Figure 6. A

bitemporal modi�cation destructively modi�es states as illustrated by the curved arrows. As

with queries, the modi�cation is applied on a state-by-state basis. Hence, the semantics of

the temporal modi�cation is a natural extension of the SQL{92 modi�cation statement that it

generalizes.

u=u’

...

u u uu

Figure 6: Evaluation of a Snapshot Reducible Temporal Modi�cation u0 on a Temporal Relation

In general and independently of snapshot reducibility, the more built-in temporal support

a temporal extension provides, the better. Built-in support is typically present in the form

of well-chosen defaults that perform the most typical timestamp processing (i.e., predicates

and computations on timestamps) when no explicit processing is indicated in the query. The

snapshot reducibility requirement is a means of requiring that built-in support be systematic

and wide-ranging.

2.5 Non-Sequenced Queries and Modi�cations

In a snapshot reducible query, the information in a particular state of the resulting temporal

relation is derived solely from information in the state at that same time of the source relation(s).

4
These requirements are not related to migration and are not covered in detail here.

11

However, there are many reasonable queries that cannot be expressed as sequenced queries. So,

while we do not de�ne additional requirements, we emphasize that a temporal query language

should also allow non-sequenced queries. Such queries are illustrated in Figure 7, in which each

state of the resulting relation requires information from possibly all states of the source relation.

With these queries included, we have the full functionality that may be expected from a temporal

query language.

q’

...

......

Figure 7: Evaluation of a Non-sequenced Temporal Query q0 on a Temporal Relation

In Figure 7, two temporal relations are shown, one consisting of the states across the top of

the �gure, and the other, the result of the query, consisting of the states across the bottom of

the �gure. A single query q performs the possibly complex computation, with the information

usage illustrated by the downward pointing arrows. Whenever the computation of a single state

of the result relation may utilize information from a state at a di�erent time, that query is

non-sequenced.

The concept of non-sequenced queries naturally generalizes to modi�cations. Non-sequenced

modi�cations destructively change states, with information retrieved from possibly all states of

the original relation. In Figure 8, each state of the temporal relation is possibly modi�ed, using

information from possibly all states of the relation before the modi�cation.

...

Figure 8: Evaluation of a Non-sequenced Temporal Modi�cation u0 on a Temporal Relation

Non-sequenced queries and modi�cations are more complex than snapshot reducible queries

and modi�cations in the sense that the user gets less built-in support. The query language

must provide a set of functions and predicates so that the user can express arbitrary temporal

relationships and perform manipulations and computations on timestamps. This requires new

constructs in the query language. These constructs are, however, easy to integrate into SQL{92

because they require changes at the level of built-in predicates and functions only.

2.6 Summary

In this section, we have formulated requirements that we believe are essential for the data model

of a temporal DBMS to satisfy in order to ensure a smooth transition from a non-temporal

12

DBMS to the temporal system. We review each in turn.

Upward compatibility guarantees that replacing the existing DBMS with a new, temporal

DBMS does not a�ect the functioning of any application code. Temporal upward compatibility

guarantees that, with the new DBMS in place, it is possible to incrementally exploit more and

more of the built-in temporal support. Speci�cally, changing existing snapshot relations to

become temporal relations does not a�ect the functioning of any legacy code. Together, these

two requirements aim at making it possible to bene�t from temporal support while protecting

the investments in legacy application code.

The requirement that the temporal data model be a syntactically similar snapshot-reducible

extension of the existing data model guarantees that a core subset of the temporal data model

maximally builds on the existing data model and makes the temporal query language easy to

use for programmers familiar with the existing query language. This requirement thus aims at

protecting the investments in programmer expertise and training.

It follows from the requirement that a temporal extension of SQL{92 should contain all

SQL{92 statements on SQL{92 relations and should permit all SQL{92 statements to be ex-

pressed on temporal relations. In addition, the language should allow the formulation of similar

sequenced temporal versions of all SQL{92 queries. For sequenced queries, the temporal system

automatically computes the timestamps of the result queries. This is very attractive because

the alternative is the users explicitly formulate in the queries the predicates necessary to cor-

rectly compute the timestamps, which is often a complicated and error-prone activity, leading to

involved and hard-to-understand queries. Finally, when the semantics of sequenced queries are

not adequate, the language should provide good support for expressing the intended timestamps

and results. For example, a set of predicates on timestamps should be available that allow for

the convenient expression of the possible ordering relations among timestamps.

3 ATSQL|A Prototypical Migration

The previous section motivated and de�ned requirements for transitioning from a non-temporal

to a temporal data model without basing itself on restrictive assumptions about the properties

of particular query languages and data models.

This section proceeds by demonstrating how it is possible to design a query language that

satis�es the requirements. While the requirements apply to a wide range of languages, to be con-

crete we present a speci�c extension of SQL{92, termed ATSQL. (Indeed, similar requirements

have been applied to develop a temporal extension of a Datalog-based language; and application

to, e.g., object-oriented languages seems possible as well.)

In the �rst part of the section, we informally indicate how the requirements shape the syntax

and semantics of ATSQL (formal de�nitions follow in Section 4). We then present a guided tour

that illustrates the core concepts of ATSQL. A world-wide-web site has been set up that allows

the reader to run the tour on-line.

3.1 From Requirements to Language Design

To make the correspondence between requirements and the language design clear, we initially

consider the e�ect on the new language of each of the requirements in turn. We then
esh out

the resulting skeleton design, adding details (e.g., the choice of speci�c key words) not dictated

by requirements.

13

3.1.1 Global Impact of Requirements

Upward compatibility dictates that ATSQL must contain all statements of SQL{92. This means

that SQL{92 must be an integral part of ATSQL. For example, SQL{92 contains the data type

INTERVAL of duration values. Thus, ATSQL should also use INTERVAL for durations, and another

key word must be chosen for the interval data type of ATSQL|we choose PERIOD. As another

implication, the temporal extension must contend with all the facilities of SQL{92, e.g., nested

queries, aggregates, null values, and duplicates.

For ATSQL to satisfy temporal upward compatibility, it is necessary that all SQL{92 state-

ments be extended to work also on temporal relations as well as on snapshot relations, as

described in detail in the previous section. This is achieved by letting SQL{92 modi�cation

statements on temporal relations modify the current and future states of the relations. The

statements thus take e�ect on the states current at the time of the modi�cation, and the e�ects

persist in the (dynamically changing) current state from that time on and until a�ected by other

modi�cations. Queries, views, and constraints then simply consider only the snapshot states

of the argument temporal relations that are current and valid at the times they are evaluated.

This semantics guarantees that adding time to existing snapshot relations has no e�ect on the

applications that use them.

The requirement that there should exist syntactically similar, snapshot reducible temporal

counterparts of all SQL{92 queries in ATSQL also a�ects the design. For each SQL{92 query,

we must be able to pre- or append a �xed text string, a
ag, to get the corresponding temporal

query. While many di�erent text strings may be (and were!) considered, we chose to prepend

SEQUENCED VALID for valid-time relations, SEQUENCED TRANSACTION for transaction-time rela-

tions, and combinations of the two for bitemporal relations (details will follow).

These \sequenced" queries o�er built-in, or default, timestamp-related processing|the tem-

poral DBMS rather than the application does the potentially very complex processing involving

timestamps. Thus, it is an attractive property of the new query language that as many queries

as possible can be formulated as sequenced queries. This reduces the complexity of application

code, with many associated bene�ts. To increase the utility of sequenced queries in ATSQL,

we add domain speci�cations to these, making it possible to restrict the parts of the argument

tuples considered in queries to certain time periods. We also add range speci�cations that allow

the speci�cation of the timestamps of tuples. These speci�cations are integral parts of the
ags

of the queries.

While the built-in semantics of sequenced queries are \natural" in the speci�c technical sense

de�ned earlier, there are many queries that cannot be formulated using these default semantics.

Rather, it must be possible to formulate a much wider range of queries where the application

programmer is in complete control of, and responsible for, the timestamp manipulation. Such

queries need another
ag, di�erent from that of sequenced queries. Using no
ags is not an op-

tion, due to interaction with the semantics of SQL{92 queries on temporal relations, as dictated

by temporal upward compatibility. We choose the
ags NONSEQUENCED VALID and NONSEQUENCED

TRANSACTION. In these nonsequenced queries, no default timestamp-related processing is built

into the query language. Rather, the timestamps of temporal relations are made available in

the query, essentially as regular, explicit attributes. The new period data type, PERIOD, is used

for the timestamps. In addition, built-in facilities for constructing periods and for end-point

extraction are provided along with a host of predicates on the data type. This arrangement is

chosen because it gives maximum
exibility to formulate queries on temporal relations.

3.1.2 Adding Detail to the Design

The requirements shape the overall design of ATSQL as discussed above. When we move to a

more detailed level in the design, good design practice (e.g., generality and orthogonality) rather

14

than the requirements guides the design. Below, we add detail to the general design (Section 4

provides precise semantics).

We have seen that di�erent semantics are given to di�erent ATSQL statements: (i) SQL{

92 statements, (ii) statements with semantics dictated by temporal upward compatibility, (iii)

snapshot reducible, temporal statements (\sequenced semantics"), and (iv) statements with

nonsequenced semantics. Now, we study in more detail the syntax of the
ags that control these

semantics.

Section 2 simply requires that a
ag is placed at the beginning or end of a statement and that

it applies to the statement as a whole. Within these restrictions, there are several possibilities

for the positioning of the
ags for the di�erent types of statements in ATSQL. We provide an

EBNF syntax for each of our speci�c extensions to SQL{92. We thus focus on the temporal

extensions and gloss over the details of SQL{92. In addition, we will focus on queries, which are

the most complex statements, but will also consider other statements. In the EBNF productions

that follow, terminals are of the form "xxx", i.e., enclosed in quotation marks. Non-terminals of

the form <xxx> derive from the SQL{92 standard [MS93, p.481�], and new non-terminals are of

the form xxx (without quotation marks). Omitting these new non-terminals yields the original

(slightly simpli�ed) SQL{92 productions.

� In queries and cursor expressions (termed <cursor specification> in SQL{92) the
ags

are placed at the outermost level, right at the beginning.

<cursor specification> ::=

flags <query expression> [<order by clause>] |

"(" flags <query expression> ")" coal [<order by clause>]

The scope of the semantics implied by the
ags is all parts of the query (e.g., including

nested queries), with the exception of derived table expressions in the from clause. The

non-terminal coal is used for specifying coalescing, to be discussed later in this section.

� In views, the
ags are placed immediately following the AS keyword.

<view definition> ::=

"CREATE" "VIEW" <table_name> ["(" <view column list> ")"] "AS"

(flags <query expression> |

"(" flags <query expression> ")" coal)

� Flags can be associated with derived table expressions in from clauses. The motivation is

that derived tables may be meaningfully computed independently of the computation of

the remainder of the containing query. Put di�erently, derived table expressions have their

own scope and may be replaced by views or auxiliary tables. This presents an opportunity

to allow derived tables expressions to have their own individual
ags. This adds
exibility

to the language and improves its usefulness. As a syntactic shorthand, coalescing is also

allowed after table names in the from clause (in order to facilitate point-based queries).

<table reference> ::=

<table name> coal [["AS"] <correlation name>] |

"(" flags <query expression> ")" coal ["AS"] <correlation name>

15

Note that, while syntactically similar, derived tables in the from clause are quite di�erent

from subqueries in the where clause. Subqueries can be correlated with the main query

and cannot be evaluated independently.

� In an assertion, the
ags are placed right after the CHECK keyword.

<assertion definition> ::=

"CREATE" "ASSERTION" <constraint Name>

CHECK flags "(" <search condition> ")"

� Table and column constraints are syntactic shorthands for assertions. The
ags are placed

right in front of the table and column constraints, respectively.

<column definition> ::=

<column name> flags <column constraint definition>

<table constraint definition> ::=

<constraint name definition> flags <table constraint>

� As with queries, the
ags are placed in front of modi�cation statements.

<SQL data change statement> ::=

flags <insert statement> |

flags <delete statement> |

flags <update statement>

Summarizing,
ags are associated with all \statements" that can be evaluated meaningfully

on their own. Examples include queries, data manipulation statements, assertions, integrity

constraints, and views. In general,
ags are placed in front of statements to emphasize their

impact upon the entire statement.

Before we exemplify the di�erent statement classes with a guided tour, we continue with an

EBNF syntax for the
ags and discuss their meaning.

flags ::= [flag ["AND" flag]] ["SET" "VALID" vt_range]

flag ::= [modifier] dimension [domain]

modifier ::= "SEQUENCED" | "NONSEQUENCED"

dimension ::= "TRANSACTION" | "VALID"

domain ::= period_constant

vt_range ::= period_expression

The meaning of the
ags naturally divides into four orthogonal parts, namely the speci�cation of

the core semantics, the time-domain speci�cation, the time-range speci�cation, and speci�cation

of coalescing. We discuss each in turn.

The following three types of
ags determine the core semantics of ATSQL statements. Each

of the three types of
ags apply independently to valid time and transaction time.

<empty
ag> A missing
ag for a time dimension (i.e., valid or transaction) dictates upward

compatibility (UC) when neither of the underlying argument relations support that time;

otherwise, evaluation according to temporal upward compatibility (TUC) is dictated. For

queries, the time dimension will not be present in the result relation.

16

SEQUENCED When this keyword is present for a time dimension, evaluation consistent with se-

quenced semantics (SEQ), i.e., built-in timestamp-related processing, is dictated for the

time dimension. The time dimension will be present in relations that result from queries.

NONSEQUENCED This keyword signals nonsequenced semantics (NONSEQ), i.e., timestamp pro-

cessing that is controlled by the application rather than the temporal DBMS. The a�ected

time dimension is not present in query results (with this
ag, the time e�ectively becomes

an explicit attribute that can be included in the result similarly to how other explicit

attributes are included).

With two time dimensions, the three cases lead to a total of nine kinds of statements, as summa-

rized in Table 1. For simplicity, we have omitted permutations of the valid and transaction time

ag, and we abbreviate VALID by VT, TRANSACTION by TT, SEQUENCED by SEQ, and NONSEQUENCED

by NS.

syntax semantics

vt tt

<SQL{92> (T)UC (T)UC

SEQ VT <SQL{92> SEQ (T)UC

NS VT <SQL{92> NONSEQ (T)UC

SEQ TT <SQL{92> (T)UC SEQ

NS TT <SQL{92> (T)UC NONSEQ

SEQ VT AND SEQ TT <SQL{92> SEQ SEQ

SEQ VT AND NS TT <SQL{92> SEQ NONSEQ

NS VT AND SEQ TT <SQL{92> NONSEQ SEQ

NS VT AND NS TT <SQL{92> NONSEQ NONSEQ

Table 1: The Basic Usage of Flags in ATSQL

The next step is to add time-domain and time-range speci�cations. The time domain is a

period constant that may be placed right after the VALID and TRANSACTION keywords, respec-

tively. It restricts the database to the part that is valid or current during the respective period.

A domain restriction is applied prior to the evaluation of a statement, i.e., in a preprocessing

step.

For valid time, it can be meaningful to specify the valid time of the result, i.e., the time range.

The SET VALID clause is used for this purpose. Note that it makes no sense to provide a similar

clause for transaction time. Transaction-time semantics forbids this kind of user interaction

[SA85]. The time range is set in a postprocessing step, i.e., after the evaluation of a query.

Examples of time-domain and time-range speci�cations will be given in the guided tour that

follows.

Finally, coalescing merges tuples with overlapping or adjacent timestamps, and identical

corresponding attribute values (termed value equivalent), into a single tuple. Coalescing is

allowed at the levels where the
ags are also allowed. In addition, as a syntactic shorthand, a

coalescing operation is permitted directly after a relation name in the from clause. In this case

a coalesced instance of the relation, rather than the uncoalesced one, is considered.

coal ::= { "(" dimension ")" }

dimension ::= "valid" | "transaction"

The semantics of coalescing depends on the type of relation it is applied to. A snapshot relation

cannot be coalesced. A valid-time relation can be coalesced in valid time only, and the equivalent

is true for transaction-time relations. With a single time dimension, coalescing degenerates to

17

a merging of value-equivalent tuples with overlapping or adjacent time periods. In this case,

the meaning is straightforward (performance aspects of one-dimensional coalescing have been

studied elsewhere [BSS96]).

We thus turn our attention to the coalescing of bitemporal relations where the semantics are

more subtle. Here, overlapping or adjacent time regions (rectangles) of value-equivalent tuples

have to be merged. In the general case, overlapping rectangles do not coalesce into a single

rectangle, which means that several result tuples have to be generated. This can be done in

two ways: with the resulting rectangles maximized in valid time or in transaction time. We

use (VALID) for the former and (TRANSACTION) for the latter. Figure 9 exempli�es bitemporal

coalescing. The �rst picture displays the rectangular shapes de�ned by the timestamps of four

(TRANSACTION) (VALID) (TRANSACTION)(VALID) (VALID)(TRANSACTION)

tt

vt

tt

vt vt

tt tt

vt

tt

vt

Figure 9: Di�erent Forms of Coalescing

value-equivalent tuples. The second and third pictures illustrate the two basic coalescing oper-

ations; coalescing in transaction time and coalescing in valid time. These two basic operations

can be combined to (TRANSACTION)(VALID), which means that we �rst coalesce in transaction

time and then in valid time. As exempli�ed by the last two pictures, the sequence of coalescing

operations matters. Sequence (TRANSACTION)(VALID) results in maximal valid-time periods,

whereas (VALID)(TRANSACTION) results in maximal transaction-time periods.

This concludes the syntax de�nition of ATSQL. The outlined semantics will be formalized in

the next section. Before doing so, we present a guided tour that illustrates how ATSQL supports

a seamless integration of time into SQL{92.

3.2 A Guided Tour

The tour is divided into the levels associated with the requirements discussed in Section 2.

Throughout, the functionality is exempli�ed with input to and corresponding output from the

prototype system. The reader may �nd it instructive to execute the sample statements on the

prototype. In the examples, executable statements are displayed in typewriter style on a line

of their own starting with the prompt \> ".

We consider a medical application. Initially, the time support is restricted to those features

supported by nontemporal databases. We gradually formulate temporal requirements to the

application and show how ATSQL supports them. Doing this, we step-by-step migrate from a

nontemporal to a temporal database.

The query language contains constructs needed to specify time domains and time ranges,

as well as predicates on periods, i.e., language constructs to access valid and transaction time,

to manipulate timestamps, and to compare periods. These constructs are de�ned formally in

Table 2 in Section 4 where VTIME(r) and TTIME(r) return the valid and transaction-time period,

respectively, of the timestamp associated with tuple variable5 r. The remaining constructs will

be explained during the tour.

5
In SQL terminology, r is a correlation name. For simplicity, we employ commonly accepted scienti�c ter-

minology throughout the paper, including in the discussion of SQL-related issues. As another example, we use

\relation" in place of \table."

18

3.2.1 Upward Compatibility

We �rst de�ne two relations. The patient relation concerns current patients. Each patient has a
unique identi�cation number, a name, an address, and a birth date. The second relation records
the patients' prescriptions. With each prescription, the day it was issued and the doctor that
issued it is stored. We also de�ne a view addicted that computes all patients with more than
one prescription.

> CREATE TABLE patient(Id INTEGER PRIMARY KEY,

Name VARCHAR(32),

Address VARCHAR(90),

Birthdate DATE);

> CREATE TABLE prescription(Patient_Id INTEGER REFERENCES patient(Id),

Drug_Id INTEGER,

Doctor VARCHAR(32),

Issue_Date DATE);

> CREATE VIEW addicted (Patient_Name, Num_Of_Prescriptions) AS

SELECT Name, COUNT(*)

FROM patient, prescription

WHERE patient.Id = prescription.Patient_Id

GROUP BY Name

HAVING COUNT(*) > 1;

Standard data manipulation commands are used to populate the relations, and existing retrieval

facilities can be used to extract data from the relations, e.g., via the view.

3.2.2 Temporal Upward Compatibility

At some point, the hospital decides to automate the handling of the patients' medical histo-

ries. Doing this, the hospital would like to exploit the facilities of ATSQL. The migration from

their relational DBMS to the temporal DBS is a substantial change in the hospital's informa-

tion system, and the hospital will only implement this change provided certain guarantees are

given. Speci�cally, the information system must continue to be operational during and after the

transition|the change must not a�ect any legacy applications. Because the temporal DBMS

satis�es upward and temporal upward compatibility, these guarantees are met (recall the dis-

cussions in Section 2). As a result, the hospital replaces its current DBMS with the temporal

DBMS.

With the improved temporal support available, the patient relation is turned into a valid-

time relation so that the period(s) during which a patient was, is, or will be under medical

treatment may be captured in the database. The prescription relation is changed to become a

bitemporal relation, thus recording the valid time of prescriptions as well as the past states of

the relation. The transaction with these changes was executed on August 15, 1992.

> ALTER TABLE patient ADD VALID;

> ALTER TABLE prescription ADD VALID;

> ALTER TABLE prescription ADD TRANSACTION;

Apart from these statements, all other query language statements in the hospital's application

programs remain as they were|no syntactical additions beyond SQL{92 are introduced as of

yet. The legacy statements retain their usual semantics, meaning that the applications are not

a�ected by the database having been made temporal. The following two legacy statements are

executed on April 5 and 10, 1993, respectively.

19

> DELETE FROM prescription WHERE Patient_Id = 1734654 AND Drug_Id = 16584;

> INSERT INTO patient VALUES (8839782, 'Frank Zappa', 'Los Angeles', '1940/12/21');

The DELETE statement removes all parts of the identi�ed prescription that are valid beyond (i.e.,

after) the current time (i.e., April 5). Thus, subsequent queries will no longer see the prescription,

and the statement has exactly the same e�ect as it had on the nontemporal database in the

nontemporal DBMS. The insertion adds a patient with an implicitly given valid time that

extends from the time of the insertion (i.e., April 10) and until the (moving) current time. The

new patient tuple will thus remain currently valid until it is a�ected by a deletion or an update

statement.

After a series of legacy update operations (see the online tour for details), the two tables

have the following tuples.

patient

Id Name Address Birthdate VTIME

5596544 Bob Marley Miami 1945/02/06 1992=08=15�NOW

1846549 Jim Morison Paris 1943/12/08 1992=08=15�NOW

9734859 Jerry Garcia Forest Knolls 1942/08/01 1992=08=15�NOW

1734654 Janis Joplin San Francisco 1943/01/19 1992=08=15�NOW

8839782 Frank Zappa Los Angeles 1940/12/21 1993=04=10�NOW

9365822 Kurt Cobain Seattle 1967/02/20 1994=01=03�NOW

prescription

Patient Id Drug Id Doctor Issue Date TTIME VTIME

5596544 45477 Dr Quincy 1992/07/22 1992=08=15�NOW 1992=08=5�NOW

5596544 17575 Dr Hook 1992/08/15 1992=08=15�NOW 1992=08=5�NOW

1734654 16584 Dr Jekyll 1991/12/25 1992=08=15�1993=04=04 1992=08=15�NOW

1734654 16584 Dr Jekyll 1991/12/25 1993=04=05�NOW 1992=08=15�1993=04=04

As do other schema changes, altering nontemporal relations to become temporal forces a re-

compilation (and optimization) of the a�ected statements. This recompilation ensures that the

legacy statements on newly-temporal tables behave as if they were evaluated over a nontemporal

database. For example, before making the schema changes, we de�ned a primary key, a referen-

tial integrity constraint, and a view. To implement temporal upward compatible semantics, all

of these are recompiled following the schema change. This done, the query given next returns

all patients that are currently addicted.

> SELECT * FROM addicted;

PATIENT_NAME NUM_OF_PRESCRIPTIONS

Bob Marley 2

Note the semantics of the symbol '*' in the select clause, which is used to retrieve all columns of

a relation. Symbol '*' returns all explicit attributes, but not the implicit time attributes. This

is essential to achieve temporal upward compatibility.

Next, the following two insertions are rejected because they violate the primary key and

referential integrity constraint, respectively.

> INSERT INTO patient VALUES

(5596544, 'Freddie Mercury', 'London', '1946/09/05');

> INSERT INTO prescription VALUES

(7356378, 45477, 'Dr Quincy', SYSDATE);

> COMMIT;

20

3.2.3 Sequenced Language Constructs

So far, we have issued regular SQL{92 statements on temporal relations. This has allowed us to

store (some) temporal information, but not to query it. The hospital's motivation for altering

the relations to become temporal is to query the additional information now being recorded.

This means that temporal queries not found in SQL{92 have to be used.

Assume that John Lennon is to get a new prescription that is to start on June 20, 1996. On

June 12, 1996, when about to enter this information into the database, the medical assistant

realizes that some very old prescription information for Lennon has not yet been recorded in the

database.

The assistant �rst enters the missing, old prescription information for Lennon. This infor-

mation dates back to 1984, at which time Lennon lived in Los Angeles. The prescription was

given by Dr. Hook. He then enters the updated patient information and the new prescription.

> SET VALID PERIOD '1984/6/26 - 1984/11/30'

INSERT INTO patient VALUES

(7565836, 'John Lennon', 'London', '1940/10/09');

> SET VALID PERIOD '1984/6/26 - 1984/11/30'

INSERT INTO prescription VALUES

(7565836, 38799, 'Dr Hook', '1984/7/11');

> SET VALID PERIOD '1996/6/20 - NOW'

INSERT INTO patient VALUES

(7565836, John Lennon, 'New York City', '1940/10/09');

> SET VALID PERIOD '1996/6/20 - NOW'

INSERT INTO prescription VALUES

(7565836, 69111, 'Dr Hook', '1996/6/12');

> COMMIT;

With sequenced (and nonsequenced) queries, it becomes possible to query past and future

information stored in temporal relations. The following sequenced query retrieves all prescription

information that was current as of January 8, 1994.

> SEQUENCED VALID AND SEQUENCED TRANSACTION PERIOD '1994/1/8'

SELECT * FROM prescription;

TTIME VTIME PATIENT_ID DRUG_ID DOCTOR ISSUE_DATE

1994/01/08 1992/08/15-NOW 5596544 45477 Dr Quincy 1992/07/22

1994/01/08 1992/08/15-NOW 5596544 17575 Dr Hook 1992/08/15

1994/01/08 1992/08/15-1993/04/04 1734654 16584 Dr Jekyll 1991/12/25

1994/01/08 1994/01/05-1994/01/10 9365822 17575 Dr Hook 1994/01/03

1994/01/08 1994/01/13-1994/01/20 9365822 38799 Dr Quincy 1994/01/08

At this point, the hospital realizes the name Jim Morrison has been misspelled. A sequenced

update is issued to make the correction apply to all times.

> SEQUENCED VALID

UPDATE patient

SET Name = 'Jim Morrison'

WHERE Name = 'Jim Morison';

> COMMIT;

Next, the hospital is interested in knowing which patients have prescriptions from more than
one doctor at the same time. This information is used to evaluate the hospital's policy, stating
that all patients should be treated by their personal physician. This calls for a sequenced query:

21

for each point in time, it is checked whether more than one prescription, and by several doctors,
is in e�ect. Without built-in support for temporal joins, this query is di�cult to formulate.
With ATSQL, it may be formulated as follows.

> SEQUENCED VALID

SELECT p1.Patient_Id

FROM prescription p1, prescription p2

WHERE p1.Patient_Id = p2.Patient_Id

AND p1.Doctor <> p2.Doctor;

The query reveals that Bob Marley (from August 15, 1992 until NOW) and Kurt Cobain (from

January 13, 1994 until January 15, 1994) had prescriptions by multiple doctors (the doctors

involved were Dr. Quincy and Dr. Hook).

It is an important property of transaction-time support in relations that the relations' previ-

ously current states are retained. For some applications, this property is essential. For example,

state laws or company policies might necessitate that past states be retained, to ensure account-

ability and traceability.

To explore this aspect, assume that Kurt Cobain died and that the forensic report (from

another hospital) reveals that the death was caused by Kurt Cobain having simultaneously

received Morphine and Prozac. An investigation is started. First, the relevant prescription

information is retrieved with a query that is sequenced in valid time and has temporal upward

compatible semantics in transaction time.

> SEQUENCED VALID

SELECT proz.Doctor, VTIME(proz), morph.Doctor, VTIME(morph)

FROM prescription proz, prescription morph

WHERE proz.Drug_Id = 17575 /* Prozac */

AND proz.Patient_Id = 9365822 /* Kurt Cobain */

AND morph.Drug_Id = 38799 /* Morphine */

AND morph.Patient_Id = 9365822 /* Kurt Cobain */;

VTIME PROZ.DOCTOR VTIME(PROZ) MORPH.DOCTOR VTIME(MORPH)

--

1994/01/13-1994/01/15 Dr Hook 1994/01/05-1994/01/15 Dr Quincy 1994/01/13-1994/01/20

The answer shows that the two drugs were indeed prescribed simultaneously between January

13 and 15. Then, who is to be blamed? |Dr. Quincy or Dr. Hook? Dr. Hook argues that it is

his colleague that has to take the blame because Kurt Cobain started on Prozac on January 5,

one week before Dr. Quincy started him on Morphine. Dr. Quincy maintains his innocence and

cannot believe that he did not notice that Kurt Cobain was taking Prozac when he prescribed

Prozac. He always checks very carefully.

Fortunately the prescription relation is bitemporal, making it possible to check exactly what

Dr. Quincy would have seen when he prescribed Prozac, had he checked carefully.

> SEQUENCED TRANSACTION AND SEQUENCED VALID

SELECT *

FROM prescription

WHERE Patient_Id = 9365822 /* Kurt Cobain */;

TTIME VTIME PATIENT_ID DRUG_ID DOCTOR ISSUE_DATE

--

1994/01/04-1994/01/11 1994/01/05-1994/01/10 9365822 17575 Dr Hook 1994/01/03

1994/01/08-NOW 1994/01/13-1994/01/20 9365822 38799 Dr Quincy 1994/01/08

1994/01/12-NOW 1994/01/05-1994/01/15 9365822 17575 Dr Hook 1994/01/03

22

The result reveals that Dr. Hook entered a Prozac prescription on January 4, to be valid from

January 5 to January 10. Dr. Quincy entered the Morphine prescription on January 8, to be

valid from January 13 to January 20. Kurt Cobain had no other prescriptions in this period,

so there was no problem. The problem occurred when Dr. Hook on January 12 updated the

database to record that Kurt Cobain was to take Prozac from January 5 to January 15. Dr.

Hook made the update because his previous entry was in error, but it was he who forgot to

check the prescription status for the longer, correct period. The correct action would have been

to ensure that one of the prescriptions was terminated before it was too late. This way, Dr.

Hook was found to be the culprit.

The sample queries we have seen so far illustrate the convenience of sequenced queries. The

reader may �nd it instructive to formulate the queries in plain SQL{92. This is indeed possible,

but also quite cumbersome.

The convenience of sequenced statements becomes even more apparent in statements that in-

volve aggregates, integrity constraints, duplicates, or set di�erence. Without built-in sequenced

support, such statements become exceedingly complicated to formulate. To illustrate this we

consider two constraints. The �rst is contained in the de�nition of a new relation.

> CREATE TABLE drug(Drug_Id INTEGER SEQUENCED VALID PRIMARY KEY,

Name VARCHAR(32),

Supplier VARCHAR(32) NONSEQUENCED VALID NOT NULL) AS VALID;

The sequenced valid primary-key constraint ensures that at each point in time, i.e., in each

snapshot, attribute Drug Id is the primary key of the relation. This allows the hospital to reuse

Drug Id values at later points in time. If Drug Id was to be a a primary key over all of time,

the constraint would have been a nonsequenced one. Writing such constraints in SQL{92 is

substantially more complicated.

Another constraint makes it impossible for doctors to contemporary prescribe Prozac and

Morphine. The constraint is expressed in terms of an assertion.

> CREATE ASSERTION not_prozac_and_morphine CHECK

SEQUENCED VALID PERIOD '1996/7/1 - NOW'

(NOT EXISTS (SELECT *

FROM prescription proz, prescription morph

WHERE proz.Drug_Id = 17575 /* Prozac */

AND morph.Drug_Id = 38799 /* Morphine */

AND morph.Patient_Id = proz.Patient_Id));

A domain restriction is used to state that the assertion did not hold before July 1996, and that

it is not to be enforced on hypothetical, future prescriptions.

Another construct that is mainly used in conjunction with sequenced queries is coalescing.

Assume we want to monitor prescription times, i.e., for each of the patients, we want to know

when the patient took some prescription(s).

> (SEQUENCED VALID

SELECT Patient_Id, Name

FROM prescription, patient

WHERE prescription.Patient_Id = patient.Patient_Id

)(VALID)

VTIME PATIENT_ID NAME

1992/08/15-1993/04/04 1734654 Janis Joplin

1992/08/15-1996/08/23 5596544 Bob Marley

1984/06/26-1984/11/30 7565836 John Lennon

1996/06/20-1996/08/23 7565836 John Lennon

1994/01/05-1994/01/20 9365822 Kurt Cobain

23

Without coalescing, the prescription time(s) would be returned in pieces that re
ect the times of

single prescriptions. While appropriate in some cases, this does not support the kind of overview

we want here.

3.2.4 Non-Sequenced Statements

Nonsequenced statements are used whenever a statement involves an explicit temporal relation-

ship such as \before," \after," \contains," \overlaps," etc. Indeed, it is a good rule of thumb that

all statements involving such temporal relationships lead to nonsequenced ATSQL statements

that mirror the respective relationships. Stated di�erently, and perhaps more directly, nonse-

quenced statements are employed when the built-in snapshot reducibility provided by sequenced

statements is inappropriate.

Assume that we want to identify patients who have changed doctor, i.e., patients who �rst

got a prescription from one doctor and later a prescription from a di�erent doctor. This is a

nonsequenced query because it cannot be answered by considering single snapshots.

> NONSEQUENCED VALID

SELECT p1.Patient_Id

FROM prescription p1, prescription p2

WHERE p1.Patient_Id = p2.Patient_Id

AND p1.Doctor <> p2.Doctor

AND VTIME(p1) PRECEDES VTIME(p2);

It is an important property that sequenced and nonsequenced statements may coexist. Both

types of statements manipulate or constrain facts and their associated timestamps. Sequenced

statements provide built-in (default, or implicit) processing while nonsequenced statements spec-

ify the desired timestamp processing explicitly. Therefore, it is natural and also convenient to

allow nonsequenced statements to contain embedded sequenced statements. In a sense, the

previous statement is an example of exactly this. The timestamps of facts that we explicitly

constrain in the where clause are those stored in the prescription relation. The tuple variables

p1 and p2 thus range over sequenced \queries" in which the facts and timestamps are already

available and do not have to be computed. If this was not the case, it would have been necessary

to de�ne the tuple variables in the from clause with other sequenced statements.

To further illustrate the coexistence of sequenced and nonsequenced statements, recall the

sequenced statement we used to monitor prescription times (cf. Section 3.2.3). Often, monitoring

is to be restricted to exceptional cases, i.e., to patients who get prescriptions over a long period. A

restriction such as this is easily added by embedding a sequenced statement into a nonsequenced

statement that restricts the duration.

> NONSEQUENCED VALID

SELECT Patient_Id, Name, DURATION(VTIME(some_prescription), MONTH)

FROM (SEQUENCED VALID

SELECT patient.Patient_Id, Name

FROM prescription, patient

WHERE prescription.Patient_Id = patient.Patient_Id

)(VALID) AS some_prescription

WHERE DURATION(VTIME(some_prescription), MONTH) > 20

When executed in October 1996, three patients qualify, namely Janis Joplin, Bob Marley, and

Kurt Cobain.

24

4 A Formal Semantics

We de�ne the semantics of ATSQL in terms of a mapping to standard and temporal relational

algebra, both of which are de�ned here. To avoid the tedious complications related to duplicates,

which have been explored in the past, we have chosen to assume a set-based framework in the

semantics given here. This yields a concise coverage where the novel aspects of the general

approach stand out more clearly. However, we emphasize that ATSQL follows the data model

of SQL{92 and is thus not set-based.

4.1 Translating ATSQL Statements to Relational Algebra Expressions

The translation to (temporal) relational algebra expressions consists of two parts. First, we

consider constructs at the level of functions and predicates. This step is straightforward and

is discussed in the �rst section. The translation at the statement level, i.e., the translation of

statements enhanced with
ags, is much more involved (and important!). It is discussed in the

subsequent three sections.

4.1.1 Constructs for Timestamp Manipulation

Temporal query languages generally de�ne a variety of constructs to manipulate their various

timestamp types. These include constructors (to create instances of the timestamp types),

extractors (to extract constituent parts from timestamps), predicates (boolean-valued, for com-

parison), and operations (to create new timestamps from existing ones). Many constructs exist

in the literature [Sno95, pp. 251{291]. They are relatively easy to de�ne, and adding one more

construct to a language has only a localized e�ect on the language design. Therefore, we only

de�ne a relatively small number of constructs here.

We will assume the timestamp representation adopted in the prototype that implements AT-

SQL. The prototype is built as a front end to Oracle, and four TIMESTAMP attributes (VTS, VTE,

TT$S, and TT$E, denoting valid time start, valid time end, transaction time start, and transaction

time end, respectively) are used to represent valid and transaction time. This representation

leads to the de�nitions given in Table 2, where tp and iv, possibly indexed, denote a time point

of type TIMESTAMP and a time duration of type INTERVAL, respectively. Also, per is a shorthand

for PERIOD 'tp1� tp2' and granule 2 fYEAR; MONTH;WEEK;DAY; HOUR;MINUTE;SECONDg denotes a

granularity. The constructs VTIME and TTIME that extract timestamps return errors if the tuple

variables they are applied to do not support valid time and transaction time, respectively. Note

also that INTERSECT returns an illegal period if the two argument periods do not overlap. We

will use the constructs de�ned in Table 2 throughout, including in relational algebra expressions,

e.g., in selection predicates. This makes the expressions more readable. It is straightforward to

adapt these de�nitions to di�erent representations, e.g., a representation that is based on the

PERIOD data type of the evolving part SQL/Temporal of the SQL3 standard.

4.1.2 Query Expressions

Recall that we de�ne the meaning of ATSQL query expressions by translating them to well-

de�ned algebraic expressions. As a precursor, we introduce the notation that we will use in the

algebra expressions.

We use hti, htjjV T i, htjjTT i, and htjjV T; TT i to denote tuple variables ranging over snapshot,

valid-time, transaction-time, and bitemporal relations, respectively. The vertical double-bar

\jj" is used to separate the explicit attributes from the implicit timestamps. The valid time is

referred to as V T , the transaction time as TT .

25

ATSQL Semantics

[[PERIOD 'tp1 � tp2']]ATSQL TIMESTAMP'tp1'; TIMESTAMP'tp2'

[[FIRST(TIMESTAMP'tp1'; TIMESTAMP'tp2')]]ATSQL min(tp1; tp2)
[[LAST(TIMESTAMP'tp1'; TIMESTAMP'tp2')]]ATSQL max(tp1; tp2)

[[VTIME(r)]]ATSQL TIMESTAMP'r:VT$S'; TIMESTAMP'r:VT$E'

[[TTIME(r)]]ATSQL TIMESTAMP'r:TT$S'; TIMESTAMP'r:TT$E'

[[BEGIN(per)]]ATSQL [[FIRST([[per]]ATSQL)]]ATSQL
[[END(per)]]ATSQL [[LAST([[per]]ATSQL)]]ATSQL

[[per1 PRECEDES per2]]ATSQL [[END(per1)]]ATSQL < [[BEGIN(per2)]]ATSQL

[[per1 MEETS per2]]ATSQL [[END(per1)]]ATSQL = [[BEGIN(per2)�
granule 1]]ATSQL

[[per1 OVERLAPS per2]]ATSQL [[END(per1)]]ATSQL � [[BEGIN(per2)]]ATSQL ^

[[END(per2)]]ATSQL � [[BEGIN(per1)]]ATSQL

[[per1 CONTAINS per2]]ATSQL [[BEGIN(per2)]]ATSQL � [[BEGIN(per1)]]ATSQL ^

[[END(per2)]]ATSQL � [[END(per1)]]ATSQL

[[per + INTERVAL'iv']]ATSQL [[BEGIN(per)]]ATSQL + iv;

[[END(per)]]ATSQL + iv

[[INTERSECT(per1; per2)]]ATSQL max([[BEGIN(per1)]]ATSQL; [[BEGIN(per2)]]ATSQL);
min([[END(per1)]]ATSQL; [[END(per2)]]ATSQL)

[[DURATION(per; granule)]]ATSQL [[END(per)]]ATSQL �
granule [[BEGIN(per)]]ATSQL)

Table 2: De�nition of Simple ATSQL Constructs

In the de�nitions, we need auxiliary operators that timeslice relations and turn times-

tamps into regular, explicit attributes. These operators are overloaded to apply to valid-time,

transaction-time, and bitemporal relations, and they have variants for both valid and transaction

time. Their formal de�nition is provided in Appendix A. There are two timeslice operations.

The �rst, �tp, selects all tuples in the argument relation with a timestamp that overlaps time

point tp. The time dimension used in this selection is not present in the result relation. The

second timeslice operation, �per, returns all argument tuples that overlap with period per. The

timestamp of a result tuple is the intersection of per with the tuple's original timestamp. The

snapshot operation SN turns a time dimension into an explicit attribute. Note that SN is not

needed at the implementation level, where all attributes are explicit (cf. Section 4.1.1).

With these conventions in place, Table 3 gives the semantics for core ATSQL statements

(cf. Table 1). In the table, [[<SQL{92>]]SQL�92 evaluates to the standard relational algebra

expression that corresponds to <SQL{92> [CG85, GT91]. Next, [[<SQL{92>]]T , where T 2

fvt; tt; big, evaluates to the same algebraic expression as does [[<SQL{92>]]SQL�92, except that

every nontemporal relational algebra operator (e.g., �; �; �) is replaced by the corresponding

temporal relational algebra operator (e.g., �T ; �T ; �T). The algebras are de�ned in Section 4.2.

The following two examples illustrate the de�nition.

Example 4.1 The ATSQL query, Q1, below is an example of a non-sequenced query. The

argument relations are assumed to be bitemporal.

NONSEQUENCED VALID

SELECT p.X

FROM p, q

WHERE p.X = q.X

26

[[<SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]SQL�92(�
tt
now(�

vt
now(r1)); : : : ; �

tt
now(�

vt
now(rn)))

[[SEQ VT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]vt(�
tt
now(r1); : : : ; �

tt
now(rn))

[[NS VT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]SQL�92(�
tt
now(SN

vt(r1)); : : : ; �
tt
now(SN

vt(rn)))

[[SEQ TT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]tt(�
vt
now(r1); : : : ; �

vt
now(rn))

[[NS TT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]SQL�92(�
vt
now(SN

tt(r1)); : : : ; �
vt
now(SN

tt(rn)))

[[SEQ VT AND SEQ TT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]bi(r1; : : : ; rn)

[[SEQ VT AND NS TT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]vt(SN
tt(r1); : : : ;SN

tt(rn))

[[NS VT AND SEQ TT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]tt(SN
vt(r1); : : : ;SN

vt(rn))

[[NS VT AND NS TT <SQL{92>]]ATSQL(r1; : : : ; rn)
4
=

[[<SQL{92>]]SQL�92(SN
tt(SNvt(r1)); : : : ;SN

tt(SNvt(rn)))

Table 3: Semantics of Core ATSQL Queries

27

AND VTIME(p) PRECEDES VTIME(q)

This query is de�ned by the relational algebra expression given next.

[[Q1]]ATSQL(p; q) =

�p:X(�p:X=q:X(�VTIME(p)PRECEDES VTIME(q)(SN
vt(� ttnow(p)) � SNvt(� ttnow(q)))))

Note that the mapping from SQL{92 queries to relational algebra is still the same. The temporal

selection condition can be viewed as a syntactic shorthand for a standard selection condition

(cf. Table 2). The only addition is the \adjustment" of the relations (SNvt and � ttnow) to �t the

non-sequenced evaluation mode in valid time dimension and the temporal upward compatible

evaluation mode in transaction time dimension.

Example 4.2 The following ATSQL query, termed Q2, is sequenced in both valid and trans-

action time.

SEQUENCED VALID AND SEQUENCED TRANSACTION

SELECT p.X

FROM p, q

WHERE p.X = q.X

It is de�ned by the following temporal relational algebra expression.

[[Q2]]ATSQL(p; q) = �bip:X(�
bi
p:X=q:X(p�

bi q))

Apart from the superscripts, which are added to the relational algebra operators, the translation

between SQL{92 queries and relational algebra expressions has not changed at all.

4.1.3 Domain and Range Speci�cations

Next, we de�ne the semantics of domain and range speci�cations. A time-domain restriction

restricts the argument relations in a query to contain only tuples that are valid during a speci�c

period. Thus, only the parts of argument tuples that intersect with the time-domain restriction

are considered when the query is evaluated. This is formalized in Table 4.

[[<modi�er> VALID <domain> <ATSQL>]]ATSQL(r1; : : : ; rn)
4
=

[[<modi�er> VALID <ATSQL>]]ATSQL(�
vt
<domain>(r1); : : : ; �

vt
<domain>(rn))

[[<modi�er> TRANSACTION <domain> <ATSQL>]]ATSQL(r1; : : : ; rn)
4
=

[[<modi�er> TRANSACTION <ATSQL>]]ATSQL(�
tt
<domain>(r1); : : : ; �

tt
<domain>(rn))

Table 4: De�nition of ATSQL Domain Restrictions

Next, we can also specify a time range, using the
ag \SET VALID <range>" where <range>

is period valued, that determines the valid times of the result tuples. There are two di�erent

situations. First, if the core statement is a SEQUENCED VALID statement then the automatically

computed valid time is replaced by the value resulting from evaluating the time-range speci-

�cation. Second, for all other core statements, prepending SET VALID <range> results in the

inclusion of valid time into the result. Because these core statements return results that do not

contain valid-time timestamps, the type of the result is changed. The valid time of a tuple is

that resulting from evaluating <range>. The details are given in Table 5.

28

[[SET VALID <range><ATSQL>]]ATSQL(r1; : : : ; rn)
4
=

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

fhtjjV T i j hti 2 [[<ATSQL>]]ATSQL(r1; : : : ; rn) ^ V T = <range>(t)g

if [[<ATSQL>]]ATSQL(r1; : : : ; rn) evaluates to a snapshot relation

fhtjjV T i j htjjV T 0i 2 [[<ATSQL>]]ATSQL(r1; : : : ; rn) ^ V T = <range>(t)g

if [[<ATSQL>]]ATSQL(r1; : : : ; rn) evaluates to a valid-time relation

fhtjjV T; TT i j htjjTT i 2 [[<ATSQL>]]ATSQL(r1; : : : ; rn) ^ V T = <range>(t)g

if [[<ATSQL>]]ATSQL(r1; : : : ; rn) evaluates to a transaction-time relation

fhtjjV T; TT i j htjjV T 0; TT i 2 [[<ATSQL>]]ATSQL(r1; : : : ; rn) ^ V T = <range>(t)g

if [[<ATSQL>]]ATSQL(r1; : : : ; rn) evaluates to a bitemporal relation

Table 5: De�nition of ATSQL Range Speci�cations

4.1.4 Coalescing

Any ATSQL query that returns a temporal relation may be coalesced. To de�ne coalescing,

let <ATSQL> denote any ATSQL query. If this query returns a valid-time relation, it may

be modi�ed to (<ATSQL>)(VALID), to return the coalesced version of the valid-time relation.

The obvious corresponding result holds when replacing valid time by transaction time. If the

query returns a bitemporal relation, it may be coalesced in valid time, in transaction time, or in

a combination of the two. Table 6 provides the de�nitions. De�nitions of representative versions

of operator coal will be given shortly.

[[<ATSQL>(VALID)]]ATSQL(r1; : : : ; rn)
4
=

8>>>><
>>>>:

coalvt([[<ATSQL>]]ATSQL(r1; : : : ; rn))

if [[<ATSQL>]]ATSQL(r1; : : : ; rn) evaluates to a valid-time relation

coalbivt([[<ATSQL>]]ATSQL(r1; : : : ; rn))

if [[<ATSQL>]]ATSQL(r1; : : : ; rn) evaluates to a bitemporal relation

[[<ATSQL>(TRANSACTION)]]ATSQL(r1; : : : ; rn)
4
=

8>>>><
>>>>:

coaltt([[<ATSQL>]]ATSQL(r1; : : : ; rn))

if [[<ATSQL>]]ATSQL(r1; : : : ; rn) evaluates to a transaction-time relation

coalbitt ([[<ATSQL>]]ATSQL(r1; : : : ; rn))

if [[<ATSQL>]]ATSQL(r1; : : : ; rn) evaluates to a bitemporal relation

Table 6: De�nition of ATSQL Coalescing

4.2 The ATSQL Temporal Relational Algebra

Having provided mappings from ATSQL to a combination of conventional and temporal rela-

tional algebra expressions, the next step is to de�ne the algebra operators that may occur in

these expressions. This completes the de�nition of the semantics of ATSQL queries.

We start by reviewing Codd's relational algebra. In the de�nitions given in Figure 10, c is a

predicate and f is a generalized projection function that roughly corresponds to the select list

29

of an SQL{92 statement.

�c(r)
4
= ft j t 2 r ^ c(t)g

�f (r)
4
= ft1 j 9t2(t2 2 r ^ t1 = f(t2))g

r1 [r2
4
= ft j t 2 r1 _ t 2 r2g

r1 � r2
4
= ft1 � t2 j t1 2 r1 ^ t2 2 r2g

r1 n r2
4
= ft j t 2 r1 ^ t 62 r2g

Figure 10: The Snapshot Relational Algebra

We proceed by de�ning the temporal relational algebra operators. With the exception of

the Cartesian product, the operators respect snapshot reducibility (Section 5 studies this in

detail). In addition, two other properties of the algebra are noteworthy. First, the algebra is

interval-based, as opposed to point-based, in that it preserves the timestamps entered into the

relations. It thus generally matters for query results whether, e.g., one tuple with valid time

10�20 or two (value-equivalent) tuples with valid times 10�15 and 16�20, appear in an argument

relation. Second, care was taken to only consider end points of valid and transaction timestamps

when implementing the operators|intermediate time points are never used. This allows for an

e�cient (essentially, granularity independent) implementation.

Figure 11 contains the de�nition of the valid-time version of the temporal relational algebra.

The transaction-time version is omitted because it is similar, the only di�erence being that

the temporal operations are performed on the transaction-time attribute rather than on the

valid-time attribute. The de�nition uses function intersect (on two periods) and the predicate

overlaps (on two periods), both of which were de�ned in Table 2. The symbol \�" denotes tuple

concatenation.

�vtc (r)
4
= fhtjjV T i j htjjV T i 2 r ^ c(ht; V T i)g

�vtf (r)
4
= fht1jjV T i j 9t2(ht2jjV T i 2 r ^ t1 = f(ht2; V T i))g

r1 [
vt r2

4
= fhtjjV T i j htjjV T i 2 r1 _ htjjV T i 2 r2g

r1 �
vt r2

4
= fhht1; V T1i � ht2; V T2ijjV T i j ht1jjV T1i 2 r1 ^ ht2jjV T2i 2 r2 ^

V T = intersect(V T1; V T2) ^

V T1 overlaps V T2g

r1 n
vt r2

4
= fhtjjV T i j 9V T1(htjjV T1i 2 r1 ^

(9V T2(htjjV T2i 2 r2 ^ V T
�
1 � V T+

2 ^ V T� = V T+
2) _ V T

� = V T�
1) ^

(9V T3(htjjV T3i 2 r2 ^ V T
+
1 � V T�

3 ^ V T+ = V T�
3) _ V T

+ = V T+
1) ^

V T� < V T+ ^

:9V T4(htjjV T4i 2 r2 ^ V T4 overlaps V T))g

Figure 11: The Valid{Time Algebra

Clearly the most complex operation is temporal di�erence. In the general case, three tuples

are required to determine one result tuple, namely one tuple from r1 and two tuples from r2.

This is illustrated in Figure 12. The second line identi�es all potential starting points for periods

of result tuples. Result periods may start where a period from an r1 tuple starts and where

30

VT

VT1

VT2 VT3

r1

r2

r1 \ r2

Figure 12: Valid-Time Di�erence

a period of a r2 tuple ends. The second line then identi�es all potential end points of periods

of result tuples. The last two lines of the de�nition then exclude \false" result tuples: The

third line eliminates meaningless combinations of starting and ending points, and the last line

eliminates tuples with excessive periods.

The only operation without a non-temporal counterpart is coalescing. It is also special

because it destroys the representation of timestamps in order to enforce a particular represen-

tation (maximum periods). Furthermore, coalescing removes duplicates and, therefore, violates

snapshot reducibility. By de�nition, coalescing must merge (chains of) overlapping or adja-

cent value-equivalent tuples as illustrated in Figure 13. While it is not possible to compute

VT2

�
�
�
�

�
�
�
�

coal(r)

r
VT1

VT

Figure 13: Coalescing a Valid-Time Relation

arbitrary transitive closures in SQL{92, coalescing is possible in SQL{92 because time is linear

[Cel95, BSS96].

coalvt(r)
4
= fhtjjV T i j 9V T1 9V T2(htjjV T1i 2 r ^ htjjV T2i 2 r ^

V T�
1 < V T+

2 ^ V T� = V T�
1 ^ V T+ = V T+

2 ^

8V T3(htjjV T3i 2 r ^ V T� < V T�
3 < V T+)

9V T4(htjjV T4i 2 r ^ V T
�
4 < V T�

3 � V T+
4)) ^

:9V T5(htjjV T5i 2 r ^ (V T�
5 < V T� � V T+

5 _ V T�
5 � V T+ < V T+

5)))g

The two tuples introduced in the �rst line serve to de�ne the starting (V T�
1) and end (V T+

2)

points of a coalesced tuple, as speci�ed in the second line. The third and fourth lines ensure

that there are no gaps between V T� and V T+. This is done by ensuring that every tuple with

a start time between V T� and V T+ is extended towards V T�, i.e., there must exist another

tuple with a valid time containing the respective start time. Finally, on the last line we make

sure that the valid time of the result tuple is maximal, i.e., there may not exist another tuple

that contains either V T� or V T+.

The bitemporal relational algebra is a natural extensions of the valid-time (and transaction-

time) algebra. However, both time dimensions must be handled simultaneously, meaning that

rectangles rather than periods must be handled. While this does not change the basic ideas, it

adds to the complexity of the de�nitions; for this reason, it is deferred to Appendix B.

4.3 Summary of Semantics

The syntax of ATSQL queries was speci�ed in Section 3. This section then gave the semantics of

ATSQL queries, in three steps. First, the semantics of constructs for timestamp manipulation

was given. The second step was to de�ne the semantics of core ATSQL queries, as well as

31

queries with domain and range speci�cations and coalescing. Speci�cally, mappings to relational

and temporal relational algebraic expressions were given. Finally, the relational and temporal

relational algebras were de�ned.

Taking into consideration that ATSQL is a language more complicated than SQL{92, the

language it extends, the semantics are quite concise. This has been achieved by giving the

semantics of ATSQL in terms of the semantics of SQL{92 (speci�cally, in terms of a mapping

of SQL{92 queries to relational algebra). This, in turn, is possible because ATSQL by design

systematically and faithfully extends SQL{92.

5 Properties of ATSQL

This section provides discussions of the properties of ATSQL. Speci�cally, we argue that ATSQL

indeed, by design, satis�es the compatibility and reducibility properties that were introduced in

Section 2. Next, we characterize the scope of the impact on the language design of the snapshot

reducibility requirement, thereby showing that this requirement only constrains part of the

language de�nition and that other important design decisions went into the \sequenced" design

of the language. Finally, we contrast ATSQL's approach to built-in semantics with the default-

based approach. For brevity and to avoid tedious details, we cover the valid-time dimension

only.

5.1 Compatibilities and Syntactic Restrictions

By design, ATSQL is upward compatible with respect to SQL{92. The whole approach adopted

for de�ning the syntax and semantics of the language emphasizes this property. The syntax of

ATSQL was given by extending the syntax of SQL{92 with non-mandatory constructs. Thus,

ATSQL contains all legal SQL{92 statements. The approach taken to de�ne ATSQL also makes

it straightforward to verify that in ATSQL, all SQL{92 statements retain their SQL{92 seman-

tics. Speci�cally, the �rst de�nition in Table 3 covers SQL{92 statements.

Observe that in de�ning the syntax of ATSQL, we introduced a few reserved words (e.g.,

SEQUENCED) not part of SQL{92. As already discussed in Section 2, this strictly speaking leads to

a violation of upward compatibility. This also is a reason why SQL{92 is not upward compatible

with SQL{89. It would have been possible to reuse instead existing reserved words, yielding a

more strict upward compatibility, but that would have obscured the semantics of the extensions.

ATSQL is also temporal upward compatible with SQL{92. This follows from the upward

compatibility, the �rst de�nition in Table 3, and the de�nition of the ATSQL meaning of SQL{

92 modi�cation statements when applied to temporal relations. These statements are covered

in detail elsewhere [BBJS97].

Finally, snapshot reducible ATSQL statements (discussed below) are syntactically similar

with respect to SQL{92. This again follows from the de�nition of the language. De�nition 2.5

constrains the di�erences between an SQL query and the corresponding snapshot reducible AT-

SQL query to be at most two �xed strings (i.e., the \
ags" in ATSQL), prepended and appended

to the SQL query, respectively. The �xed strings do not depend on the particular query, but are

the same for all queries. Satisfying this requirements leads to a wholesale \semantics" approach

to defaults, as will be discussed in Section 5.4.

5.2 Snapshot Reducibility

In this section the focus of attention is the snapshot reducibility property of ATSQL with respect

to SQL{92. The satisfaction of this property follows from the design of the mapping and the

de�nition of the temporal algebraic operators. Below, we discuss �rst how the de�nition of the

32

temporal algebra is shaped to make the preservation of the property possible. Then follows a

discussion of the top-level mapping of ATSQL statements (as given in Table 3).

Recall the de�nition of snapshot reducibility (De�nition 2.4). We �rst show that the valid-

time relational algebra (Figure 11) almost (!) has this property with respect to the snapshot

relational algebra (Figure 10).

Theorem 5.1 The valid-time relational algebra (Figure 11) satis�es the reducibility properties

below with respect to the snapshot relational algebra (Figure 10). Recall that tp, c, and f denote

a time point, a predicate, and a projection list, respectively.

� 8tp (�vttp (�
vt
c (r)) � �c(�

vt
tp (r)))

� 8tp (�vttp (�
vt
f (r)) � �f (�

vt
tp (r)))

� 8tp (�vttp (r1 [
vt r2) � �vttp (r1) [�

vt
tp (r2))

� 8tp (��r1:V T;r2:V T (�
vt
tp (r1 �

vt r2)) � �vttp (r1)� �vttp (r2))

� 8tp (�vttp (r1 n
vt r2) � �vttp (r1) n �

vt
tp (r2))

The equivalences hold for arbitrary relations, with the only restrictions being that in the �rst two

equivalences c and f refer to explicit attributes only and that the relations be union compatible

in the third and �fth equivalence. Also, ��X(r) is given by �r:�nX(r) where r:� denotes all the

attributes of r.

The proofs of these properties may be found in Appendix 5.1.

It follows that the valid-time selection, projection, union, and di�erence operators are snap-

shot reducible to their snapshot counterparts. Thus, all valid-time algebra statements involving

only these operators are snapshot reducible to the snapshot algebra statements obtained by

simply removing the vt superscripts.

However, the equivalence involving the Cartesian products attracts attention: this operator

is not reducible to the snapshot Cartesian product! While it is straightforward to de�ne a

temporal Cartesian product that is snapshot reducible to the snapshot Cartesian product, we

have chosen a de�nition that violates snapshot reducibility. Let us explore why this is a good

design decision.

Initially, note that the \problem" with our temporal Cartesian product is that it retains the

implicit valid-time attributes of its argument relations and turns them into explicit attributes.

The operator �� is introduced to eliminate these \extraneous" attributes. Now, when mapping

a (sequenced) temporal query to its algebraic equivalent, we would like to exploit the standard

mapping used when mapping SQL queries to relational algebra. Consider the following query.

SEQUENCED VALID

SELECT <L>

FROM p, q, r

WHERE <P>

We would like to map this query to

�vt<L0>(�
vt
<P 0>((p�

vt q)�vt r))

where hL0i and hP 0i are slight syntactical variations of <L> and <P>, respectively. One possible

choice for predicate <P> would be

DURATION(VTIME(p),DAY) + DURATION(VTIME(q),DAY) < DURATION(VTIME(r),DAY)

33

With our de�nition of the valid-time Cartesian product, we can express the corresponding

algebra predicate hP 0i as follows because the timestamps of the argument tuples are retained as

explicit attributes.

DURATION (p:V T;DAY) +DURATION (q:V T;DAY) < DURATION (r:V T;DAY)

Using a snapshot-reducible Cartesian product would make it impossible to construct a cor-

responding predicate hP 0i. The information required to evaluate the predicate would be lost.

This observation holds for any tuple timestamped and any homogeneous [Gad88] attribute-value

timestamped data model. Snapshot-reducible temporal Cartesian products for such models are

unable to serve the role during the mapping of temporal SQL queries to algebraic expressions

that the snapshot Cartesian product serves when mapping SQL queries to relational algebra.

One approach to retain the simple mapping and also retain a snapshot reducible temporal

Cartesian product is to introduce an additional (information-preserving) Cartesian product that

produces results with two implicit valid times. But this latter product returns results that are

not valid-time relations and thus breaks the closedness property of the algebra, an undesirable

complication. This approach was adopted in the algebra for the HSQL data model [Sar93]

that includes both a reducible \Concurrent Product" and an information-preserving \Cartesian

product."

Another approach that will ensure that the necessary information is available in the algebra

for evaluating any predicate P is to introduce an n-ary valid-time join that can then be de�ned

to be snapshot reducible. The transformation to algebra would then be as follows.

�vthL0i(1
vt
hP 0i (p; q; r))

This approach was adopted for the algebra proposed for TSQL2 [SJS95]. While the added

complexity of an n-ary operator may be undesirable, there is another problem with this approach.

Consider the sample <L> = p.X, VTIME(p) that speci�es that the implicit valid-time attribute

of relation p is to be present in the result as an explicit attribute.

With the n-ary join approach, it is not possible to produce an equivalent hL0i. Speci�cally,

the original valid times of tuples also from p cannot be inferred from the result of the join. With

our Cartesian product, we have hL0i = p:X; p:V T .

Most temporal algebras have operators that are snapshot reducible with respect to the

snapshot Cartesian product (e.g., the TJOIN [NA89], the Concurrent Product Operator [Sar93],

the cross-product [NG93], (temporal) equijoin [CCT93], and the valid-time Cartesian product6

[Sno93]; reference [MS91] gives a survey).

The simple binary temporal Cartesian product de�ned here permits the use of the standard

mapping from SQL to algebra without imposing any restrictions on the contents of the SELECT

and WHERE clauses. As we discuss next, the non-reducibility of the operator does not lead to

violations of the reducibility of ATSQL to SQL.

In ATSQL (and SQL) queries, Cartesian products are speci�ed in the FROM clause of the

SELECT-FROM-WHERE statement. For an ATSQL query to be reducible, the result of evaluating

it must not include the implicit valid-time attributes of argument tuples as explicit attributes.

In reducible queries, it is not possible to select a time dimension of a relation; and defaults, e.g.,

SELECT *, also do not expand to include the implicit time attributes. We conclude that due

to the presence of subsequent projections in the de�nition of reducible queries, the presence of

the additional explicit time attributes in the results of Cartesian products do not compromise

snapshot the reducibility of ATSQL.

6
This operator is de�ned in a non-homogeneous attribute-value timestamped data model. Unlike any other

product we have seen, this operator reduces to the snapshot Cartesian product and yet does not possess the two

de�ciencies.

34

5.3 Sequentiality Versus Snapshot Reducibility

In Section 2, we formulated a reducibility requirement to a temporal extension of a query

language. In this section, we put focus on what parts of the temporal query language design

that this property shapes and to which extent the property constrains the design of these parts.

We �rst observe that this property of a query language does not de�ne the language, but merely

constrains the de�nition of a subset of it. We then characterize this subset and describes to

which extent the subset is constrained. Subsequently, we explore the properties of the remaining,

unconstrained parts of ATSQL.

5.3.1 Pure Sequenced Queries

To characterize the parts of ATSQL a�ected by the reducibility property, we syntactically char-

acterize two classes of query language statements.

De�nition 5.2 AnATSQL statement is sequenced if it contains the reserved keyword SEQUENCED.

De�nition 5.3 A sequenced ATSQL statement is pure if it does not contain any of the the

reserved keywords VTIME, TTIME, and SET VALID.

Both classes of statements are de�ned syntactically, and it is apparent from the de�nitions that

the pure sequenced queries are strictly contained in the class of sequenced queries.

The implicit times of relations are accessed explicitly in a statement using either VTIME(: : :),

TTIME(: : :), or SET VALID : : :. The de�nition of pure statements thus enumerates and prohibits

all ways of explicitly referencing the implicit time. The class of pure ATSQL statements, we

denote by ATSQLpure.

To exemplify non-pure sequenced statements, consider the following two statements.

SEQUENCED VALID SEQUENCED VALID

SELECT * SELECT *

FROM p, q FROM p, q

WHERE p.X = q.X WHERE p.X = q.X

AND DURATION(VTIME(p),YEAR) > 5

In the �rst statement, we we temporally join relations p and q, but are only interested in p-

tuples with a valid time longer than 5 years. Through the term VTIME(p) the valid time of p

is accessed, making the the query non-pure. The statement must be answered by considering

multiple snapshots at a time because we cannot decide whether a tuple is valid for more than

5 years by considering individual snapshots in isolation. It is intuitively clear that snapshot

reducibility cannot by itself be used to de�ne the semantics of this statement. The second

statement also temporally joins relations p and q, but no additional restriction on the valid time

of p-tuples is enforced. This makes the statement pure sequenced.

We have already shown that for each SQL{92 statement, there exists a (syntactically similar)

ATSQL statement that is (snapshot) reducible to it. It further holds true that these ATSQL

statements are pure. The following property thus holds.

Theorem 5.4 The subset ATSQLpure of ATSQL is syntactically similar snapshot reducible

with respect to SQL{92.

35

There are then at least as many ATSQLpure statements as there are SQL{92 statements. It

also follows that the reducibility requirement imposed on ATSQL is satis�ed by and thus only

constrains the de�nition of a small subset of ATSQL, namely ATSQLpure. The requirement does

by itself not constrain any other parts of ATSQL|in particular, it does not impose requirements

on the non-pure, sequenced statements.

The opposite of Theorem 5.4 also holds.

Theorem 5.5 For each ATSQLpure statement, there exists a unique SQL{92 statement that

the ATSQLpure statement is reducible to.

Together, the two theorems state that there is a one-to-one correspondence between the sets

of ATSQLpure and SQL{92 statements. The pure query language statements are exactly those

that are reducible to statements in the underlying non-temporal query language.

Although snapshot reducibility in itself does not constrain the de�nition of non-pure ATSQL

statements, these statements are still an integrated part of the query language and thus in

practice are constrained to observe the spirit of sequentiality. (They are consistent with viewing

a temporal database as a sequence of nontemporal database states.)

To illustrate this, recall the �rst sample query above. The non-pure part of this temporal join

query is the where clause condition DURATION(VTIME(p),YEAR) > 5. As explained above, this

condition cannot be evaluated by considering individual snapshots in isolation. However, the

temporal join itself can still be conceptualized as a nontemporal join evaluated on each snapshot.

Snapshot reducibility can thus be used to constrain the semantics of the pure, \nontemporal

constructs" (e.g., a join, di�erence, or subquery) of a non-pure sequenced ATSQL statement, but

it cannot be used to de�ne temporal constructs that provide explicit reference to the timestamps.

5.3.2 Reducibility and Beyond

Simply requiring that a query language respects snapshot reducibility does not amount to de�n-

ing the language; rather, snapshot reducibility merely constrains the possible de�nitions, leaving

important design decisions open. Next, we thus consider some of the design considerations that

went into de�ning ATSQL, but that are beyond the scope of the snapshot reducibility require-

ment.

Snapshot reducibility is point-based in nature. In contrast, ATSQL is interval-based in

that tuples are timestamped with time periods. An example illustrates that how snapshot

reducibility falls short in specifying exactly how tuples should be timestamped. Consider a

view prescr period from the medical application in Section 3.2 that records the periods during

which patients took prescriptions. It is important to keep the individual prescription periods

separate, but neither the doctor nor prescription names are of interest. Four di�erent instances

of the view are shown in Figure 14.

prescr period

Name VTIME

Kurt Cobain 1994=1=2�1994=1=5
Kurt Cobain 1994=1=6�1994=1=9

prescr period1
Name VTIME

Kurt Cobain 1994=1=2�1994=1=6
Kurt Cobain 1994=1=7�1994=1=9

prescr period2
Name VTIME

Kurt Cobain 1994=1=1�1994=1=9

prescr period3
Name VTIME

Kurt Cobain 1994=1=2�1994=1=4
Kurt Cobain 1994=1=5�1994=1=7
Kurt Cobain 1994=1=8�1994=1=9

Figure 14: Snapshot Equivalent Relations

36

Clearly, the relations are di�erent; and yet, in the eyes of snapshot reducibility, the relations

are the same. This is so because to snapshot reducibility, a relation is no more than a se-

quence of snapshot relations; and the four relations are mutually snapshot equivalent, i.e., for

all time points tp, the snapshots �vttp (prescr period), �vttp (prescr period1), �
vt
tp (prescr period2),

and �vttp (prescr period3) are identical. This is then an example where four di�erent relations|

with quite di�erent meanings in terms what is important for the application|cannot be told

apart by snapshot-equivalence-based properties. Rather, additional design decisions are needed

to fully de�ne timestamps of query results.

One decision would be to require result tuples to be coalesced. This would make pre-

scr period2 the unique query result. This solution, however, has consequences that may be

unwanted. The actual valid times of tuples inserted into the underlying relation are no longer

preserved. In the example, the view can no longer be used for capturing how many prescriptions

were issued and for what periods, but only when a person was on prescriptions. Thus, with coa-

lesced results, this view does not record how many times Kurt received a prescription|without

coalescing, this is possible.

It may be argued that if it is important to retain the periods of individual prescriptions

and if the model enforces coalescing, an attribute such as \PrescriptionNumber" can simply be

added. However, this creates a potential consistency problem because the relation then stores

redundant information. The PrescriptionNumber ordering of tuples for each patient must be

kept consistent with the timestamp ordering of the tuples.

Next, coalescing violates snapshot reducibility because it eliminates duplicates from snap-

shots [BJS95], e.g., fhajj5�9i; hajj7�10ig would be coalesced to fhajj5�10ig. A snapshot at

time 8 would on each instance would yield fhai; haig and fhaig, respectively. Thus, a simple

tuple-count query would yield di�erent results.

Because it is our contention that there seems to be advantages to preserving timestamps as

originally entered into the database, as well as to coalescing, we have chosen to allow both in

ATSQL. The default is to preserve the timestamps|being an irreversible operation, coalescing

by default makes little sense. Thus, we have introduced special, convenient syntax for specifying

coalescing. This means that ATSQL users are free to preserve timestamps or to coalesce them.

5.4 Built-in Semantics and Defaults

The additional user-friendliness achieved when extending a query language with temporal sup-

port seems to have two sources. First, the addition of new temporal data types with associated

constructors, predicates, and operations makes temporal data management more convenient.

For example, adding a period data type to SQL{92 makes it easier to manage the valid time of

tuples. To illustrate this, assume that snapshot relation p has attributes a, b, and VT, with the

latter being period-valued and recording valid time. Similarly, let relation q have attributes b,

c, and VT. A temporal natural join of these two relations is expressed as follows.

SELECT p.a, p.b, q.c, INTERSECT(p.VT, q.VT) AS VT

FROM p, q

WHERE p.b = q.b AND p.VT OVERLAPS q.VT

Without a data type for time periods, using instead pairs of time-point valued attributes, this

query gets signi�cantly harder to formulate and understand.

Second, providing built-in timestamp processing adds user-friendliness. For example, in lan-

guages such as TSQL2 and ATSQL, it is possible to write a temporal natural join essentially as

a regular natural join, as follows.

TSQL2: ATSQL:

SELECT p.a, p.b, q.c SEQUENCED VALID

37

FROM p, q SELECT p.a, p.b, q.c

WHERE p.b = q.b FROM p, q

WHERE p.b = q.b

In these queries, we assume that p and p are valid-time relations. The two queries are essentially

the same, the only di�erence being that TSQL2 by default performs a sequenced computation

when the argument tables are temporal and that ATSQL requires a sequenced
ag to do the

same.

For a simple join query, the added user-friendliness of using built-in processing over simply

using a new data type is clear, but not substantial. This is so because it is relatively straight-

forward to generalize a snapshot natural join to a temporal natural join. When considering

complicated SQL{92 queries, possibly involving aggregates, the generalized queries frequently

become very di�cult to formulate in SQL{92, with or without new data types. This is where

the power of built-in processing stands out. For example, in ATSQL any query is generalized

by simply prepending SEQUENCED VALID.
Two approaches to built-in processing may be identi�ed. The �rst approach is represented

by TSQL2 [Sno95, e.g., pp. 291{297], which provides comprehensive built-in processing. In this
approach, built-in processing is provided by syntactically de�ned defaults. For example, the
TSQL2 join above is a shorthand for the following query.

SELECT p.a, p.b, q.c

VALID INTERSECT(p, q)

FROM p, q

WHERE p.b = q.b

When the valid clause of TSQL2 is missing from a query and all argument relations are valid-

time relations, the meaning of the query is given by adding a valid clause that generates a

timestamp of result tuples that is given by the intersection of the timestamps of the argument

tuples.

The second approach is the \semantic" approach we have adopted for ATSQL. Rather than

de�ning query language statements that provide built-in processing in terms of syntactical addi-

tions to them, the built-in processing is de�ned semantically, i.e., to be consistent with snapshot

reducibility.

The syntactic approach has been shown to be problematic. We have previously identi�ed

TSQL2 statements that have no obvious semantics [BJS95]. The problem stems in part from

the syntactic defaults. For example, the rule above becomes unclear when select statements

are included in the where clause. It turns out that it is exceedingly di�cult to de�ne built-

in processing in SQL{92 via syntactic defaults in a manner that is comprehensive and also

systematic and thus su�ciently easily comprehensible for it to be practically useful.

The problem with syntactic defaults is one of scalability over language constructs, and SQL{

92 has numerous constructs with subtle semantics and also lacks orthogonality. With syntactic

defaults, it must be possible to state in the query language the default for a wide range of

statements. Accomplishing this is quite challenging because each syntactic default is dependent

on the speci�cs of the statement that it is the default for. In this way, the complexity of

specifying the actual default is comparable to the complexity of specifying the entire language.

Semantic defaults behave quite di�erently. No attempt is made to actually de�ne defaults

that could be used instead of the default itself. Speci�cally, ATSQL does not try to syntactically

map sequenced statements to semantically equivalent (non-sequenced) ATSQL statements. (Our

experience with compiling ATSQL to SQL suggests that this is impractical.) This makes ATSQL

conceptually simple, and it becomes much more robust with respect to extensions and dialects

of SQL because the SQL part of an ATSQL statement essentially can be treated as a black box.

38

In fact, ATSQL may be seen as the result of replacing in TSQL2 the syntactic defaults

by the systematic, semantically-based built-in processing from ChronoLog [B�oh94], thereby �x-

ing fundamental problems in TSQL2 [BJS95]. The semantic approach leads to a syntactically

identi�able class of queries with built-in support and thus provides a systematic and wholesale

approach to built-in default processing.

6 Related Work

We divide the discussion of related research into three aspects. Initially, we discuss the back-

ground of the language requirements from Section 2, as well as related requirements. Then we

position the language with respect to earlier languages and ongoing e�orts. Finally, we brie
y

evaluate the existing temporal SQL's with respect to the requirements.

The formulation of the two compatibility requirements in Section 2 evolved in part from

studies of TSQL2 [Sno95] and were developed with Richard Snodgrass and John Bair. Many

discussions with Richard Snodgrass in the context of developing proposals for the SQL/Temporal

part [SBJS96a, SBJS96b] of the evolving SQL3 standard also shaped the formulation of these

requirements.

The formulation of the sequentiality requirement borrowed the fundamental notion of snap-

shot reducibility, which we believe �rst appeared in the literature in 1987 [Sno87]. Using snap-

shot reducibility, it became possible to precisely de�ne an informal requirement that was ini-

tially termed temporal semi-completeness [BJS95] and which was developed as a requirement

of ChronoLog [B�oh94], a temporal deductive database system. Again, studies of TSQL2 helped

shape this requirement.

Few other precise query language requirements have been proposed in the past. For exam-

ple, while the phrase \upward compatibility" has been used widely and in many contexts, we

have found no precise de�nition of it. Similarly, other upward-compatibility-like requirements,

as exempli�ed next, have been mentioned but never precisely de�ned.

\The default options are de�ned such that a query that omits the temporal portion retains the standard

meaning of the corresponding SQL SELECT statement." [Ari86, p. 513]

\All legal SQL statements are also valid in TSQL, and such statements have identical semantics in the

absence of a reference to time. [...] SQL, a subset of TSQL, remains directly applicable to non-time-

varying relations in 1NF." [NA93, p. 99]

\HSQL is a superset of the popular query language SQL." [Sar93, p. 123]

\In fact, the standard clauses of SQL have identical meanings in HSQL." [Sar93, p. 125]

\IXSQL is syntactically and semantically upwards consistent with SQL2." [LM96, p. 1]

In only one place have we encountered an approach that aims at satisfying a requirement

that seems similar to temporal upward compatibility. Speci�cally, the TempSQL language (e.g.,

[GN93]) introduces a notion of so-called classical and system user types. System users see the

full temporal database, while classical users see only the current snapshot of the database. If

applications are classical by default, and if individual statements, rather than all statements

issued by a user, can be independently made temporal, this would essentially (providing that a

number of other design decisions are made correctly) yield a temporal upward compatible SQL

extension (see also below).

Now, let us consider the ancestry of ATSQL. In a previous paper, we showed that TSQL2

neither satis�es temporal upward compatibility nor syntactically similar snapshot reducibility

39

with respect to SQL{92. Indeed, we showed that there are statements in TSQL2 that appear

to have no obviously correct semantics (the semantics of TSQL2 were given only informally, in

SQL-standard style and in technical commentaries). One problem with TSQL2 is that it is pure

in that it does not permit \duplicates" in temporal relations, while SQL{92 does. We felt that

there was a need for minimally changing TSQL2 to rectify these de�ciencies and thus embarked

on designing ATSQL, with the \A" signifying that this would be an \applied" language that

permitted duplicates.

At �rst sight, ATSQL thus looks very much like TSQL2. However, readers familiar with

ChronoLog and its SQL cousin, ChronoSQL, will notice that the language is perhaps conceptu-

ally closer to these. The explanation is simple: ATSQL was designed to satisfy the sequentiality

requirement and the other two languages were designed to satisfy the predecessor of this re-

quirement.

Finally, ATSQL is also related to two ANSI proposals [SBJS96a, SBJS96b] for additions

to the (ISO) SQL/Temporal part of SQL3 (SQL/T, for short). Some central aspects of those

proposals derive from earlier joint work with Richard Snodgrass on designing ATSQL. As a

result, these ANSI-accepted language proposals are quite similar to the language proposed in

this paper.

To complete the coverage of related research, Table 7 evaluates all existing temporal SQL

proposals that we are aware of, and SQL{92, with respect to our requirements. Recall that

the abbreviations UC, TUC, and SR used in the table denote upward and temporal upward

compatibility and syntactically similar snapshot reducibility, respectively. The �ndings reported

Language Reference UC TUC SR Comments

TOSQL [Ari86] yes no no Extends only a limited subset of SQL.

TSQL [NA87]
[NA89]
[NA93]

yes no no Not all snapshot relations can be made tem-
poral. Some SQL views cannot be de�ned
on temporal relations. Automatic coalescing
violates TUC.

HSQL [Sar90]
[Sar93]

yes no no SQL queries on temporal relations return
temporal relations.

SQL{92 [MS93] yes no no Adding explicit timestamp columns violates
TUC.

TempSQL [BG93]
[GB93]
[GN93]

yes partly
compliant

no Only a subset of SQL is considered. TUC is
satis�ed only for classical users.

IXSQL [Lor93]
[LM96]

yes no no Extension of SQL with a parameterized
period ADT with accompanying query-
language facilities is proposed.

ChronoSQL [B�oh94] yes no yes Designed to ful�ll SR. TUC queries default
to all states rather than to the current state.

TSQL2 [Sno95] yes no no Full syntax given. Semantics de�ned infor-
mally in SQL-standard style.

\SQL/T" [SBJS96a]
[SBJS96b]

yes yes yes Designed to satisfy these requirements.

Table 7: Summary of Compatibility and Reducibility Compliances

in the table should be quali�ed. We report compliance with a requirement if this is claimed in

the documentation of a model, or if non-compliance cannot be proved. With the exception of

IXSQL and TSQL2, only the integration of the temporal query facilities with \core" subsets of

SQL are documented, and which particular SQL dialect that is being extended is also not always

40

clear. Next, aspects related to the use of regular SQL statements|updates, in particular|on

temporal relations or a combination of temporal and non-temporal relations are typically not

de�ned. This makes it hard to verify temporal upward compatibility. Finally, the de�nition of

the syntax, and in particular of the semantics, of several of the models is quite informal and

incomplete.

We brie
y consider each language in turn and in chronological order of their appearance (a

substantially more detailed study may be found elsewhere [BBJS97]).

The �rst three models are documented rather sparsely for our purposes, but their designers

emphasize that they satisfy upward compatibility. They do not satisfy temporal upward com-

patibility, and nor do they satisfy reducibility. SQL{92 is upward compatible with itself|this

is trivially true due to the re
exivity of upward compatibility. But it is not temporal upward

compatible with itself, and as it has not temporal extensions, the reducibility property is not

satis�ed.

The next model, TempSQL, introduces the concepts of classical and system user types that

may be used to obtain (partial) satisfaction of both compatibilities. Temporal upward com-

patibility is only satis�ed for so-called classical users that see only the current state of all

relations. When a classical-user application needs access to past states of a relation and is made

a system-user application, the full application must be rewritten, breaking temporal upward

compatibility.

IXSQL is di�erent from all the other models in that it does not provide support for implicit

time; rather, it adds a parameterized abstract period data type and associated facilities for

modi�cation and queries to SQL. For the same reason as for SQL{92, it does not satisfy temporal

upward compatibility. As time is explicit, reducibility is also not satis�ed.

ChronoSQL was designed to illustrate how to carry over the predecessor of the sequentiality

requirement (termed \temporal completeness") from a deductive (ChronoLog) to an SQL-based

language. Snapshot reducibility is achieved because it is included in the requirement. Temporal

upward compatibility is not achieved because legacy SQL statements consider the entire database

rather than just the current state of the database.

The �nal two models have been documented much more extensively than its predecessors,

but their semantics are still given in an informal SQL-standards format. They were discussed

earlier in this section.

7 Summary and Research Directions

The paper's topic is how to seamlessly integrate time into SQL. It takes as its outset a number

of syntactic and semantic requirements, motivated by real-world concerns, that a temporal

data model and query language must satisfy to contend with legacy applications, permit the

coexistence of non-temporal and temporal data, and exploit the programmers' expertise with

SQL. Care was taken to make the requirements independent of any particular data model,

although we explore them in the context of SQL. No existing model or language satis�es all of

these requirements.

The next step was to explore how these requirements shape a concrete temporal extension of

SQL, termed ATSQL. A black-box approach was adopted in de�ning ATSQL, leading to a com-

prehensive temporal query language that covers core as well as advanced language features, e.g.,

views, integrity constraints, assertions, data de�nition, aggregation, duplicates, and coalescing.

The language supports both point and interval-based semantics.

The paper �rst de�ned ATSQL, emphasizing how the requirements shape the design. Second,

a guided tour was given that illustrates how it is possible to smoothly migrate from an SQL{

92 system managing non-temporal tables to an ATSQL system that gradually turns the tables

temporal, o�ering advanced temporal query language constructs for managing the resulting

41

tables. The guided tour and the reader's own statements may be executed on a prototype that

is available via world-wide-web. Third, the paper precisely de�ned the semantics of ATSQL

in terms of the semantics of SQL and a mapping from SQL to relational algebra. For this

purpose, valid-time, transaction-time, and bitemporal counterparts of the standard relational

algebra were de�ned.

The �nal step was to study the properties of the language. We veri�ed that it satis�es the

requirements posed at the outset of the paper, and then continued by studying the properties

of ATSQL not strictly dictated by the requirements. Speci�cally, while snapshot reducibility is

point-based in nature, ATSQL is interval-based and is designed to minimally modify the interval

timestamps of argument tuples when computing query results.

Several interesting directions for future research may be pointed out. First, the approach

may be generalized to other \dimensions," such as those found in spatial databases, leading

to spatio-temporal databases. It also appears promising to study how the proposed concepts

generalize to databases annotated with other types of multiple orthogonal dimensions, e.g., those

found in data warehousing. In doing so, an important challenge is to provide solutions that are

general and yet succeed in supporting well the semantics associated with the speci�c dimensions.

The notion of temporal upward compatibility makes the implicit assumption that the data-

bases of existing DBMS's contain snapshot data and that a temporal dimension is added to data

when the DBMS is replaced with a temporal DBMS. However, this scenario is not exhaustive.

Rather, it may be observed that a wide variety of existing databases record time-varying data

using regular attributes. The ability to use the novel features of the temporal DBMS depend on

the time-varying data being recorded using the designated timestamp attributes. How to semi-

automatically migrate application code when the transition to using the designated timestamp

attributes occurs is an open problem.

Yet another future direction is the study of e�cient implementation techniques. The current

ATSQL prototype illustrates the feasibility of the language using a layered architecture [TJB97].

This architecture can be used to identify bottlenecks of current DB technology with respect to

temporal database applications. The �ndings may then prompt the development of new DBMS

algorithms. This approach has already been pursued for coalescing [BSS96].

Finally, this study reveals a need for further studies of temporal query language properties.

For example, the properties of point-based and interval-based temporal languages that a�ect

their utility in real-life applications are not yet well understood (we thus adopted a safe approach,

supporting both semantics in ATSQL).

8 Acknowledgements

We greatly appreciate the contributions of Renato Busatto, Robert Marti, Rick Snodgrass, and

Andreas Steiner. Renato worked on the formalization of bitemporal negation and the proof of

Theorem 5.1. Robert contributed to early work that shaped the black-box idea adopted for

ATSQL. Rick made signi�cant contributions at the design level when we jointly designed the

early version of ATSQL that is being proposed for inclusion into the SQL standard. Andreas

implemented an initial, running prototype for the language proposed to the SQL standardization

committee.

The authors were supported in part by the Danish Natural Science Research Council through

grant 9400911 and by the CHOROCHRONOS project, funded by the European Commission DG

XII Science, Research and Development, as a Networks Activity of the Training and Mobility

of Researchers Programme, contract no. FMRX-CT96-0056.

42

References

[Ari86] G. Ariav. A Temporally Oriented Data Model. ACM Transactions on Database

Systems, 11(4):499{527, December 1986.

[BBJS97] J. Bair, M. H. B�ohlen, C. S. Jensen, and R. T. Snodgrass. Notions of Upward

Compatibility of Temporal Query Languages. Wirtschaftsinformatik, 1997.

[BG93] G. Bhargava and S. K. Gadia. Relational Database Systems with Zero Information

Loss. IEEE Transactions on Knowledge and Data Engineering, 5(1):76{87, February

1993.

[BJS95] M. H. B�ohlen, C. S. Jensen, and R. T. Snodgrass. Evaluating the Completeness

of TSQL2. In Recent Advances in Temporal Databases, International Workshop on

Temporal Databases, pages 153{172, Z�urich, Switzerland, September 1995. Springer-

Verlag, Berlin.

[BM94] M. B�ohlen and R. Marti. On the Completeness of Temporal Database Query Lan-

guages. Proceedings of the First International Conference on Temporal Logic, pages

283{300, July 1994.

[B�oh94] M. B�ohlen. Managing Temporal Knowldege in Deductive Databases. Ph.D. thesis,

Departement f�ur Informatik, ETH Z�urich, Switzerland, 1994.

[BSS96] M. H. B�ohlen, R. T. Snodgrass, and M. D. Soo. Coalescing in Temporal Databases. In

T. M. Vijayaraman, A. Buchmann, C. Mohan, and N. L. Sarda, editors, Proceedings

of the Twenty-second International Conference on Very Large Data Bases, pages

180{191. Morgan Kaufmann Publishers, Mumbai (Bombay), India, September 1996.

[CCT93] J. Cli�ord, A. Croker, and A. Tuzhilin. On the Completeness of Query Languages for

Grouped and Ungrouped Historical Data Models. In A. Tansel, J. Cli�ord, S. Gadia,

S. Jajodia, A. Segev, and R. T. Snodgrass, editors, Temporal Databases: Theory,

Design, and Implementation, pages 496{533. Benjamin/Cummings Publishing Com-

pany, 1993.

[Cel95] J. Celko. SQL for Smarties: Advanced SQL Programming. Morgan Kaufmann Pub-

lishers, 1995.

[CG85] S. Ceri, G. Gottlob. Translating SQL Into Relational Algebra: Optimization, Seman-

tics, and Equivalence of SQL Queries. IEEE Transactions on Software Engineering

11(4):324{345, April 1985.

[CK90] C. C. Chang and H. J. Keisler. Model Theory. North-Holland, Amsterdam, 3rd

edition, 1990.

[Gad88] S. K. Gadia. A Homogeneous Relational Model and Query Languages for Temporal

Databases. ACM Transactions on Database Systems, 13(4):418{448, December 1988.

[GB93] S. K. Gadia and G. Bhargava. SQL-like Seamless Query of Temporal Data. In R. T.

Snodgrass, editor, Proceedings of the International Workshop on an Infrastructure

for Temporal Databases, Arlington, Texas, June 1993.

[GN93] S. K. Gadia and S. S. Nair. Temporal Databases: A Prelude to Parametric Data.

In A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass,

editors, Temporal Databases: Theory, Design, and Implementation, pages 28{66.

Benjamin/Cummings Publishing Company, 1993.

43

[GT91] A. Van Gelder and R. W. Topor. Safety and Translation of Relational Calculus

Queries. ACM Transactions on Database Systems, 16(2):235{278, June 1991.

[Jac83] M. A. Jackson. System Development. Prentice-Hall International Series in Computer

Science. Prentice-Hall International, 1983.

[JCE+94] C. S. Jensen, J. Cli�ord, R. Elmasri, S. K. Gadia, P. Hayes, and S. Jajodia, editors.

A Concensus Glossary of Temporal Database Concepts. ACM SIGMOD Record,

23(1):52{65, March 1994.

[JSS94] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying Temporal Models via a

Conceptual Model. Information Systems, 19(7):513{547, December 1994.

[Llo87] J. W. Lloyd. Logic Programming. Symbolic Computation, Springer Verlag, Berlin,

2nd edition, 1987.

[LM96] N. A. Lorentzos and Y. G. Mitsopoulos. SQL Extension for Interval Data. IEEE

Transactions on Knowledge and Data Engineering, to appear.

[Lor93] N. Lorentzos. The Interval-extended Relational Model and Its Application to Valid-

time Databases. In A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and

R. T. Snodgrass, editors, Temporal Databases: Theory, Design, and Implementation,

Chapter 3, pages 67{91. Benjamin/Cummings Publishing Company, 1993.

[MS91] L. E. McKenzie and R. T. Snodgrass. Evaluation of Relational Algebras Incorpo-

rating the Time Dimension in Databases. ACM Computing Surveys, 23(4):501{543,

December 1991.

[MS93] J. Melton and A. R. Simon. Understanding the new SQL: A Complete Guide. Morgan

Kaufmann Publishers, San Mateo, California, 1993.

[NA87] S. B. Navathe and R. Ahmed. TSQL - A Language Interface for History Databases.

In Proceedings of the Conference on Temporal Aspects in Information Systems, pages

113{128. AFCET, May 1987.

[NA89] S. B. Navathe and R. Ahmed. A Temporal Relational Model and a Query Language.

Information Sciences, 49:147{175, 1989.

[NA93] S. Navathe and R. Ahmed. Temporal Extensions to the Relational Model and SQL.

In A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass,

editors, Temporal Databases: Theory, Design, and Implementation, pages 92{109.

Benjamin/Cummings Publishing Company, 1993.

[NG93] S. Nair and S. Gadia. Algebraic Optimization in a Relational Model for Temporal

Databases. In R. T. Snodgrass, editor, Proceedings of the International Workshop

on an Infrastructure for Temporal Databases, Arlington, Texas, June 1993.

[SA85] R. T. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In S. Navathe,

editor,Proceedings of the ACM SIGMOD International Conference on Management

of Data, pages 236{246. Austin, Texas, May 1985.

[Sar90] N. Sarda. Algebra and Query Language for a Historical Data Model. IEEE Computer

Journal, 33(1):11{18, February 1990.

44

[Sar93] N. Sarda. HSQL: A Historical Query Language. In A. Tansel, J. Cli�ord, S. Gadia,

S. Jajodia, A. Segev, and R. T. Snodgrass, editors, Temporal Databases: Theory,

Design, and Implementation. Benjamin/Cummings Publishing Company, 1993.

[SBJS96a] R. T. Snodgrass, M. H. B�ohlen, C. S. Jensen, and A. Steiner. Adding Valid Time

to SQL/Temporal. ANSI Expert's Contribution, ANSI X3H2-96-501r1, ISO/IEC

JTC1/SC21/ WG3 DBL MAD{146r2, International Organization for Standardiza-

tion, November 1996.

[SBJS96b] R. T. Snodgrass, M. H. B�ohlen, C. S. Jensen, and A. Steiner. Adding Transac-

tion Time to SQL/Temporal. ANSI Expert's Contribution, ANSI X3H2{96{502r2,

ISO/IEC JTC1/SC21/WG3 DBL MCI{147r2, International Organization for Stan-

dardization, November, 1996.

[Sch77] B. Schueler. Update Reconsidered. In G. M. Nijssen, editor, Architecture and Models

in Data Base Management Systems. North Holland Publishing Co., 1977.

[SJS95] M. D. Soo, C. J. Jensen, and R. T. Snodgrass. An Algebra for TSQL2. Chapter 27,

pages 505{546 in [Sno95].

[Sno87] R. T. Snodgrass. The Temporal Query Language TQuel. ACM Transactions on

Database Systems, 12(2):247{298, June 1987.

[Sno90] R. T. Snodgrass. Temporal Databases: Status and Research Directions. ACM SIG-

MOD Record, 19(4):83{89, December 1990.

[Sno93] R. T. Snodgrass. An Overview of TQuel. In A. Tansel, J. Cli�ord, S. Gadia, S. Ja-

jodia, A. Segev, and R. T. Snodgrass, editors, Temporal Databases: Theory, Design,

and Implementation, Chapter 6, pages 141{182. Benjamin/Cummings Publishing

Company, 1993.

[Sno95] R. T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer Academic

Publishers, Boston, 1995.

[TJB97] K. Torp, C. S. Jensen, and M. H. B�ohlen. Layered Implementation of Temporal

DBMSs|Concepts and Techniques. In Proceedings of the Fifth International Confer-

ence On Database Systems For Advanced Applications, Melbourne, Australia, April

1997.

[TL82] D. C. Tsichritzis and F. H. Lochovsky. Data Models. In Software Series. Prentice-

Hall, 1982.

[Tom96] D. Toman. Point vs. Interval-based Query Languages for Temporal Databases. In

Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, pages 58{67, Montreal, Canada, June 1996.

[Wie73] G. Wiederhold. How to Write a Schema for a Time Oriented Medical Record Data

Bank. Technical report, Standford University, 1973.

[You82] E. Yourdon. Managing the System Life Cycle. Yourdon Press, 1982.

45

Function Semantics if r is a valid-time relation

�
vt
tp (r) fhti j 9V T (htjjV T i 2 r ^ V T overlaps tp)g

�
tt
tp(r) fhtjjV T i j htjjV T i 2 rg

�
vt
per(r) fhtjjV T i j 9V T

0
(htjjV T

0
i 2 r ^ V T

0
overlaps per ^ V T = intersect(V T

0
; per))g

�
tt
per(r) fhtjjV T i j htjjV T i 2 rg

SN
vt
(r) fht; V T i j htjjV T i 2 rg

SN
tt
(r) fhtjjV T i j htjjV T i 2 rg

Function Semantics if r is a transaction-time relation

�
vt
tp (r) fhtjjTT i j htjjTT i 2 rg

�
tt
tp(r) fhti j 9TT (htjjTT i 2 r ^ TT overlaps tp)g

�
vt
per(r) fhtjjTT i j htjjTT i 2 rg

�
tt
per(r) fhtjjTT i j 9TT

0
(htjjTT

0
i 2 r ^ TT

0
overlaps per ^ TT = intersect(TT

0
; per))g

SN
vt
(r) fhtjjTT i j htjjTT i 2 rg

SN
tt
(r) fht; TT i j htjjTT i 2 rg

Function Semantics if r is a bitemporal relation

�
vt
tp (r) fhtjjTT i j 9V T (htjjV T; TT i 2 r ^ V T overlaps tp)g

�
tt
tp(r) fhtjjV T i j 9TT (htjjV T; TT i 2 r ^ TT overlaps tp)g

�
vt
per(r) fhtjjV T; TT i j 9V T

0
(htjjV T

0
; TT i 2 r ^ V T

0
overlaps per ^ V T = intersect(V T

0
; per))g

�
tt
per(r) fhtjjV T; TT i j 9TT

0
(htjjV T; TT

0
i 2 r ^ TT overlaps per ^ TT = intersect(TT

0
; per))g

SN
vt
(r) fht; V T jjTT i j htjjV T; TT i 2 rg

SN
tt
(r) fht; TT jjV T i j htjjV T; TT i 2 rg

Table 8: Timeslice and Snapshot Operators

A Auxiliary Algebraic Operators

Table 8 de�nes the auxiliary operators that timeslice relations and turn timestamps into regular,

explicit attributes. Unlike the other algebraic operators de�ned in this paper, these operators

are overloaded to apply to valid-time, transaction-time, and bitemporal relations, meaning that

the type of the argument relation determines the operation to be performed. This property was

exploited to concisely de�ne the semantics of core ATSQL statements, in Table 3.

The functions have variants for both valid and transaction time. For example, the valid-time

version of the �rst timeslice operation, �vttp , selects all tuples in the argument relation with a

timestamp that overlaps time point tp. The time dimension used in this selection is not present

in the result relation. If valid time is not supported by the relation, the function degenerates to

the identity function.

The second timeslice operation, �per, returns all argument tuples that overlap with period

per. The timestamp of a result tuple is the intersection of per with the tuple's original timestamp.

The snapshot operation SN turns a time dimension into an explicit attribute. This operation

is not needed at the implementation level where all attributes are explicit.

B The Bitemporal Relational Algebra

As the valid-time algebra was a natural generalization of the relational algebra, so is the bitem-

poral algebra a natural generalization of the valid-time algebra. It also respects snapshot re-

ducibility, and it only di�ers from the other algebra in that it deals with bitemporal rectangles

rather than with periods. Bitemporal selection, projection, set union, and join (see Figure 15)

are straightforward extensions.

Bitemporal di�erence is substantially more complex. It is de�ned in terms of three auxiliary

predicates, to be de�ned below. The idea behind the operator's de�nition is illustrated in

Figure 16, where the large rectangle with a thick frame represents the time region of an r1-

tuple, and the black ones are rectangles associated with value-equivalent r2-tuples. The result

46

�bic (r)
4

= fhtjjV T; TT i j htjjV T; TT i 2 r ^ c(htjjV T; TT i)g

�bif (r)
4

= fht1jjV T; TT i j 9t2 (ht2jjV T; TT i 2 r ^ t1 = f(ht2jjV T; TT i))g

r1 [
bi r2

4

= fhtjjV T; TT i j htjjV T; TT i 2 r1 _ htjjV T; TT i 2 r2g

r1 �
bi r2

4

= fhht1; V T1; TT1i � ht2; V T2; TT2ijjV T; TT i j

ht1jjV T1; TT1i 2 r1 ^ ht2jjV T2; TT2i 2 r2 ^

V T = intersect(V T1; V T2) ^ TT = intersect(TT1; TT2) ^
V T1 overlaps V T2 ^ TT1 overlaps TT2g

r1 n
bi r2

4

= fhtjjV T; TT i j 9V T1; TT1(htjjV T1; TT1i 2 r1 ^
candidate tuple(t; V T; TT; V T1; TT1; r2) ^
non overlapping(t; V T; TT; r2) ^
unsplittable(t; V T; TT; V T1; TT1; r2))

Figure 15: The Bitemporal Algebra

B

C

A

D

Figure 16: Bitemporal Di�erence

of the di�erence r1 n
bi r2 is a set of value-equivalent tuples, one for each of the eleven white

rectangles identi�ed by the dashed lines.

The so-called determining time lines associated with r2-tuples play a crucial role in splitting

r1-tuples and thus in de�ning the result tuples. Determining time lines start at each vertex of an

r2-tuple, and they extend until they are blocked by a value-equivalent r2-tuple or until they reach

the border of the r1-tuple. Before explaining the issues in more detail, it is convenient to �rst

introduce some terminology. Each bitemporal tuple has associated a timestamp that encodes

a rectangular region in the space spanned by transaction time and valid time. This region,

we term the tuple's time rectangle, and the rectangle corners are termed time vertices. Their

coordinates are the tuple's time coordinates which thus correspond to the tuple's transaction

and valid time. The rectangle sides are time edges Finally, a determining time line is a vertical

or horizontal line segment that originates from some time vertex. We omit the modi�er \time"

from these terms when no confusion results.

The de�nition in Figure 15 identi�es three requirements to a result tuple X.

1. The time coordinates of X are derived either from the time coordinates of a (value-

equivalent) r1-tuple, or from (value-equivalent) r2-tuples that satisfy two restrictions:

(a) They must temporally overlap with the r1-tuple whose time rectangle contains the

time rectangle of X, and

(b) the time vertices of X must have direct access to the originating r2-tuple vertices,

meaning that no value-equivalent r2-tuple lies between originating and resulting ver-

tices.

47

2. X does not temporally overlap with any value-equivalent r2-tuple.

3. No determining time lines de�ned by r2-tuples that are value-equivalent to X cross its

time rectangle.

The �rst requirement, represented by the predicate candidate tuple, is de�ned as a conjunc-

tion of four subformulas, each of which constrains one of the time vertices of a tuple htjjV T; TT i

of r1 n
bi r2.

candidate tuple(t; V T; TT; V T1; TT1; r2) �

TT� = TT�
1
_

9V T2; TT2(htjjV T2; TT2i 2 r2 ^ (TT� = TT�
2
_ TT� = TT+

2
) ^

TT�
1
� TT� < TT+

1
^ V T�

1
< V T+

2
^ V T�

2
< V T+

1
^

:9V T2; TT2(htjjV T2; TT2i 2 r2 ^ TT
�

2
< TT� < TT+

2
^

(V T+

2
< V T+

2
� V T� _ V T�

2
> V T�

2
� V T+))) ^

TT+ = TT+

1
_

9V T3; TT3(htjjV T3; TT3i 2 r2 ^ (TT+ = TT�
3
_ TT+ = TT+

3
) ^

TT�
1
< TT+ � TT+

1
^ V T�

1
< V T+

3
^ V T�

3
< V T+

1
^

:9V T3; TT3(htjjV T3; TT3i 2 r2 ^ TT
�

3
< TT+ < TT+

3
^

(V T+

3
< V T+

3
� V T� _ V T�

3
> V T�

3
� V T+))) ^

V T� = V T�
1
_

9V T4; TT4(htjjV T4; TT4i 2 r2 ^ (V T� = V T�
4
_ V T� = V T+

4
) ^

V T�
1
� V T� < V T+

1
^ TT�

1
< TT+

4
^ TT�

4
< TT+

1
^

:9V T4; TT4(htjjV T4; TT4i 2 r2 ^ V T
�

4
< V T� < V T+

4
^

(TT+

4
< TT+

4
� TT� _ TT�

4
> TT�

4
� TT+))) ^

V T+ = V T+

1
_

9V T5; TT5(htjjV T5; TT5i 2 r2 ^ (V T+ = V T�
5
_ V T+ = V T+

5
) ^

V T�
1
< V T+ � V T+

1
^ TT�

1
< TT+

5
^ TT�

5
< TT+

1
^

:9V T5; TT5(htjjV T5; TT5i 2 r2 ^ V T
�

5
< V T+ < V T+

5
^

(TT+

5
< TT+

5
� TT� _ TT�

5
> TT�

5
� TT+)))

The �rst two lines of the �rst conjunct have a generative purpose, since they identify a

collection of candidate transaction-time start values for htjjV T; TT i. The left-most diagram

below illustrates all such candidate values for the relation depicted in Figure 16:

b c b ca b c d e f g d d ee

Not all time lines originating from r2-tuples provide suitable time coordinates, though. The

subsequent three lines of the de�nition eliminate some of the undesirable ones. Speci�cally, the

third line requires the time edge of an r2-tuple that generates a candidate transaction time value

to overlap the time rectangle of the relevant r1-tuple. Time lines a, f and g above must then be

dropped, as indicated in the middle diagram.

The fourth and �fth lines account for the blocking e�ect of r2-tuples on candidate time lines.

In the example, the upper part of line d is inadequate. The lines that meet all the restrictions,

48

indicated in the right-most diagram, correspond to determining time lines for r1 and r2, provided

they are con�ned to the time rectangle of the r1-tuple.

The remaining conjuncts of candidate tuple impose equivalent constraints on each of the

other time coordinates of r1 n
bi r2-tuples.

Next, the non overlapping of r1 n
bi r2- and r2-tuples is enforced by the following predicate.

non overlapping(t; V T; TT; r2) �

8V T2; TT2(htjjV T2; TT2i 2 r2) (V T+ � V T�
2
_ V T+

2
� V T� _ TT+ � TT�

2
_ TT+

2
� TT�))

In the example, this predicate excludes the (aggregate) time rectangle ABCD in Figure 16, since

it contains the rectangle of an r2-tuple.

Finally, the partition of the time rectangle of an r1-tuple must be maximal according to the

previous restrictions, i.e., there should not be any additional determining time lines splitting

a time rectangle of a tuple in r1 n
bi r2. This can be ensured by requiring that, whenever the

time edge of an r2-tuple could originate an additional splitting line, there should exist another

r2-tuple blocking its e�ect:

unsplittable(htjjV T; TT i; htjjV T1; TT1i; r2) �

8V T2; TT2; tt(htjjV T2; TT2i 2 r2 ^ (tt = TT�
2
_ tt = TT+

2
) ^ TT� < tt < TT+ ^

(V T�
1
< V T�

2
< V T+

1
_ V T�

1
< V T+

2
< V T+

1
))

9V T2; TT2(htjjV T2; TT2i 2 r2 ^ TT
�

2
< tt < TT+

2
^

(V T+

2
< V T+

2
� V T� _ V T�

2
> V T�

2
� V T+))) ^

8V T3; TT3; vt(htjjV T3; TT3i 2 r2 ^ (vt = V T�
3
_ vt = V T+

3
) ^ V T� < vt < V T+ ^

(TT�
1
< TT�

3
< TT+

1
_ TT�

1
< TT+

3
< TT+

1
))

9V T3; TT3(htjjV T3; TT3i 2 r2 ^ V T
�

3
< vt < V T+

3
^

(TT+

3
< TT+

3
� TT� _ TT�

3
> TT�

3
� TT+)))

Hence, ABCD in the �gure also does not qualify as the time rectangle of an r1n
bir2-tuple because

various (unblocked) determining time lines split it into seven rectangles.

Finally, we de�ne coalescing of bitemporal relations. Transaction-time coalescing, coalbitt ,

denoted in ATSQL queries by (TRANSACTION), guarantees maximal transaction-time periods

and is illustrated in Figure 17. The �ve white rectangles illustrate the times of �ve value-

VTt

tt

vt

VTb

TTrTTl

Figure 17: Transaction Time Coalescing of a Bitemporal Relation

equivalent tuples in the uncoalesced relation. The gray tuple is one of the tuples resulting from

coalescing. (Transaction-time coalescing ensures maximal expansion in the transaction-time

dimension and yields no coalescing in the valid-time dimension.)

49

Formally, coalescing is de�ned as follows.

coalbitt(r)
4

= fhtjjV T; TT i j

9V T1; TTr(htjjV T1; TTri 2 r ^ TT
+ = TT+

r) ^

9V T2; TTl(htjjV T2; TTli 2 r ^ TT
� = TT�l) ^

9V Tt; TT3(htjjV Tt; TT3i 2 r ^ (V T+ = V T�t _ V T+ = V T+

t) ^ TT
�

3
< TT+ ^ TT+

3
> TT�) ^

9V Tb; TT4(htjjV Tb; TT4i 2 r ^ (V T� = V T+

b _ V T� = V T�b) ^ TT
�

4
< TT+ ^ TT+

4
> TT�) ^

:9V T5; TT5(htjjV T5; TT5i 2 r ^ (V T� < V T+

5
< V T+ _ V T� < V T�

5
< V T+) ^

TT�
5
� TT+ ^ TT+

5
� TT�) ^

8V T6; TT6(htjjV T6; TT6i 2 r ^ TT� � TT�
6
< TT+ ^ V T�

6
� V T� ^ V T+

6
� V T+)

9V T7; TT7(htjjV T7; TT7i 2 r ^ TT
�

7
< TT�

6
� TT+

7
^

V T�
7
� V T� ^ V T+

7
� V T+)) ^

:9V T8; TT8(htjjV T8; TT8i 2 r ^ (TT�
8
< TT� � TT+

8
_ TT�

8
� TT+ < TT+

8
) ^

V T�
8
< V T+ ^ V T+

8
> V T�)g

In the �rst two lines we search for two tuples de�ning the transaction-time start (TT�
l) and

the transaction-time end (TT+
r) of a coalesced tuple. In lines 3 and 4, we do the same for

valid-time start and end. Lines 5 and 6 ensure that no coalescing in the valid-time dimension

is done, i.e., the extension in the valid-time dimension is as small as possible. Lines 7 to 9

ensure that there are no holes, i.e., all tuples with a transaction-time start contained in the �nal

maximal transaction time must be covered by another tuple. The last two lines ensure that we

get maximal extensions in transaction time, i.e., that no tuple exists that could possibly extend

the tuple further.

Valid-time coalescing of a bitemporal relation r, coalbivt(r), follows the same principle, the

only di�erence being that the roles of valid and transaction time are reversed. The de�nition is

thus omitted.

C Proof of Theorem 5.1

To prove Theorem 5.1, we consider each equivalence in turn. The two sides of the equivalence

for selection are de�ned as follows.

�vttp (�
vt
c (r)) = ft j htjjV T i 2 r ^ c(ht; V T i) ^ V T overlaps tpg

�c(�
vt
tp (r)) = ft j htjjV T i 2 r ^ V T overlaps tp ^ c(t)g

To show that these de�nitions are equivalent, we �rst exploit the commutativity of conjunction

to rewrite \V T overlaps tp ^ c(t)" to \c(t) ^ V T overlaps tp." What remains is to prove that

c(ht; V T i) and c(t) are equivalent. The same predicate c occurs on both sides of the equality,

and since the formulation of the theorem disallows the use of V T in predicate c, the equality

and thus the �rst equivalence follows.

The equivalence for projections follows similarly.

�vttp (�
vt
f (r)) = ft1 j 9t2(ht2jjV T i 2 r ^ t1 = f(ht2; V T i)) ^ V T overlaps tpg

�f (�
vt
tp (r)) = ft1 j 9t2(ht2jjV T i 2 r ^ V T overlaps tp ^ t1 = f(t2))g

The only di�erence with respect to selection is that we are dealing with a projection function

rather than with a selection predicate. Similarly to before, we �rst commute two terms and then

observe that V T may be omitted as an argument of f because the use of f is disallowed in the

theorem, meaning that (ht2; V T i) and f(t2) are equivalent.

Considering the union operators, we once again apply the de�nitions of the operators involved

to the two sides.

�vttp (r1 [
vt r2) = ft j (htjjV T i 2 r1 _ htjjV T i 2 r2) ^ V T overlaps tpg

�vttp (r1) [�
vt
tp (r2) = ft j (htjjV T i 2 r1 ^ V T overlaps tp) _ (htjjV T i 2 r2 ^ V T overlaps tp)g

50

Transforming the �rst formula into disjunctive normal form proves the equivalence.

The equivalence involving the Cartesian products is somewhat more complicated to prove.

��r1:V T;r2:V T (�
vt
tp (r1 �

vt
c r2)) =ft1 � t2 j ht1jjV T1i 2 r1 ^ ht2jjV T2i 2 r2 ^

V T1 overlaps V T2 ^ V T = intersect(V T1; V T2) ^ V T overlaps tpg

�vttp (r1)�c �
vt
tp (r2) =

ft1 � t2 j ht1jjV T1i 2 r1 ^ V T1 overlaps tp ^ ht2jjV T2i 2 r2 ^ V T2 overlaps tpg

After the usual initial reordering of the terms of the formula, we are left with the proof of

the equivalence between \V T1 overlaps V T2 ^ V T = intersect(V T1; V T2) ^ V T overlaps tp" and

\V T1 overlaps tp ^ V T2 overlaps tp." We consider each formula in turn.

V T1 overlaps V T2 ^ V T = intersect(V T1; V T2) ^ V T overlaps tp

+

(elimination of V T)

+

V T1 overlaps V T2 ^ intersect(V T1; V T2) overlaps tp

+

(replace periods with points, cf. Table 2)

+

V T+
1 > V T�

2 ^ V T+
2 > V T�

1 ^max(V T�
1 ; V T

�
2) < tp ^min(V T+

1 ; V T
+
2) > tp

+

(max(A;B) < C � A < C ^B < C)

(min(A;B) > C � A > C ^B > C)

+

V T+
1 > V T�

2 ^ V T+
2 > V T�

1 ^ V T�
1 < tp ^ V T�

2 < tp ^ V T+
1 > tp ^ V T+

2 > tp

Next we rewrite the second formula.

V T1 overlaps tp ^ V T2 overlaps tp

+

(replace periods with points, cf. Table 2)

+

V T�
1 < tp ^ V T+

1 > tp ^ V T�
2 < tp ^ V T+

2 > tp

+

(A < C ^ B > C) B > A)

+

V T�
1 < tp ^ V T+

1 > tp ^ V T�
2 < tp ^ V T+

2 > tp ^ V T+
1 > V T�

2 ^ V T+
2 > V T�

1

Apart from the order of the terms, the rewritten formulas are identical.

The �nal equivalence involves valid-time di�erence:

�vttp (r1 n
vt r2) = ft j �1g

�vttp (r1) n �
vt
tp (r2) = ft j �2g

where �1 is de�ned as

9V T; V T1
htjjV T1i 2 r1 ^

(9V T2(htjjV T2i 2 r2 ^ V T
�

1
� V T+

2
^ V T� = V T+

2
) _ V T� = V T�

1
) ^

(9V T3(htjjV T3i 2 r2 ^ V T
+

1
� V T�

3
^ V T+ = V T�

3
) _ V T+ = V T+

1
) ^

V T� < V T+ ^

:9V T4(htjjV T4i 2 r2 ^ V T4 overlaps V T) ^
V T overlaps tpg

51

and �2 is de�ned as

9V T1(htjjV T1i 2 r1 ^ V T1 overlaps tp)| {z }
 1

^ :9V T2(htjjV T2i 2 r2 ^ V T2 overlaps tp)| {z }
 2

:

To prove the two sets equivalent, we have to show that the de�ning formulas are equivalent, i.e.,

�1 � �2. We do so by proving two implications, i.e., �1) �2 and �1 (�2.

A) (�1) �2) With �2 � 1^ 2 we can rewrite �1) �2 to (�1) 1)^ (�1) 2) and prove

each of the conjuncts in turn. The proof is based on the following theorems.

T1 �1) �2) (�1 ^ �3)) �2
T2 �1) �2) (�3 ^ �1)) (�3 ^ �2)
T3 �1) (�2) �3) � (�1 ^ �2)) �3
T4 (�1) �2) ^ (�3) �4)) (�1 ^ �3)) (�2 ^ �4)
T5 �1) 8v �2 � 8v(�1) �2) if v does not occur in �1

T6 X � Y � 8z(z 2 X) z 2 Y)

T7 V T2 � V T1 � V T�
1
� V T�

2
^ V T+

2
� V T+

1

T8 tp 2 V T � V T overlaps tp

T9 If � ` (�)), then � ` ((9v�)) (9v))
T10 � ` 8v� i� � ` �

The �rst sub-proof starts with two formulas that are trivially true.

(1) (9V T2(htjjV T2i 2 r2 ^ V T
�

1
� V T+

2
^ V T� = V T+

2
) _ V T� = V T�

1
))

V T�
1
� V T�

(2) (9V T3(htjjV T3i 2 r2 ^ V T
+

1
� V T�

3
^ V T+ = V T�

3
) _ V T+ = V T+

1
))

V T+ � V T+

1

We then apply the above theorems until �1) 1 results. (With each intermediate formula, we

indicate the formulas and theorems that were used deriving it.)

(3) (9V T2(htjjV T2i 2 r2 ^ V T
�

1
� V T+

2
^ V T� = V T+

2
) _ V T� = V T�

1
) ^

(9V T3(htjjV T3i 2 r2 ^ V T
+

1
� V T�

3
^ V T+ = V T�

3
) _ V T+ = V T+

1
))

V T � V T1 (1); (2); T4; T7

(4) (9V T2(htjjV T2i 2 r2 ^ V T
�

1
� V T+

2
^ V T� = V T+

2
) _ V T� = V T�

1
) ^

(9V T3(htjjV T3i 2 r2 ^ V T
+

1
� V T�

3
^ V T+ = V T�

3
) _ V T+ = V T+

1
) ^

V T� < V T+ ^

:9V T4(htjjV T4i 2 r2 ^ V T4 overlaps V T))

V T � V T1 (3); T1

(5) (9V T2(htjjV T2i 2 r2 ^ V T
�

1
� V T+

2
^ V T� = V T+

2
) _ V T� = V T�

1
) ^

(9V T3(htjjV T3i 2 r2 ^ V T
+

1
� V T�

3
^ V T+ = V T�

3
) _ V T+ = V T+

1
) ^

V T� < V T+ ^

:9V T4(htjjV T4i 2 r2 ^ V T4 overlaps V T) ^
tp 2 V T)

tp 2 V T1 (4); T6; T5; T10; T3

(6) htjjV T1i 2 r1 ^

(9V T2(htjjV T2i 2 r2 ^ V T
�

1
� V T+

2
^ V T� = V T+

2
) _ V T� = V T�

1
) ^

(9V T3(htjjV T3i 2 r2 ^ V T
+

1
� V T�

3
^ V T+ = V T�

3
) _ V T+ = V T+

1
) ^

V T� < V T+ ^

:9V T4(htjjV T4i 2 r2 ^ V T4 overlaps V T) ^
V T overlaps tp)

htjjV T1i 2 r1 ^ V T1 overlaps tp (5); T2; T8

52

The introduction of existential quanti�ers (T9) completes the proof.

To prove �1) 2 we start out with the formula below:

:9V T4(htjjV T4i 2 r2 ^ V T4 overlaps V T) ^
V T overlaps tp)

:9V T4(htjjV T4i 2 r2 ^ V T4 overlaps tp)

Again, it is easy to see that the formula is trivially true. Next, we apply T1 followed by T9 to

get

9V T; V T1
htjjV T1i 2 r1 ^

(9V T2(htjjV T2i 2 r2 ^ V T
�

1
� V T+

2
^ V T� = V T+

2
) _ V T� = V T�

1
) ^

(9V T3(htjjV T3i 2 r2 ^ V T
+

1
� V T�

3
^ V T+ = V T�

3
) _ V T+ = V T+

1
) ^

V T� < V T+ ^

:9V T4(htjjV T4i 2 r2 ^ V T4 overlaps V T)^
V T overlaps tp)

:9V T4(htjjV T4i 2 r2 ^ V T4 overlaps tp)

Renaming of a bound variable yields �1) 2.

B) (�1 (�2) We prove �2) �1 by reduction to absurdity, i.e., we show that :�1 ^ �2 leads

to a contradiction. We start with :�1:

8V T; V T1
(htjjV T1i 2 r1 ^

(9V T2(htjjV T2i 2 r2 ^ V T
�
1 � V T+

2 ^ V T� = V T+
2) _ V T

� = V T�
1) ^

(9V T3(htjjV T3i 2 r2 ^ V T
+
1 � V T�

3 ^ V T+ = V T�
3) _ V T

+ = V T+
1) ^

V T� < V T+ ^

V T overlaps tp)

9V T4(htjjV T4i 2 r2 ^ V T overlaps V T4))

We �rst apply standard normalization rules [Llo87, p.113] and quanti�er elimination [CK90,

p.49{58] to get �3:

8V T1(htjjV T1i 2 r1 ^ V T
�

1
� tp < V T+

1
)

9V T4(htjjV T4i 2 r2 ^ V T
+

1
> V T�

4
^ V T+

4
> V T�

1
)) ^

8V T1; V T2(htjjV T1i 2 r1 ^ htjjV T2i 2 r2 ^ V T
�

1
� tp < V T�

2
� V T+

1
)

9V T4(htjjV T4i 2 r2 ^ V T
�

2
> V T�

4
^ V T+

4
> V T�

1
)) ^

8V T1; V T2(htjjV T1i 2 r1 ^ htjjV T2i 2 r2 ^ V T
�

1
� V T+

2
� tp < V T+

1
)

9V T4(htjjV T4i 2 r2 ^ V T
+

1
> V T�

4
^ V T+

4
> V T+

2
)) ^

8V T1; V T2; V T3(htjjV T1i 2 r1 ^ htjjV T2i 2 r2 ^ htjjV T3i 2 r2 ^ V T
�

1
� V T+

2
� tp < V T�

3
� V T+

1
)

9V T4(htjjV T4i 2 r2 ^ V T
�

3
> V T�

4
^ V T+

4
> V T+

2
))

Each conjunct of �3 is represented in the diagram below. The solid lines represent the (times

of the) �rst part of a conjunct, i.e., the part before the implication, whereas the grey rectangles

indicate the time range that must be overlapped by yet another r2-tuple (the second part of the

conjunct, i.e., the part that follows the implication).

53

tp tp tp tp
r1

r2 �������� ������ �������� ������

conjunct 1. 2. 3. 4.

From 1 and the �rst conjunct of �3, it follows that a) there is an r1-tuple x1 = htjjV T1i such

that tp 2 V T1 and b) there is an r2-tuple that temporally overlaps with x1. Since, according

to 2 no r2-tuple contains tp, the overlap must be of the form depicted in either the second or

third diagram. Both cases imply that yet another r2 tuple exists that overlaps the time period

indicated by the gray rectangle. Depending on the time period of r2, we end up with a situation

represented by diagram two, three, or four. (Because of 2, another overlapping is impossible.)

Whatever situation it would imply yet another r2 tuple which is (timely) closer to tp. No �nite

relation r2 can ful�ll this requirement.

54

