
Author(s): J.E.P. Wijnands; W.L.A. Derks Date: January 1999

Temporal databases

State-of-the-art

 Koninklijke KPN N.V.
Alle rechten voorbehouden.
Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen in een
geautomatiseerd gegevensbestand of openbaar gemaakt, in enige vorm of op
enige wijze, hetzij elektronisch, mechanisch door fotokopieën, opnamen of
enige andere manier, zonder voorafgaande schriftelijke toestemming van de
rechthebbende. Het vorenstaande is eveneens van toepassing op gehele of
gedeeltelijke bewerking.
De rechthebbende is met uitsluiting van ieder ander gerechtigd de door derden
verschuldigde vergoedingen voor kopiëren als bedoeld in artikel 17, tweede lid,
Auteurswet 1912 en het K.B. van 20 juni 1974 (Stb.351) zoals gewijzigd bij het
K.B. van 23 augustus 1985 (Stb.471) ex artikel 16b Auteurswet 1912, te innen
en/of daartoe in en buiten rechte op te treden.
Voor het overnemen van delen van deze uitgave ex artikel 16 Auteurswet 1912
dient men zich tot de rechthebbende te wenden.

 Koninklijke KPN N.V.
All rights reserved.
No part of this book may be reproduced in any form, by print, photoprint,
microfilm or any other means without the prior written permission from the
publisher.

KPN Research

Informationsheet issued with Report 30432

Title: Temporal databases:
State-of-the-art

Abstract: To investigate the added value of temporal databases, the
Temporal Database project has been started within the IT
Strategies program. This report is the result of the first activity of
this project which consisted of a literature study in the area of
temporal databases. It describes the state-of-the-art of temporal
databases from an academic point of view as well as from a
commercial point of view.

Author(s): J.E.P. Wijnands; W.L.A. Derks

Reviewer(s): W. Jonker; M.H. Böhlen (Aalborg University)

Key Words: time modelling, database, history analysis, temporal database,
time series

KPN Research
PO box 15000
9700 CD Groningen
The Netherlands

email: {J.E.P.Wijnands, W.L.A.Derks} @kpn.com

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research i

Contents

Management Summary.. iii

Glossary .. v

List of Abbreviations .. vii

1 Introduction ... 1

2 Scientific .. 3

2.1 Motivation ... 3

2.2 Time semantics... 4
2.2.1 Time domains .. 5
2.2.2 Models of time ... 5
2.2.3 Time dimensions.. 6
2.2.4 Storage structures.. 7

2.3 Data models .. 9
2.3.1 Time representation ... 9
2.3.2 Levels of temporal support... 10
2.3.3 Base models .. 11
2.3.4 Temporal dimensions... 11

2.4 Reasoning ... 13
2.4.1 Surrogates ... 13
2.4.2 Coalescing... 13
2.4.3 Granularity ... 14
2.4.4 Aggregates .. 14
2.4.5 Vacuuming... 14
2.4.6 Implementation issues ... 15

2.5 Adjoining database areas... 15
2.5.1 Spatio-temporal databases... 15
2.5.2 Temporal deductive databases .. 16
2.5.3 Temporal real-time databases.. 16

3 A temporal query language... 19

3.1 Upward compatibility with SQL-92 .. 19

3.2 Time ontology... 20

3.3 Base line clock.. 20

Temporal Databases – A state-of-the-art Reportnr. 30432

ii KPN Research

3.4 Data types ... 20

3.5 Table types.. 20

3.6 Levels of temporal functionality .. 21

3.7 ATSQL examples .. 23

4 Tools and products ... 27

4.1 Prototypes... 27

4.2 Time Series ... 28
4.2.1 Modelling of time series ... 28
4.2.2 Operations on time series .. 29
4.2.3 Time series and temporal databases.. 30
4.2.4 Time series products.. 31

5 Analysis and recommendations ... 33

6 References ... 35

Appendix A: Temporal query languages... 37

Appendix B: Relational and Object-Oriented data models 39

Appendix C: Temporal database related activities ... 41

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research iii

Management Summary

In our information society, the amount of data needed for business decisions, is
increasing at an enormous speed. Not only data of the current situation is stored, but
more and more data related to historical events is stored. In a telecommunication
context, examples are historical information on priceplans of customers for the past three
years or occurred network errors for the past six months. This historical data could be
used for prediction of customer or network behaviour. A more general example of
systems containing time are data warehouses. The number of data warehouse databases
for analysis purposes is increasing. Currently, the emphasis is on support for marketing,
sales and management but e.g. ICT management could also be supported by data
warehouses.
Current applications only make limited use of historical data, because it is rather
complex to model and reason over time. For applications to make better use of historical
data, implicit modelling and support of time in the database is desirable. Databases
providing this kind of support are called temporal databases.

To investigate the added value of temporal databases, the Temporal Database project
has been started within the IT Strategies program. This report is the result of a literature
study in the area of temporal databases. It describes the state-of-the-art of temporal
databases from an academic point of view as well as from a commercial point of view.
The report gives a detailed description of the concepts behind modelling and reasoning
with time and their application in commercial products. As such, this report is intended
for technical readers.

After some twenty years of temporal database research, consensus on concepts and
aspects has been reached within the temporal database community. The concepts of
Valid Time (when is a fact true in reality) and Transaction Time (when is a fact stored in
the database) are considered the cornerstones for temporal support. As compatibility
with existing database systems has high priority, most researchers have tried to extend
the relational or the object oriented model. Extensions of the relational model where the
most succesful probably because most current databases are relational databases. The
ideas and concepts of the ATSQL2 project are the most likely candidates to be
incorporated in the temporal module of the new SQL3 standard as they are fully upward
compatible with existing relational database applications and provide easy to use,
powerful SQL expressions for reasoning over historical data.

Up to now, major database vendors like Oracle, Informix, IBM and Microsoft do not show
real interest for temporal support in their products althought prototypes and commercial
front-ends have shown the possiblities of it. When asked for it, the vendors refer to their
support of time series. But time series databases are not the same as temporal. We
have the feeling that database vendors and database users are waiting for each other.
As long as vendors do not offer temporal support, the customers are not aware of the
potentials of it and as long as the customers do not ask for temporal support, the vendors
will not offer it. For the time being, comparing experiments should be carried out to get a
better idea of the added value of temporal support.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research v

Glossary

taken from [TDBG98]

Name Definition
Bitemporal Relation A bitemporal relation is a relation with exactly one system-supported valid

time and exactly one system-supported transaction time. As with valid-time
relations and transaction-time relations, there are no restrictions concerning
how either of these temporal dimensions may be incorporated into the tuples.

Calendar A calendar provides a human interpretation of time. As such, calendars
ascribe meaning to temporal values where the particular meaning or
interpretation is relevant to the user. In particular, calendars determine the
mapping between human-meaningful time values and an underlying time-line.

Chronon In a data model, a one-dimensional chronon is a non-decomposable time
interval of some fixed, minimal duration. An n-dimensional chronon is a non-
decomposable region in n-dimensional time. Important special types of
chronons include valid-time, transaction-time, and bitemporal chronons.

Coalescing The coalesce operation takes as argument a set of value-equivalent tuples
and returns a single tuple which is snapshot equivalent with the argument set
of tuples.

Duration A duration is an non-directed amount of time with known length, but no
specific starting or ending instants. For example, the duration ‘ ‘one week’’ is
known to have a length of seven days, but can refer to any block of seven
consecutive days.

Dynamic Valid-time
Partitioning

In dynamic valid-time partitioning the valid-time elements used in the
partitioning are determined solely from the timestamps of the relation.

Event An event is an instantaneous fact, i.e., something occurring at an instant. An
event is said to occur at a chronon t if it occurs at any instant during t.

Instant An instant is a time point on an underlying time axis.
Instantaneous
Aggregation

In instantaneous aggregation, for each chronon on the valid time-line, the
aggregate is applied to all tuples valid at that instant.

Lifespan The lifespan of a database object is the time over which it is defined. The
valid-time lifespan of a database object refers to the time when the
corresponding object exists in the modeled reality. Analogously, the
transaction-time lifespan refers to the time when the database object is
current in the database.

Macro-event A macro-event is a wholistic fact with duration, i.e., something occurring over
an interval taken as a whole. A macro-event is said to occur over an interval I
if it occurs over the set of contiguous chronons representing I (considered as
a whole).

Schema Evolution A database system supports schema evolution if it permits modification of the
database schema without the loss of extant data. No support for previous
schemas is required.

Schema Versioning A database system accommodates schema versioning if it allows the
querying of all data, both retrospectively and prospectively, through user-
definable version interfaces.

Snapshot Relation Relations of a conventional relational database system incorporating neither
valid-time nor transaction-time timestamps are snapshot relations.

Span A span is a directed duration of time. A span is either positive, denoting
forward motion of time, or negative, denoting backwards motion in time.

Static Valid-time In static valid-time partitioning the valid-time elements used are determined

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Researchvi

Partitioning solely from fixed points on a calendar, such as the start of each year.
Temporal Data Type The user-defined temporal data type is a time representation specially

designed to meet the specific needs of the user. For example, the designers
of a database used for class scheduling in a school might be based on a
‘ ‘Year:Term:Day:Period’’ format. Terms belonging to a user-defined temporal
data type get the same query language support as do terms belonging to
built-in temporal data types such as the DATE data type.

Temporal Database A temporal database is a database that supports some aspect of time, not
counting user-defined time.

Temporal Element A temporal element is a finite union of n-dimensional time intervals. Special
cases of temporal elements include valid-time elements, transaction-time
elements, and bitemporal elements. They are finite unions of valid-time
intervals, transaction-time intervals, and bitemporal intervals, respectively.

Temporal Modality Temporal modality concerns the way according to which a fact originally
associated with a chronon or interval at a given granularity distributes itself
over the corresponding chronons at finer granularities or within the interval at
the same level of granularity.

Time Interval A time interval is an anchored span. In a system that supports a time line
composed of chronons, an interval may be represented by a set of contiguous
chronons.

Timestamp A timestamp is a time value associated with some object, e.g., an attribute
value or a tuple. The concept may be specialized to valid timestamp,
transaction timestamp, interval timestamp, instant timestamp, bitemporal-
element timestamp, etc.

Transaction Time A database fact is stored in a database at some point in time, and after it is
stored, it is current until logically deleted. The transaction time of a database
fact is the time when the fact is current in the database and may be retrieved.
Transaction times are consistent with the serialization order of the
transactions. Transaction-time values cannot be later than the current
transaction time. Also, as it is impossible to change the past, transaction
times cannot be changed. Transaction times may be implemented using
transaction commit times, and are system-generated and -supplied.

Transaction-time
Relation

A transaction-time relation is a relation with exactly one system supported
transaction time. As for valid-time relations, there are no restrictions as to
how transaction times may be incorporated into the tuples.

User-defined Time User-defined time is an uninterpreted attribute domain of date and time. User-
defined time is parallel to domains such as ‘ ‘money’’ and integer - unlike
transaction time and valid time, it has no special query language support. It
may be used for attributes such as ‘ ‘birth day’’ and ‘ ‘hiring date.’’

Valid time The valid time of a fact is the time when the fact is true in the modeled reality.
A fact may have associated any number of instants and time intervals, with
single instants and intervals being important special cases. Valid times are
usually supplied by the user.

Valid-time
Cumulative
Aggregation

In cumulative aggregation, for each valid-time element of the valid-time
partitioning (produced by either dynamic or static valid-time partitioning), the
aggregate is applied to all tuples associated with that valid-time element. The
value of the aggregate at any instant is the value computed over the
partitioning element that contains that instant.

Valid-time
Partitioning

Valid-time partitioning is the partitioning (in the mathematical sense) of the
valid time-line into valid-time elements. For each valid-time element, we
associate an interval of the valid time-line on which a cumulative aggregate
may then be applied.

Valid-time Relation A valid-time relation is a relation with exactly one system supported valid
time. There are no restrictions on how valid times may be incorporated into
the tuples; e.g., the valid-times may be incorporated by including one or more
additional valid-time attributes in the relation schema, or by including the
valid-times as a component of the values of the application-specific attributes.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research vii

List of Abbreviations

DBMS DataBase Management System
EER Extended Entity Relation (model)
GIS Geographic Information System
ICT Information and Communication Technology
NONSEQ Non-Sequenced
JDBC Java Data Base Connectivity
MCDB Mobile Customer care DataBase
ORDBMS Object Relational DBMS
SEQ Sequenced
SQL Structured Query Language
TDB Temporal DataBase
TDBMS Temporal DBMS
TDT Terrestrial Dynamic Time
TSMS Time Series Management System
TSQL Temporal SQL
TUC Temporal Upward Compatible
UC Upward Compatible
UTC Universal Time Coordinated

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 1

1 Introduction

More and more, organisations try to collect as much as possible data on customers,
competitors, products, services, processes etc. to be able to better meet the needs of
their customers. Inherently, historical data will be part of the total collection of
information. In a telecommunication context, examples are historical information on
priceplans of customers or occurred network errors. An important category of systems
containing time related data are the data warehouse systems. The number of data
warehouse databases for analysis purposes is increasing. Currently, the emphasis is on
support for marketing, sales and management but e.g. ICT management could also be
supported by data warehouses. In these data warehouses, time is an important aspect.
Besides data on the current situation, data on the history is stored. Current applications
only make limited use of historical data, because it is rather complex to model and
reason over time. For applications to make better use of historical data, implicit
modelling and support of time in the database would be desirable. Databases providing
this kind of support are called temporal databases.

Temporal queries are said to be shorter and easier to formulate resulting in improved
productivity, correctness and maintainability of applications. Currently, time is explicitely
modelled by the database designer and rather complex application code takes care of
reasoning over time. Putting temporal support in the database instead of in the
application would increase the degree of independence between data and application
and would make temporal support available for all applications without the need to
reinvent the wheel.

To investigate the added value of temporal databases, the Temporal Database project
has been started within the IT Strategies program. This report is the result of a literature
study in the area of temporal databases. It describes the state-of-the-art of temporal
databases as well from an academic point of view as from a commercial point of view.
The report gives a detailed description of the concepts behind modelling and reasoning
with time and their application in commercial products. As such, this report is intended
for technical readers. Chapter 2 explains the concepts of temporal databases and
temporal reasoning. Chapter 3 then continues with the description of a proposed
temporal query language for the new SQL3 standaard. Finally, chapter 4 describes
existing commercial and prototype temporal databases.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 3

2 Scientific

This chapter describes the scientific state-of-the-art of temporal databases. After an
introduction of concepts of time related issues, modeling of time and reasoning over time
is discussed. The chapter ends with a description of some temporal database related
topics.

2.1 Motivation

To illustrate the added value of a database having notion of time, let’s start with a small
example of a customer care database (adapted from [ZCFS+97]). The database contains
all kinds of data on customers for marketing and management purposes. One of the
tables in the database contains customer priceplan and turnover-category data. In a
relational database, this can be represented as follows:

Customer(Name, Priceplan, Turnover-cat)

In the most simple case, we only record the current priceplan and turnover-category for
all customers. With a simple SQL select-statement we can retrieve customer data from
this table:

Select *
From Customer
Where Name = “Temp DB Inc.”

Name Priceplan Turnover-cat

Temp Db Inc. RoyalPlan Medium

For marketing and management purposes, this is not enough. We want to know more
about the history of customers. In a regular relational database, we have to explicit add
two date attributes to indicate when the information became valid and when the
information was not valid anymore.

Customer(Name, Priceplan, Turnover-category, Startdate, Enddate)

When extracting customer information from the database, the result could look like the
following:

Name Priceplan Turnover-cat Startdate EndDate
--
Temp Db Inc. BudgetPlan Low 01-01-1998 01-05-1998
Temp Db Inc. BudgetPlan Medium 02-05-1998 12-07-1998
Temp Db Inc. EasyPlan Medium 13-07-1998 01-12-1998
Temp Db Inc. RoyalPlan High 02-12-1998 99-99-9999

This customer started as a small (less important) one and became an important
customer within a year. The 99-99-999 date indicates that this information is valid until
changed. Adding attributes to record valid dates is not much of a work.
For querying, the difference between a database system with or without notion of time is
much more significant.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research4

If we want to know the current situation, the following (more complex) SQL query is
needed:

Select *
From Customer
Where Name = “Temp DB Inc.”
 and Startdate <= CURRENT_DATE and Stopdate >= CURRENT_DATE

It becomes even more complex when we ask the legitimate question about the maximun
period of time for which a customer has a certain priceplan. The result should be:

Name Priceplan Startdate EndDate

Temp Db Inc. BudgetPlan 01-01-1998 12-07-1998
Temp Db Inc. EasyPlan 13-07-1998 01-12-1998
Temp Db Inc. RoyalPlan 02-12-1998 99-99-9999

To calculate this result, several valid periods for each priceplan have to be coalesced i.e.
overlappping and adjacent periods have to be joined. This requires the following complex
SQL statements for making a temporary table containing the data to answer the
question:

CREATE TABLE Temp(Name, Priceplan, Start, Stop)
AS SELECT Name, Priceplan, Startdate, EndDate

FROM Customer
WHERE Name = “Temp Db Inc.”;

SELECT DISTINCT F.Start, L.Stop
FROM Temp AS F, Temp AS L
WHERE F.Start < L.Stop

AND F.Priceplan = L.Priceplan
AND NOT EXISTS (SELECT *

FROM Temp AS M
WHERE M.Priceplan = F.Priceplan
AND F.Start < M.Start AND M.Start < L.Stop
AND NOT EXISTS (SELECT *

FROM Temp AS T1
WHERE T1.Pricplan = F.Priceplan
AND T1.Start < M.Start AND M.Start <= T1.Stop))

AND NOT EXISTS (SELECT *
FROM Temp AS T2
WHERE T2.Priceplan = F.Priceplan
AND ((T2.Start < F.Start AND F.Start <= T2.Stop) OR
(T2.Start < L.Stop AND L.Stop < T2.Stop)));

The equivalent query in a temporal SQL would be something like (see also chapter 3.7):

(sequenced valid select name, priceplan from customer)(vt);

The above examples illustrate the increasing complexity of application code, even for
simple questions, when the database has no notion of time.

Before we proceed, we first introduce the fundamental concepts of time in temporal
database research.

2.2 Time semantics

Time is represented by a timeline. Any point on the timeline is called a time instant which
has no duration. The time continuum between two time instants is called a time span and
is directed (i.e. it does either direct into the future or into the past). Because both
measurements in real world have restricted accuracy and the numerical accuracy of
computer systems is bounded, the timeline is partitioned by undirected time units with
fixed duration. Such a fixed time unit is called a chronon. Chronons are the smallest,
nondecomposable time units associated with time and they partition the time line.
Adjacent chronons make up a time interval. A time interval is directed as well as a time
span. A time interval is thus a time span which is bounded by chronons. The union of
multiple time intervals makes up a temporal element.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 5

See Figure 2.1 for a graphical representation of the definitions.

chrononchronon

time interval time interval

time span

temporal element

time interval

time instants

chronon

Figure 2.1: Graphical representation of time concepts

2.2.1 Time domains

To be able to reason about time distance and to provide for an unambiguous
interpretation of a time instant, the time domain is associated with a mathematical
domain. The time domain can be viewed as discrete or continuous. A discrete time
model is isomorphic to the natural numbers, which implies that each time instant has a
unique successor. A continuous model can either be dense or not. A dense continuous
model is isomorphic with the real numbers, which means that there are no ‘gaps’ on the
time line. This is unlike the rational numbers, which are called not dense.

Time domain discrete continuous
dense N.A. real numbers
not dense natural numbers e.g. rational numbers

The discrete time domain is generally used (by using chronons), because time measures
are inherenty imprecise. In addition one tends to reason in terms of discrete time units.
For example, time is often denoted in terms of seconds, milliseconds or minutes. Maybe
the most important reason for not adopting continuous domains is because continuous
domains are more difficult to implement than discrete domains.

2.2.2 Models of time

In the previous paragraph we have introduced the notion of time line. Although it appears
to be straightforward to have only linear time line, this is not the case . Three time
models exist:

• linear time,
• branching time,
• circular time.

Linear time is the traditional look on time, in which all time instants are linearly ordered.
Branching time is used when several alternatives have to be considered (e.g. possible
futures). This may be the case in planning systems where multiple scenario’s have to be
incorporated. Time points are only partially ordered in branching time. Circular time can
be used to represent recurring events. One can think of a period of a year in which the
same events occur at the same date (e.g. birthdays) or the days of a week. Calendars
are most often cyclic (e.g. Gregorian calendar, in which days and months cycle).

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research6

2.2.3 Time dimensions

In the previous paragraphs we have defined time and its related concepts. Now we
define what kinds of time we want to reason about. There are two dimensions of time in
a temporal database that may have explicit temporal support:

1. transaction time,
2. valid time.

Transaction time represents the time a fact is stored in the database, i.e. models the time
behaviour of an object in the database. Because transaction time is registered
immediately, the time stamps are consistent with the serialization order of the
transactions. Transaction times are system generated and cannot be changed.
Valid time is the time a stored fact is valid in reality. The valid time can therefore be in
the past, present or future. The valid time of a fact is determined by the user and can be
changed afterwards.

In addition to transaction time and valid time there is user-defined time. User-defined
time is an attribute domain for specifying time points. Typical examples are ‘birthday’ and
‘hiring date’. This time domain is not treated differently from other attribute domains
apart from the fact that some special time functions are supported. Examples of these
functions are ‘MONTHS_BETWEEN’ (to determine the number of months between two
dates) or type conversion functions like ‘TO_DATE()’ or ‘YEAR()’. User-defined time is
not treated differently from any other attribute domain by the query optimizer. Therefore
we do not consider user-defined time as a time dimension in this report.

To illustrate the use of transaction time and valid time, consider the following example.
At 15 May 1998 the fact that our Customer Temp DB had a priceplan BudgetPlan from 1
January 1998 until 01 May 1998, is stored in a temporal database. This would then be
stored as:

Name PricePlan Valid time Transaction time
--
Temp DB BudgetPlan 01-Jan-1998/01-May-1998 15-May-1998/until changed

According to the support of the two time dimensions defined above, we can identify four
types of databases based on temporal support:

1. snapshot database,
2. valid time database,
3. transaction time database,
4. bitemporal database.

A snapshot database has neither valid time support nor transaction time support. Only
present knowledge about the objects is stored. There is no DBMS support for neither
reasoning about nor storing time information for the objects. Hence, complex queries
must be formulated to retrieve temporal data. Storage of temporal data may only be
achieved by using user-defined time attributes. Most current database systems are
snapshot databases. Snapshot databases are used when only the current status of
objects is relevant.

A valid time database1 has support for valid time reasoning and storage. The objects
stored in the database may have a valid time associated with them. Valid time databases
are used when reasoning about history and future information is required, but only
current knowledge about the objects is relevant. An example is someone’s agenda. The
appointments take place somewhere in time, but it is irrelevant when these appointments
have been written in the agenda.

1 Also called historical database

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 7

A transaction time database2 has support for transaction time. For every new transaction
on the database a new record is created. When an object is updated, the old object is
logically deleted (i.e. is marked as being deleted) and a new object is added to the
database as the current object. A transaction time database is used when it is relevant
how the current status of the stored objects has been reached. For example, for stock
control not only the current level is interesting, but also the process of how this stock
level has been reached.

A bitemporal database supports both valid time and transaction time.

Temporal support may exist at different levels: attribute, tuple and schema (see
paragraph 2.3.2.1)Temporal support at attribute level means that each change in the
state of the attribute is annotated with temporal information. In case of valid time support
at attribute level, this means that the attribute value is accompanied with its valid time
period. The same goes for tuple level support, where one tuple (with multiple attribute
values) is associated with one time period. Temporal support at schema level is defined
as schema versioning. Each time changes are made to the schema meta-data, the old
state is retained with the appropriate transaction time period. Schema versioning should
not be confused with schema evolution, because the latter has no transaction time
support, i.e. cannot revert to previous versions (see glossary).

A special form of temporal database is a degenerate database. This is a bitemporal
database where the valid and transaction times of a fact are identical. An example of an
application is a process monitoring system, where all events are immediately written to
the database and hence the database’s content is always up-to-date. In that case the
real-life state time periods of the process (valid time) is identical to the storage time
periods (transaction time).

2.2.4 Storage structures

The storage structure of temporal databases is different from conventional (snapshot)
databases. To clearify the difference, we look at the storage of a relation in the four
different databases. The examples are taken from [SA86].

2.2.4.1 Snapshot database

Figure 2.2 shows five tuples in a snapshot database. As no transaction time nor valid
time is supported, the structure is straightforward.

Figure 2.2 One relation in a snapshot database

2.2.4.2 Transaction time database

In a transaction time database the flat structure of a snapshot database is extended with
the transaction time dimension. Figure 2.3 shows three states of the database.

current state

transaction time

Figure 2.3 One relation in a transaction database

2 Also called rollback database

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research8

Initially, the relation contains three tuples. Then one tuple is inserted and the database
goes into the second transaction time state. After that, the second tuple is deleted and
another tuple is inserted. Remember that all three database states remain in the
database. One can ask for data from the database at a certain transaction time. After
three states, eleven tuples are logically present in the database. Note that this does not
mean, that all eleven tuples necessarily have to be physically present in the database. A
more efficient storage strategy may be used to limit the required storage space

2.2.4.3 Valid time database

A valid time database provides only the current state of the relation and has no support
for reverting to previous states of the relation. Each tuple has an associated valid time
indicating when the fact is valid in the real world. For each tuple in the relation a history
can be kept but one cannot see when, i.e. at which transaction time a certain fact was
stored in the database. Figure 2.4 shows a valid time relation.

valid time

Figure 2.4 One valid time relation

The uppermost tuple in the relation has only values during two valid time intervals. The
lowermost tuple is only defined during one valid time interval. Note that all tuples are
visible for the user all the time.

2.2.4.4 Bitemporal database

The bitemporal database combines both dimensions, which results in the picture as
shown in Figure 2.5.

valid time

transaction time

Figure 2.5 One relation in a bitemporal database

Initially, the relation contains three tuples which are valid at the same interval in valid
time. In the next transaction, a new tuple (the uppermost) is added which is valid in the
next valid time interval. Furthermore, we assure that the three existing tuples are valid in
this new valid time period as well. In the second transaction, again a tuple is added (the
lowermost) that is valid in the new valid time interval. Three of the already existing tuples
are also valid in this new valid time interval, but one tuple is not longer valid in this valid
time interval. In the final transaction, the valid time of the second tuple from the first
transaction is changed. The valid times of the other tuples do not change and there are
no new tuples added.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 9

2.3 Data models

Now we have introduced time concepts, we want to capture these concepts into a data
model. This way we can capture the semantics concisely, coherently and consistently.
Many data models have been proposed. Most of the propositions are extensions of
existing models because this is generally seen as the most promising approach ([OS95]).
Time has been added to:

• entity-relationship model,
• knowledge-based data models,
• deductive data models,
• relational models,
• object-oriented models.

Most temporal databases are based on the relational and object-oriented models.
Therefore we will address only those two models.

Temporal data models differ in support on four dimensions:

• time representation,
• level of temporal support,
• temporal dimension support,
• base data model.

The time representation is the way time is modelled, i.e. as points or intervals. The level
of temporal support can be at attribute-, tuple- and schema level. The temporal
dimension support can be a combination of transaction time and valid time. The base
data model is one of the data models mentioned above.

In the next paragraphs the four dimensions are discussed further.

2.3.1 Time representation

Time can be represented in two ways:

• points,
• spans.

When time is represented by points, a single time value is associated with a database
fact. Time representation by spans is done by defining a start time point and an end time
point (i.e. a time span)3.

Whether either points or spans should be adopted depends on the process to be
modeled. In case of discrete processes (events) spans are appropriate and in case of
continuous processes points are more appropriate. Spans can be used for discrete
processes, because discrete processes have a stable state during some period of time.
Examples of discrete processes are temporal relationships, database states or more
practical: the state of a traffic light. Continuous processes cannot be modeled accurately
by spans, because their state changes continuously. Examples of continuous processes
are pressure measurements in chemical processes or the temperature of the weather.

When samples of continuous processes are stored, this is called explicit modeling.
Explicit modeling can become a problem when values are asked which are not stored. A
solution is then to store enough samples and take the most similar time stamp to obtain
satisfying accuracy. However, this may require too much storage. Then interpolation
function can be used to estimate intermediate values. When functions are stored instead
of samples this is called implicit representation.

3 Note that spans can model points as well.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research10

In the time modeling theory, spans have the disadvantage of not being closed under set
theoretic operations (e.g. union, intersection, difference). Performing an operation on
elements (viz. spans) from the set of spans could result in an set of spans, which is not a
single span thus not element of the set of spans. To overcome this problem,
combinations of these intervals are supported by the data model; these sets of intervals
are called temporal elements or elementary subsets.

2.3.2 Levels of temporal support

There are two types of temporal support. There is support for:

• data,
• meta data.

The data temporal support is the most obvious and supports valid and transaction time
for stored database facts. The meta data temporal support is defined at meta data level
(i.e. schema level). Both types will be discussed in the next paragraphs.

2.3.2.1 Data level

Temporal support at data level can be defined at two levels of granularity:

• attribute level,
• tuple level.

When time is supported at attribute level, time can be associated with each attribute
value of the relation/object class. When time is supported at tuple level, time is
associated with the whole instance. Some models also support groups of attributes within
one tuple. However, most models either support attribute or tuple level.Table 2.1 and
Table 2.2 give examples of attribute and tuple level time support respectively.

Name(Startdate; EndDate) Priceplan (Startdate; EndDate)

--
Temp Db Inc. (01-01-1998; 99-99-9999) BudgetPlan (01-01-1998; 12-07-
1998)

 EasyPlan (13-07-1998; 01-12-1998)
 RoyalPlan (02-12-1998; 99-99-9999)

Table 2.1 Attribute time stamping

Name Priceplan (Startdate; EndDate)

Temp Db Inc. BudgetPlan (01-01-1998; 12-07-1998)
Temp Db Inc. EasyPlan (13-07-1998; 01-12-1998)
Temp Db Inc. RoyalPlan (02-12-1998; 99-99-9999)

Table 2.2 Tuple time stamping

The advantage of attribute time support is that this is an accurate way of describing the
temporal behavior of an attribute. When the value of only one attribute changes, the new
value is stored with the corresponding temporal information. This is different for tuple
time stamping. In that case all static attributes are duplicated and stored into a new tuple.
This introduces redundancy and hence wastes storage space. However, the widely
accepted relational model can be extended in a straightforward way to tuple time
stamping and hence tuple time stamping is adopted most frequently in the relational
model.
The attribute and tuple time stamping are also called grouped and ungrouped
respectively. In addition the term heterogeneous and homogeneous are used as well.

Another discussion about time modelling is the matter of single- or multivalued time
fields. In single valued time fields only one time representation is present (i.e. one point

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 11

or one span) at each time level (i.e. a database fact is associated with a single point or a
single span). In multivalued time fields multiple points or spans may be combined in one
time entry4 (i.e. one database fact is associated with multiple time points or for example
a union of multiple time spans). In our opinion, this discussion is very similar to the field
of normalization. Multi- or single-valued time models are similar to the non-first normal
form and first normal form. [Dey96] describes the mapping from the conventional
relational model to the temporal relational model in detail and defines four temporal
normal forms.

2.3.2.2 Meta data level

Temporal support at meta data level translates into time support for schema’s. Meta data
time support enables reasoning about different versions of the schema and hence makes
it possible to revert to past states of the model. This functionality is useful to be able to
reason about data that was differently structured in the past. Especially when legacy
systems are replaced, the schema is likely to be migrated to the current system. When
old data should be retrieved, the old schema is required.

Two important terms are often used in this context: versioning and evolution. Both terms
describe the migration from one schema to another, with the difference that versioning
retains past states (history) and evolution only migrates, but does not store previous
schema’s.

Note that schema’s persist in one state for some time span. This makes schema
versioning a discrete process. Therefore schema versioning can be modeled by points
and spans.

2.3.3 Base models

The data models are mostly based on the relational model. In addition other models are
extended with time support, among which the (extended) entity-relationship model (EER)
is one.5 The relational model is extended with temporal values that are associated either
with tuples or attributes. However, accurate modeling of time may become complex and
may require non-first-normal forms. Some researchers think that the relational model is
too simplistic to model time accurately. They feel it more naturally to extend the object-
oriented models with time concepts.

Appendix B gives a table with temporally extended relational and object-oriented models.

2.3.4 Temporal dimensions

The two time dimensions valid time and transaction time describe different processes
and hence may have different representation. Valid time can model discrete and
continuous processes, whereas transaction time models database states only, which is a
discrete process.

For valid time, point representation can be used to describe samples of a continuous
process or for description of (discrete) events. Span representation is used for discrete
processes. In case of spans, duration of a state is modeled explicitly. When this duration
is infinite into the future, a value called ‘forever’ is used to indicate the infinity of the
span.

4 Also called temporal elements.
5 The temporal extension is called TEER and is described in [TCGJ+93].

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research12

[ZCFS+97] gives a table of data models that have appeared in literature.

Point6 Span7 Set of spans8

Timestamped attribute values ADM
Caruso
Lorentzos

Bassiouni
Gadia-2
McKenzie
Tansel

Bhargava
Gadia-1
HRDM
TOODM

Timestamped groups of attributes Sciore-2
Timestamped tuples Ariav

EDM
HDM
Lum
Sadeghi
Segev
Wiederhold

Ahn
Ben-Zvi
Jones
Navathe
Sarda
Snodgrass
Yau

BCDM

Timestamped objects TEDM OSAM*/T
TMAD

Table 2.3 Valid time in temporal data models (taken from [ZCFS+97])

As was mentioned before, transaction time models the discrete process of database
state changes. Therefore, the transaction time cannot be specified by the user. The
process can be represented by points or spans (see paragraph 2.3.1). In case the time is
represented by spans, the current state of a database fact is bounded by it’s starting time
point and ends with a special value. This value may be ‘now’, ‘forever’ or ‘until changed’.
When the state of the database fact changes (i.e. due to a transaction), this special value
may be replaced by the current time value.

[ZCFS+97] gives a table of data models that support transaction time.
Point9 Span10 Three

points11
Set of spans12 Other

Timestamped
attribute values

Caruso Bhargava
TOODM

Sciore-1

Timestamped
groups of
attributes

Sciore-2 OVM

Timestamped
tuples

Ariav
DATA
DM/T
EDM
Lomet

Postgres
Snodgras
s
Yau

Ben-Zvi BCDM

Timestamped
objects

IRIS
TIGUKAT

IRIS
Kim

Timestamped
sets of tuples

ADM
Ahn

McKenzie

Object graph MATISSE
TIGUKAT

MATISSE

Timestamped
schema

MATISSE
TIGUKAT

McKenzie
Postgres

BCDM MATISSE

Table 2.4 Transaction time in temporal data models (taken from [ZCFS+97])

6 In the original table this was ‘Single chronon’.
7 In the original table this was ‘Period (pair of chronons)’.
8 In the original table this was ‘Valid-time element (set of periods)’.
9 In the original table this was ‘Single chronon’.
10 In the original table this was ‘Period (pair of chronons)’.
11 In the original table this was ‘Three points’.
12 In the original table this was ‘Valid-time element (set of periods)’.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 13

The data model of Ben-Zvi is a special case, because it uses three points to represent
the time information of a fact. Ben-Zvi’s model records:

1. the transaction time when the valid start time was recorded,
2. the transaction time when the valid stop time was recorded,
3. the transaction time when the tuple was logically deleted.

2.4 Reasoning

In the previous paragraphs we have identified the aspects of time modeling. In this
paragraph we describe issues concerning the reasoning about time. We restrict to issues
that are different from the traditional reasoning. Five issues are typical:

• surrogates,
• coalescing,
• granularity,
• aggregates,
• vacuuming.

Each of these issues is described below.

2.4.1 Surrogates

In temporal databases it is possible that the primary key of an object is time-varying. To
be able to identify these objects through time, surrogates are introduced. These are
unique values that can be compared for equality but are otherwise not visible to users.

2.4.2 Coalescing

An important characteristic of temporal database management systems is the capability
of restructuring the results of a temporal query. When the same values are valid over
some period of time, these time periods are merged and presented as one period. This
restructuring principle is called coalescing.

Look at the following results as an example. It is the intermediate result of a query which
retrieves all price plan contracts which were active during 1998. No coalescing has been
done so far.

PricePlan Valid_time

BudgetPlan [01-01-1998; 17-01-1998]
BudgetPlan [01-01-1998; 08-02-1998]
BudgetPlan [01-01-1998; 26-02-1998]
EasyPlan [18-01-1998; 21-02-1998]
RoyalPlan [22-01-1998; 31-12-1998]
EasyPlan [09-02-1998; 12-03-1998]
EasyPlan [27-02-1998; 08-03-1998]
BudgetPlan [09-03-1998; 31-12-1998]
RoyalPlan [13-03-1998; 31-12-1998]

After coalescing the active periods of the different price plans are merged together as far
as possible. The result looks like:

PricePlan Valid_time

BudgetPlan [01-01-1998; 26-02-1998]
BudgetPlan [09-03-1998; 31-12-1998]
EasyPlan [18-01-1998; 12-03-1998]
RoyalPlan [22-01-1998; 31-12-1998]

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research14

Apparently, the BudgetPlan value is present over the periods 01-01-1998 until 26-02-
1998 and from 09-03-1998 until 31-12-1998. The EasyPlan value is valid from 18-01-
1998 until 12-03-1998 and the RoyalPlan is valid from 22-01-1998 until 31-12-1998.

2.4.3 Granularity

To be able to reason over time, some agreement about the time unit must be made. This
level at which is reasoned over time is called temporal granularity. Examples of different
temporal granularity are seconds, days or months. A second is defined at a finer
temporal granularity than a day. A year has coarser granularity than a month. What
temporal granularity levels are known in the database depends on the calendar used.
The calendar describes the partitioning of the time line into time units and defines the
granularity of each unit. In addition the calendar also defines the mapping between the
time units. The finest granularity that can be defined is the granularity of a chronon,
which is system defined. Note that the calendar may have a coarser finest level than the
chronon.

Reasoning about facts at different granularities introduces temporal modalities. For
example, a customer has subscribed to a service during some days in May and
September 1998. The question ‘Was the customer subscribed at January, 1st, 1998?’
answers to a sure ‘no’. The same question for May 13th, 1998 will result in a ‘maybe’.
However, the question whether the customer was subscribed during May 1998 results in
a ‘yes’. The ‘maybe’ result is a indeterminate answer for a question at day level, but the
answer gets determinate when the granularity is raised to month level.

Operands must be the same granularity in order to be comparible. To accomplish this,
conversion functions exist. CAST and SCALE are such functions in TSQL2.

2.4.4 Aggregates

A temporal aggregate is an aggregate that returns time-varying results when applied to
temporal relations. Calculating temporal aggregates is a two step process:

1. partitioning of time line,
2. computing aggregates.

Two partitioning strategies are possible: static or dynamic. Static partitioning divides the
time line in predefined pieces (e.g. days or months). Dynamic partitioning determines the
pieces of the time line by grouping the relevant values of the set and then coalesce this
result. This way the partitioning is created dynamically. After the timeline has been
partitioned, per time slice the aggregate is calculated.

Besides the traditional aggregate operators MIN, MAX, COUNT, SUM and AVG a new
aggregate operators have been defined in various temporal languages. In TSQL2 the
aggregate operator RISING is introduced. This operator evaluates to the longest period
during which a specified attribute value was monotonically rising. TQuel incorporates the
function RATE which compares two values of the same instance over a certain time
period. For example, it could determine what values have doubled over the last month.
HSQL has new built-in functions as FIRST and LAST, that return the earliest and latest
time point at which a certain condition is valid.

2.4.5 Vacuuming

As mentioned earlier, transaction databases can grow very large, because data is only
logically deleted. However, this can become a major problem as each system has limited
storage capacity. In addition, huge amounts of data that is only rarely accessed could
severely compromise performance. Another problem is that in many countries law
forbids certain information to be retained longer than a specific time interval. Therefore
temporal databases have support for physical deletion of data. This is called vacuuming.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 15

2.4.6 Implementation issues

Temporal database implementation involves specific implementation issues. Two
important aspects are:

• data dictionary,
• query optimization.
• Efficient storage

The data dictionary differs from the traditional database because first, in transaction time
databases different versions of the meta data must be supported (i.e. schema
versioning). Second, calendars must be supported, which define a mapping between
time units with different time granularities. In addition reasoning with different modalities
must be supported.

Query optimization is more involved in TDBs. Two reasons for this are the increased size
of the relations and the increased complexity of the logic. The increased size of the
relations is due to the fact that temporal relations have time elements associated with
them. In addition, transaction databases also retain previous states of these relations,
which makes the size grow monotonically. The increased complexity of the logic makes
query optimization harder. In conventional systems the emphasis is mainly on equality
predicates.

Certain characteristics of temporal relations may also help to improve efficient query
optimization. An example is the fact, that time advances in one direction only. This
implies an ordering on temporal relations which can be exploited when evaluating for
example extremes. In addition, recent information is accessed much more frequently
than historical information. It is also probable that the access patterns differ as well.
Temporal partitioning can then be adopted to separate the historical data physically from
the current data while preserving a logical overall picture. Another important optimization
technique are temporal indexes, where these special temporal characteristics can be
exploited to gain performance.

Optimizing the physical storage model for temporal databases is an important issue as
the amount of data in a temporal databases increases at high speed (especially when
transaction time is supported and data is not often deleted physically). Unfortunately we
could not find enough relevant material on this issue in the literature.

2.5 Adjoining database areas

The goal of this paragraph is to place temporal databases in a broader context. To
achieve this, some related topics are described in a general matter without going into
detail because that is out of the scope of this document. First some combinations of
temporal databases with some other database aspect are described. For these types of
databases the same applies as for temporal database; they are still in their infancy and
no commercial products are available.

2.5.1 Spatio-temporal databases

A spatio-temporal database supports, beside time, the extra dimension of space. In fact,
a better way of defining is a spatial databases extended with time, as this is this case in
most real-life situations. Two main areas that can use this type of database are
Geographic Information Systems (GIS) and Multi Media systems.

Geography has three fundamental properties (Figure 2.6)
• Location (place)
• Attribute
• Time

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research16

Location

Attribute

Time

Figure 2.6 Fundametal properties of geography

Location describes where an object or phenomena is situated (using spatial coordinates
like e.g. x,y,z). Attributes describe properties of the object (e.g. it is hot and dangerous).
Time denotes the change of an object or phenomena over time. As with ordinary
databases, a lot of GIS databases do not contain time as a fundamental property (equal
to Location and Attribute) but more as a special type of attribute. This way of time
modelling is insufficient to fully support basic GIS areas as Dynamic modelling
(simulations, predictive modelling), Continually updated GIS data structures over time
and Representing rapidly changing objects or real time analysis because of the
importance of time in these areas.

As with temporal databases, the concepts of valid time (in this context also refered to as
physical time) and transaction time can be used to model time (or to speak with
[Wilson96], to model “reality versus representation”). Physical time is either the moment
an object was made or the property of an object (e.g. this hurricane originated at July 1,
1997 or this fossil has been determined to be two million years old). Transaction time is
defined as in an ordinary temporal database.

For Multi Media databases the same concepts can be used. In fact, multi media
databases are very well suited in GISs. As an example take a multi media database
containing football videos. The ball is an object with a location and attributes over time.
To determine whether there has been a score or not, one has to determine whether the
ball was at the same location as the goal for a certain period of time.

2.5.2 Temporal deductive databases

In an ordinary temporal database, all occurences of a relation (the so called extension)
over time have to be explicitly stored. The result of this is a huge database, especially
when transaction time is supported. To limit the required storage capacity the extension
can also be represented implicitly by means of deductive rules. For these rules, Horn-
clauses (without function symbols) can be used . Beside limiting storage requirements,
implict representation also enables to represent infinite extensions. A temporal database
using this way of implicit representing extensions is called a Temporal Deductive
Database.

2.5.3 Temporal real-time databases

The usual definition of a real-time database is “a database with deadlines for
transactions”. Another way of defining is “a time-constained database” [OS95]. These
time constrains can apply to all aspects of the database e.g. reponse to queries;
processing insert, update, delete transactions; maintaining integrity etc. From the
definition, one can see the importance of time in this type of database. Current real-time
systems use their own (limited) definition of time, but using the well defined time
concepts from the temporal database field would be an enrichment for these systems
(e.g. enabling reasoning about the future).

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 17

Valid time is used for data items that have immediate counterparts (external objects) in
the real (physical) world. External events resulting in value changes for these external
objects are closely monitored and a transaction, including the valid time of occurrence of
this event, is written to the database (e.g. a sensor detecting that the temperature in a
room is above some critical level). Transaction time is used for transactions that, with the
help of some device, set parameters of the real-time system (e.g. activating a motor to
open the window in order to decrease the temperature). Furthermore, transaction time is
used when new values for data items are derived from values of existing data items.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 19

3 A temporal query language

In the previous chapter, the principals of temporal databases have been described. The
subject of chapter 3 is a query language for temporal databases. As mentioned in
chapter 2, most temporal database proposals and prototypes are extentions of the
relational model. For this reason, we limit ourselves in this chapter to temporal
extensions of SQL-92.

Several movements have led to the current existing most promising temporal query
languages. On one hand there was the TSQL2 Language Specification as published in
September 1994 [TSQL94]. TSQL2 is a bitemporal language supporting valid time and
transaction time (in addition to the already existing (poor) support for user-defined time).
On the other hand, the Knowledge Based Systems Group at ETH Zürich, constructed an
interval timestamped temporal deductive database system called ChronoLog
[Böhlen95a]. The ChronoLog system supports ChronoLog, a temporal extension of first
order predicate logic, and ChronoSQL, a temporal extension of SQL. In contrast with
TSQL2, ChronoLog is an actual existing prototype system.
The ChronoLog and TSQL2 people joined forces in the Advanced TSQL2 (ATSQL2)
project, combing theory and practice. With knowledge gained in this project, expert
contributions where made for the ISO/ANSI SQL/Temporal module of the SQL3 standard
[ANSI96a], [ANSI96b]. The SQL/Temporal module is on hold for the moment.
After the ATSQL2 project, Böhlen and Jensen continued their work on temporal
databases with the Tiger system at the university of Aalborg in Denmark. The Tiger
system is a temporal front-end on top of the Oracle RDBMS. The Tiger system is
accessible from the WWW and has a query language called ATSQL
[http://www.cs.auc.dk/~tigeradm/]. Another person from the ATSQL2 project, A. Steiner,
started the development of a commercial TDB called TimeDB. TimeDB implements
selected aspects of SQL/Temporal. Like Tiger, TimeDB is a temporal front-end on top of
an existing RDBMS. Version 1.0 was still a general available prototype, but version 2.0
(due in 1999) will be a Java based commercial version that can be connected to all
RDBMSs supporting JDBC [http://www.timeconsult.com/TimeConsult.html].

The discussion of a temporal query language in this chapter is based on material from
the above mentioned movements. Because of availability of the Tiger system, the
examples are based on ATSQL. ATSQL is an implementation of the SQL/Temporal
proposals. Whereas SQL/Temporal is on hold for the moment, the development of
ATSQL continues.

3.1 Upward compatibility with SQL-92

For new technology to be accepted, compatibility with predecessor technology is
important. ATSQL and the SQL/Temporal proposals fulfill this obligation because they
are fully upward compatible with ordinary SQL i.e. all existing application code will
correctly work with the temporal database without needing modification. To be honest,
we have to nuance the compatibility issue. A lot of current applications already maintain
time-varying data using non-temporal databases. Time has explicitly been modelled in
the schema and the application contains code to reason on this data. When upgrading
the non-temporal database to a temporal database, in theory, it is not necessary to
change schema’s or application code. But this will not change the situation as the
applications do not use the capabilities of the temporal databases. To exploit these
capabilities, the schema’s and applications have to be changed. But, as this change can

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research20

be done in a gradual way, compatibility stays an important issue. Non temporal
application code can coexist with temporal application code.

3.2 Time ontology

The discussion whether time is continuous, dense or discrete is carefully avoided by
TSQL2. All three are supported by assuming that a time instant, that is much smaller
than a chronon, always has to be estimated by a chronon because a chronon is the
smallest addressable unit of time. At runtime, timestamps are associated with a user-
specified granularity (e.g. second, hour, day etc). A temporal query is always stated in
terms of some granularity viz. the question whether a period x is before, during of after a
period y can only be asked in terms of a same granularity.

3.3 Base line clock

A semantics to time is given by using a so called base line clock

TDTUTCEphemeris
Time

Mean Solar
Days

Dawn of Time
(The Big Bang)
(14,000,000,000

B.C. +/-
4,000,000,000)

Past
Synchronization

Point
(1/1/9,000 B.C.)

UTC/TAI
Synchronization

Point
(A.D. 1/1/1972)

TDT
Synchronization

Point
(A.D. 1/1/1995)

End of Time ?

Figure 3.1 Base Line Clock

This base line clock is bounded on two sides; it starts 18 billion years ago and it extents
18 billion years into the future. It is partitioned in a set of contigeous periods based on
historical events. The introduction of atomic clocks made time measuring very precise
and Universal Time Coordinated (UTC) was introduced. Nowadays Terrestrial Dynamic
Time (TDT) is prefered over UTC because it is even more precise also taking leap
seconds into account.

3.4 Data types

TSQL2 adds the datatype Period13 to the already existing SQL-92 datatypes Date, Time,
DateTime and Interval14. A period is a set of two time instants with the constraint that the
instant that starts the period equals or precedes the instant that terminates the period.
Remind that comparison of time data is always in terms of some granularity. Finally,
there is a datatype called surrogate. A surrogate is a unique identifier, not visible to the
user, used to determine identity of objects. This is useful when e.g. the primary key is
time-varying.

3.5 Table types

ATSQL and the SQL/Temporal proposals distinguish four types of tables depending on
the time elements associated with its tuples:

• snapshot tables: having no temporal support except for user-defined time.
• valid-time tables: having a valid-time period associated with each tuple.
• transaction-time tables: having a transaction-time period associated with each tuple.
• bitemporal tables: having both a valid time period and a transaction time period

associated with each tuple.

13 In the TDB glossary this is called a Time Interval.
14 In the TDB glossary this is called a Time Span.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 21

Different table types are allowed in one database schema. Note that the time elements
are not visible as simple attributes of a tuple although it is possible to ask for the
associated time values of a tuple by means of special functions (VTime() and TTime()).
The time periods are closed intervals. Besides “ordinary” values for the time elements,
there are also some special values. For valid-time and user-defined time the values
beginning and forever may be used to indicate the least and the greatest values
respectively. As an extra, valid-time and user-time can be temporally indeterminate i.e.
and event has occured but it is not clear (yet) when. How to handle this uncertainty can
be determined on a per-query-basis or on a global basis. Finally, the concepts Current
and Now are introduced. Current is immediately substituted by the current date and time.
The actual value of Now is determined at runtime when a query is executed, so it is
dynamically changing.

3.6 Levels of temporal functionality

For supporting valid time in SQL/Temporal, a four level approach is proposed in
[ANSI96a], [ANSI96b] and [Tiger98]. Each level adds more functionality to the former
level. A series of figures is added for illustration.

Level 1: Upward Compatibility (UC)
This level provides functionalities to be upward compatible with SQL3. In fact, this is not
yet a temporal level. Figure 3.2 shows the current state of a table (a solid rectangle) in
the upper right corner. To the left of this, dashed rectangles represent the history of the
table that is not in the database anymore (because there is no temporal support yet). A
query q, queries the current state of the table resulting in one output set.

. . .

Time

q

Figure 3.2 Upward Compatibility (UC)

Level 2: Temporal Upward Compatibility (TUC)
This level adds to the former level the functionality to define valid time and transaction
time for tables. It does not yet extend the query language to use these time properties
viz. only regular SQL3 query statements can be used. The following extentions of SQL3
DDL statements are added:

CREATE TABLE <table_name> (..) AS VALID;
CREATE TABLE <table_name> (..) AS TRANSACTION;
CREATE TABLE <table_name> (..) AS VALID AND TRANSACTION;
ALTER TABLE <table_name> ADD VALID;
ALTER TABLE <table_name> ADD TRANSACTION;

When adding valid time to existing tables, the valid time period for each tuple current in
the table is set to [current - now). The same applies to transaction time. After a table has
been made temporal, querying that table with a normal SQL3 statement, gives the same
(snapshot) result as querying a non-temporal version of that table. This is illustrated in
Figure 3.3. As there is temporal support, the history is present in the database (solid
rectangles), but only current state tables can be queried.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research22

. . .

Time

q

Figure 3.3 Temporal Upward Compatibility (TUC)

Level 3: Sequentiality (SEQ)
At this level, the query language is extended to give so called sequenced temporal
functionality to queries, views, constraints, assertions and modifications on tables with
valid time and transaction time support. Sequenced means applying the query to all
available states of a table and not only to the current state. Figure 3.4 shows a query q’
which is the equivalent of applying query q to all states of the table resulting in an output
set for each state. Remark that for each output set only the accompaning table state can
be used.

. . .

Time

qq‘ = q q q q

Figure 3.4 Sequentiality (SEQ)

To enable sequenced functionality the query language is extended with the reserved
word SEQUENCED. This word has to be prefixed to a query e.g.:

SEQUENCED VALID SELECT * FROM Customer;
SEQUENCED TRANSACTION SELECT * FROM Customer;
SEQUENCED VALID AND SEQUENCED TRANSACTION SELECT * FROM Customer;
SET VALID PERIOD ‘1995 - 1998’ INSERT INTO Customer VALUES (..);

The result set of a sequenced query contains the explicitly asked (non-temporal)
attributes together with the valid time and/or transaction time period (depending on
whether VALID, TRANSACTION OR VALID/TRANSACTION was specified). When a bitemporal
table is queried with SEQUENCED VALID, the result is so called Temporal Upward
Compatible (TUC) in the transaction time dimension and Sequenced in the valid time
dimension. This means that tuples with transaction time periods that ended before the
current date are not visible. In the same way, a SEQUENCED TRANSACTION query is TUC in
the valid time dimension and Sequenced in the transaction time dimension.

Level 4: Nonsequentiality (NONSEQ)
At this level, the query language is extended to give so called nonsequenced temporal
functionality to queries, views, constraints, assertions and modifications on tables with
valid time and transaction time support. Nonsequenced means applying the query to all
available states of a table in the database. In contrast to a sequenced query, each state
of the resulting relation may use information from all other states in the database (Figure
3.5).

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 23

. . .

Time

q

Figure 3.5 Nonsequentiality (NONSEQ)

To enable nonsequenced functionality the query language is extended with the reserved
word NONSEQUENCED. This word has to be prefixed to a query e.g.:

NONSEQUENCED VALID SELECT * FROM Customer;
NONSEQUENCED TRANSACTION SELECT * FROM Customer;
NONSEQUENCED VALID AND SEQUENCED TRANSACTION SELECT * FROM Customer;

Queries with nonsequenced semtantics treat the time elements as any other user defined
attribute. The result set of a nonsequenced query only contains the explicitly asked (non-
temporal) attributes. The valid and transaction time period are not in the result set. To
get these elements, the special functions VTime(<table>) and TTime(<table>) have to be
used. In fact, the data of all time periods is available to the user and all this data can be
used, but the user himself has to specifiy how to treat the available time in this data (by
means of the VTime() and TTime() functions). The DBMS does not interpret the time
elements.

3.7 ATSQL examples

In this paragraph, some temporal queries are described to give an idea of how temporal
queries look like. Remark that it is not the intention of the paragraph to give a complete
overview of all temporal query statements. The examples are expressed in the ATSQL
syntax as supported by the Tiger prototype temporal database.

A first example shows how the upward compatability works. Suppose we already have a
(non temporal) table Customer in our database. The following statements adds temporal
support to this table without affecting the snapshot behaviour of the table.

Alter table Customer add valid;
Alter table Customer add transaction;

All (existing) data in the table is valid from the current date until forever and the same
applies for transaction time. A select statement on this table will yield the same result as
a select statement on the non temporal table. If required, temporal support can be
removed with the following statements.

Alter table Customer drop valid;
Alter table Customer drop transaction;

The following example creates a new table with both valid-time and transaction-time
support and inserts two tuple in this table. Assume the current date is 1998/05/15.

Create table Customer (Name varchar(30), Priceplan varchar(20),
Turnover_cat varchar(10))

as valid and transaction;

Set Valid period ‘1998/01/01-1998/05/01‘
insert into Customer values (‘Temp Db Inc.’, ‘Budgetplan’, ‘Low’);
Set Valid period ‘1998/05/02-1998/07/12‘
insert into Customer values (‘Temp Db Inc.’, ‘Budgetplan’, ‘Medium’);

The transaction time of both tuples, generated by the system, is [1998/05/15-now).
Graphically, the valid time of the tuples can be represented as follows:

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research24

1998/05/1501/01 05/02

CURRENT
05/01 07/12

Low
Medium

07/13

For retrieving the stored information, several alternatives are available.

First, a Temporal Upward Compatible (TUC) select-statement:

Select * from customer;

NAME PRICEPLAN TURNOVER_CAT
--
Temp Db Inc. BudgetPlan Medium

The result is that only the second tuple is shown because that is the only tuple that is
valid at this moment (i.e. 1998/05/15) and in the database according to the transaction
time.

Second, a Sequenced valid time example is given. In this case, the transaction time is
treated TUC in other words, only tuples where the current date is in the transaction time
periode are eligible for the query. The statement for this is:

Sequenced Valid Select * from Customer;

VT NAME PRICEPLAN TURNOVER_CAT

01-JAN-98-01-MAY-98 Temp Db Inc. Budgetplan Low
02-MAY-98-12-JUL-98 Temp Db Inc. Budgetplan Medium

In this case, the two inserted tuples are shown because interpretation of the transaction
time tells that these facts would be in the database from 1998/05/15 until now, and our
current date is in this period.

Third, a sequenced transaction time example is given. In this case, the valid time is
treated as TUC in other words, only tuples where the current date is in the valid time
periode are eligible for the query. The statement for this is:

Sequenced Transaction Select * from customer;

TT NAME PRICEPLAN TURNOVER_CAT
--
15-MAY-98-NOW Temp Db Inc. Budgetplan Medium

The result is that only the second tuple is shown because interpretation of the valid time
tells that only this tuple would be valid and thus in the database at this moment.

Fourth, a combined sequenced transaction and valid time example is given. This
statement will allways show all tuples in the databases. The statement for this is:

Sequenced Valid and sequenced transaction select * from customer;

TT VT NAME PRICEPLAN TURNOVER_CAT

15-MAY-98-NOW 01-JAN-98-01-MAY-98 Temp Db Inc. Budgetplan Low
15-MAY-98-NOW 02-MAY-98-12-JUL-98 Temp Db Inc. Budgetplan Medium

For this statement, the current date is not relevant because all tuples in the database are
shown. One can also see here, that Tiger uses time spans for both the valid time and the
transaction time. When a tuple is inserted, the transaction time is [current_date - now).
When a tuples is (logically) deleted from the database, the end time of the transaction
time changes from now to the transaction time of the time of deletion.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 25

In the case of the simple example select statements, nonsequenced statements would
return the same tuples but without the valid time and transaction time values in the result
set e.g.:

NonSequenced Valid and Nonsequenced transaction select * from customer;

NAME PRICEPLAN TURNOVER_CAT

Temp Db Inc. Budgetplan Low
Temp Db Inc. Budgetplan Medium

If the users wants the valid time and transactin time values, he has to explicitely retrieve
them using the VTime() and TTime() functions e.g.

NonSequenced Valid and Nonsequenced transaction
select ttime(customer), vtime(customer), name, pricplan, turnover_cat
from customer;

TT VT NAME PRICEPLAN TURNOVER_CAT
--
15-MAY-98-NOW 01-JAN-98-01-MAY-98 Temp Db Inc. Budgetplan Low
15-MAY-98-NOW 02-MAY-98-12-JUL-98 Temp Db Inc. Budgetplan Medium

Suppose, at 1998/07/01, customer Temp Db Inc. gets a “RoyalPlan” priceplan. We use
the following update statement to store this information in the database:

update Customer
set priceplan = ‘RoyalPlan’
where name =’Temp Db Inc.’;

Sequenced Valid and sequenced transaction select * from customer;

TT VT NAME PRICEPLAN URNOVER_CAT

15-MAY-98-NOW 01-JAN-98-01-MAY-98 Temp Db Inc. Budgetplan Low
01-JUL-98-NOW 01-JUL-98-12-JUL-98 Temp Db Inc. Royal Plan Medium
15-MAY-98-30-JUN-98 02-MAY-98-12-JUL-98 Temp Db Inc. Budgetplan Medium
01-JUL-98-NOW 02-MAY-98-30-JUN-98 Temp Db Inc. Budgetplan Medium

Graphically, the valid time of the tuples can be represented as follows:

1998/07/0101/01 05/02

CURRENT
05/01 07/12

Low
BudgetPlan, Medium

07/1306/30

RoyalPlan, Medium

BudgetPlan, Medium (in database until 1998/07/01)

Here we see some typical temporal behaviour. As we do a snapshot update, only the
tuple valid at the current time (1998/07/01), that is the one with turnover_category
“Medium”, is involved. As this table has transaction support, the existing value is not
overwritten. Instead the transaction time period is closed at 1998/06/30 (this tuple is
depicted in the figure with a dotted line). In fact, this tuple is logically deleted. Two new
tuples are added to depict the new situation. As we did not specify a valid time period in
our update statement, the valid time period for the “RoyalPlan”-tuple is set from the
current date (1998/07/01) until the original valid enddate (1998/07/01). In the period
1998/05/01-1998/30/06, the “BudgetPlan” value was valid.

Up to now we illustrated temporal SELECT, INSERT and UPDATE, so now it is time for a
DELETE. Suppose, at 1998/07/08, our “Time Db Inc.” customer goes bankrupt and we

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research26

want to delete his data from our database. As with the update, we use a snapshot
statement for this action because we only want to change the current situation.

delete from customer where name=’Time Db Inc.’;
Sequenced Valid and sequenced transaction select * from customer;

TT VT NAME PRICEPLAN TURNOVER_CAT

15-MAY-98-NOW 01-JAN-98-01-MAY-98 Temp Db Inc. Budgetplan Low
01-JUL-98-07-JUL-98 01-JUL-98-12-JUL-98 Temp Db Inc. Royal Plan Medium
15-MAY-98-30-JUN-98 02-MAY-98-12-JUL-98 Temp Db Inc. Budgetplan Medium
01-JUL-98-NOW 02-MAY-98-30-JUN-98 Temp Db Inc. Budgetplan Medium
08-JUL-98-NOW 01-JUL-98-07-JUL-98 Temp Db Inc. Royal Plan Medium

Graphically, the valid time of the tuples can be represented as follows:

07/0101/01 05/02

CURRENT
05/01 07/12

Low
BudgetPlan, Medium

07/1306/30

RoyalPlan, Medium (in database until 1998/07/08)

BudgetPlan, Medium (in database until 1998/07/01)

07/07 1998/07/08

RoyalPlan, Medium

As we have transaction support, the current “RoyalPlan”-tuple is not physically deleted
from the database but only logically (dotted line). The transaction time period is closed at
1998/07/07. Furthermore, the new situation that our customer had a RoyalPlan from
1998/07/01 until 1998/07/07, with a transaction time period from [1998/07/08-now), is
decuded and stored by the database.

The last temporal concept illustrated in this paragraph is coalescing. Coalescing involves
joining of adjacent or overlapping time periods. Coalescing can both be done for valid
time periods and for transaction time periods. In this example we limit ourselves to
coalescing in valid time. Suppose we want to know in what period our customer had a
“BudgetPlan”-priceplan independent of the turnover category. As this is a question
associated with history data, we use atemporal query:

sequenced valid
select name, priceplan from customer where priceplan=’BudgetPlan’;

VT NAME PRICEPLAN
--
01-JAN-98-01-MAY-98 Temp Db Inc. Budgetplan
02-MAY-98-30-JUN-98 Temp Db Inc. Budgetplan

The result contains as aspected two tuples. But infact it concerns two adjacent periods
where the priceplan stayed the same but the turnover category changed fron “Low” to
“Medium”. As we were interested in the priceplan independent of the turnover category,
we would like to see a one tuple result with a valid period [1998/01/01-1998/06/30]. To
achieve this, we perform a coalescing operation in the valid time dimension.

(sequenced valid
select name, priceplan from customer where priceplan=’BudgetPlan’)(vt);

VT NAME PRICEPLAN
--
01-JAN-98-30-JUN-98 Temp Db Inc. Budgetplan

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 27

4 Tools and products

After twenty years of research into temporal databases, temporal support in commercial
databases is still very limited. The fact that ATSQL is a superset of SQL92 and that a
prototype and a commercial ATSQL implementation have been realised as a front-end to
existing major commercial DBMSs, has not convinced the DBMS vendors of
incorporating temporal support into their databases. Users of the DBMSs of major
vendors, do not ask for temporal support yet probably because the added value of
temporal support is not clear to them. When users ask for temporal support, DBMS
vendors (e.g. Oracle and Informix) say they already have it in the form of so called Time
Series. This chapter will first give an overview of the prototypes that have been
developed. After that the concept of Time Series is explained.

4.1 Prototypes

In [Böhlen95] an overview is given of temporal prototypes that have been developed
until 1995. Although this list may be outdated, we think that it still gives a good indication
about the implementation efforts in this area. The extent to which the implementations
support standard and temporal database functionality varies much. Several
implementations even lack traditional database functionality like persistence,
transactions and concurrency control. In our opinion the most interesting prototypes are
the front-end implementations for commercial databases (e.g. Tiger and TimeDB15). In
Table 4.1 an overview is given of the temporal prototypes as described in [Böhlen95].

Name16 1 2 3 4 5 6 7 8 9
Tiger/TimeDB R TS UVT T CG17 PTC SV SUPJN QUI
ChronoLog R TS UVT T - PTC SV SUPJN QUC
HDBMS R TS UVT T G PTC S SUPJN QU
TempIS R TS UVT T - PTC S SUPJ QU
VT-SQL R TS UV T - PTC - SUPJN QU
TDBMS R TS UV TA P PT S SPJN QU
T-squared DBMS R S UVT T - P V SUPJN QU
T-REQUIEM R TSE UVT T - P SV SUPJ Q
TIMEIT R S V T - - - J Q
TIMEMULTICAL R TS U - CGI - S S Q
Calanda O T V - CGI PTC S S Q
ARCADIA O TS UV - GI P - - QM
TempCASE - TSE UV - G P OSV SUPJN QU

Table 4.1 Salient features of TDB prototypes (taken from [Böhlen95])

Legend18:
1. relational (R), object-oriented (O),
2. points (T), spans (S), set of spans (E),
3. user-defined time (U), valid-time (V), transaction time (T),
4. tuple time stamps (T), attribute time stamps (A),

15 In 1999 a commercial, platform and database independent version of TimeDB will come out.
16 The prototypes are ordered in decreasing order of amount of functionality. The amount of functionality is
determined by weighing column 6, 3 and 8 in decreasing order of importance.
17 Is planned for implementation.
18 The number refers to the column in the table.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research28

5. multiple calendars (C), different granularities (G), indeterminacy (I), interpolation (P),
6. persistence (P), transactions (T), concurrency control (C),
7. object versioning (O), schema modifications (S), views/rules (V),
8. temporal selection (S), temporal union (U), temporal projection (P), temporal join (J), temporal negation (N),
9. temporal queries (Q), temporal updates (U), temporal integrity constraints (C), temporal methods (M)

Table 4.1 shows that most prototypes are based on the relational model. In addition
almost all prototypes support both time span and time points representation. The support
for temporal elements (i.e. multiple valued spans) is negligible. Column three shows that
almost all prototypes support user-defined and valid- time support. Transaction time
support is much less frequent; about half of the implementations. When we look at the
relational based models, we see that the time stamping is modeled at tuple level. Only
TDBMS supports both tuple and attribute time stamping.

Support for reasoning at different time granularities and associated modalities is only
rarely supported. Of the traditional database characteristics persistence, transactions and
concurrency control is persistence widely supported. Transactions and concurrency
control is supported by only some of the prototypes. Column 7 is not clarified by
[Böhlen95]. Column 8 indicates that most implementations support temporal Select,
Project Join (SPJ) functionality. In addition most implementations support temporal
Union and Negation. Temporal querying is supported by almost all prototypes, whereas
temporal updates are only supported by only some of the implementations.

Table 4.1 is ordered in descending order on completeness of temporal support.
Completeness is rated on columns 6, 3 and 8 in descending order of importance. In
addition the prototypes are categorized on underlying data model (i.e. column 1).

The prototypes that have the most complete functionality are Tiger/TimeDB, Chronolog,
HDBMS and TempIS. Notably, Tiger/TimeDB, Chronolog and TempIS are front-ends to
commercial databases (i.e. Oracle or Ingres). HDBMS is an independent implementation
which covers database functionality by itself.

The front-end implementations prove that it is possible to extend commercial products
with temporal support. However, as mentioned before, market leaders like Oracle and
Informix are not interested (yet) in extending their products with temporal functionality.

4.2 Time Series

We have already mentioned that commercial products do not have temporal support as
defined in the previous paragraphs. However, they sometimes do provide temporal
extensions to their standard database engine targeted at specific application area’s. This
specific temporal support is covered by the term time series. This paragraph will explain
the term time series and its relation to temporal databases.

The short definition of a time series is; a collection of observations made sequentially
over time (e.g. the hourly price of a share). Time series are often used in areas like
banking and meteorology. Several thousands of time series to forecast economic
parameters or the weather are very common. Special support is required for storing and
manipulating these amounts of time series.

4.2.1 Modelling of time series

For a data model to support time series, the following structural elements are necessary
[Schmidt95]:

• Events: the actual registration of the value(s) of interest. These are the building
blocks of time series. The values can be single-valued or multi-valued. Furthermore,
there is a distinction between so called base values i.e. measured facts and derived
values i.e. values computed from base values.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 29

• Time series: a sequence of chronologically ordered events preceded by a header
containing common data for the entire time serie. The header may contain both time-
variant data (e.g. average price of a share) and time-invariant data (e.g. the name of
the time serie). The events of a time series may be of the same type or vary over
time.

• Groups of time series: a grouping of time series according to some criteria (e.g.
country, branch) in order to facilitate the manipulation of large sets of time series.
Each group has a header with common data for the entire group, and a set of
members. These members can be both time series as other groups. Group members
can belong to different groups at the same time.

• Calendars: a set of valid times at which values are measured for a time series. There
are three types of calenders viz [Etzion98]:
- Calendars modelling physical space (e.g. Days, Hours, Minutes, Seconds),
- Calendars defined in accordance with a particular calendar system. Example of
calendar systems are Gregorian, Jewish and Islamic. Calendars Years, Months,
Weeks are examples of Gregorian calenders.
- Calendars defined in accordance with particular applications (e.g. a calendar with
holidays). This type of calendar is user-defined whereas the two previous types are
system defined.

In Figure 4.1, an example of a time series for recording share prices is given. Four times
a (business) day, the actual price of a share is measured and beside these values the
lowest and highest value of each day are recorded separately. The header contains the
name of the time series, the calendar used and a (at forehand unknown) number of
values e.g. for statistical purposes.

Date: 16-03-1998
Low: 5
High: 18
Raw: 6, 10, 18, 5

Name: MyShare
Calendar: business week
Values: 123, 34, 65
Start date: 16-03-1998

Date: 17-03-1998
Low: 10
High: 23
Raw: 23, 11, 15, 10

Date: 18-03-1998
Low: 20
High: 45
Raw: 20, 25, 33, 45

Figure 4.1 Example of a share price time series

Time series are mostly accessed along the time axis, event by event. But when so called
cross-sectional analysis is performed, several time series are accessed simultaneous
comparing the different events from each time series at the same points in time. The
data model should support efficient storage for both types of access.

4.2.2 Operations on time series

For manipulation of time series, the usual CRUD19 operations on simple and complex
type elements should be supported. Another important operation is the derivation of new
time series from existing ones e.g. by computing the difference of two existing time
series or transforming the periodicity of a time series (e.g. daily periodicity to monthly
periodicity). As time series are often subject to statistical analysis, requiring matrix
algebra, operations on (multidimensional) arrays should be supported. Periodicity
transformation is not always trivial. Take for example the transformation from daily to
monthly for a share price. For the high selling price it is the maximum of all daily selling
prices but for the closing price it is the closing price of the last day of the month. To
facilitate working with groups, additional operations are required for creating and
manipulating groups of time series.

19 Create/Read/Update/Delete

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research30

4.2.3 Time series and temporal databases

After the above description of the requirements for modelling and manipulating time
series, the question arises whether this can be implemented in a temporal database or
not. The other way around, the question is whether a Time Series Management System
(TSMS) is the same as a Temporal DataBase Management System (TDBMS).
In a temporal context, one can distinguish three types of objects:

• Time-invariant objects, which values do not change over time (e.g. date of birht of a
person)

• Time-varying objects, which values change over time with arbitrary frequency (e.g.
the priceplan of a customer)

• Time-series objects, which values change over time with a frequency imposed by the
associated calendar (e.g. a share price time series).

Both TSMSs and TDBMSs support time-invariant objects but TSMS are focussed on
time-series object support whereas TDBMSs are focused on time-varying object support.
A TSMS is aimed at efficient storage of (groups of) huge arrarys of (multi-valued)
elements and provides fast implementations of dedicated operations to manipulate these
elements. For time-series, only the notion of valid time is relevant. In a TDBMS, on the
other hand, both valid time and transaction time should be supported and upward
compatibility with existing applications is desirable.

We think that it is possible to use a TDBMS as TSMS but, as a TDBMS is a general
solution, it will not be as efficient and fast as a dedicated TSMS. Furthermore, some
additional application programming is necessary to support the required operations. For
modeling it is important whether a relational TDBMS is used or a Object Oriented one.
The latter is more easy as it can handle the complex data types used with time series. In
a relational database, complex types can be modelled using several related relations. As
most temporal databases are extensions of the relational model, we will give some
relational approaches, and their drawbacks, for modelling time series [Schmidt95]:

• A separate relation for each time series, related to another relation for the header
information. For a group the same strategy can be used with a relation with the
group header information related to a relation containing pointers to the time series
header and group header relations belonging to this group. As time series bases
usually consist of thousands of time series, the result is an enormous amount of
relations that are difficult to manage.

TS_11
Timestamp Attr-1 Attr-2 …
1 123 “xyz” …
2 456 “abc” …

TS_12
Timestamp Attr-A Attr-B …
1 78.98 89 …
2 45.9996 8976 …

• A separate relation for all time series of the same type with an attribute indicating

the id of each time series (i.e. each time serie of a certain type is a tuple in a
relation). For groups, the same kind of strategy as above can be used. The result is
less relations, but conflicts in reading and writing performance. As time series are
mostly sequentially read, sorting the relation by time-series_id, date/time is
desirable for reading. Normally, time series are rarely update; only new events are
appended at the end of a time series. This results in frequent rewriting of indexes
with the above sorting strategy.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 31

TS_type_X
Timestamp ts_id Attr-1 Attr-2 …
1 “TS_11” 123 “xyz” …
2 “TS_11” 456 “abc” …
1 “TS_14” 909 “hoi” …
2 “TS_14” 888 “mno” …

• Another approach is to use one relation for all time series. This results in an

enormous waste of storage space as this relation must contain all attribute of all
time series and most of the fields have a null value

TS_Events
Timestamp ts_id Attr-1 Attr-2 Attr-A Attr-B …
1 “TS_11” 123 “xyz” null null …
2 “TS_11” 456 “abc” null null …
1 “TS_14” 909 “hoi” null null …
2 “TS_14” 888 “mno” null null …
1 “TS_12” null null 78.98 89 …
2 “TS_12” null null 45.9996 8976 …

Remark that the number of relations is further increased in the case of multi-valued
attributes. A drawback from a query point of view is the fact that relational databases are
set oriented whereas time series are sequential oriented (e.g. give me the 10th and 40th

element of a time series). This may lead to complex queries with long response times.

Using a temporal relational database to implement a time series application instead of a
conventional snapshot relational database has the advantage of the support for valid
time. But a temporal database does not fully support times series. The absence of
complex data types and specific time series operations, requires a lot of functionality to
be implemented by the user.

The choice between a TDBMS and a TSMS has to do with the difference between a
general or a dedicated solution for a particular problem. A TSMS is tailored for time
series management but does not support other types of data manipulation whereas a
TDBMS is designed for more general time manipulation.

4.2.4 Time series products

As explained in the former paragraph, relational temporal databases have their
limitations concerning the support of time series. Current temporal databases do not
explicit support time series management. As already indicated above, the first
alternatives are provided by research prototype and commercial object oriented or object
relational database management systems. An example of the former is the CALANDA
TSMS developed at the Union Bank of Switzerland. Commercial time series support is
offered by ORDBMSs from, among others, Oracle and Informix. The time series data
type, including accompanying operations, is provided by special plug-in modules (called
cartridges for Oracle and data blades for Informix). These modules extend the database
with array based storage of (complex type) elements. Furthermore operations are
provided for creating time series and efficient operations for manipulation of these time
series. The concept of grouping time series is not yet supported. A more detailed
description of the capabilities of these plug-ins is out of the scope of this document.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 33

5 Analysis and recommendations

Analysis

After some twenty years of temporal database research, consensus on concepts and
aspects has been reached within the temporal database community. The concepts of
Valid Time (when is a fact true in reality) and Transaction Time (when is a fact stored in
the database) are considered the cornerstones for temporal support. As compatibility
with existing database systems has high priority, most researchers have tried to extend
the relational or the object oriented model. Extensions of the relational model where the
most succesful probably because most current databases are relational databases. The
ideas and concepts of the ATSQL project are the most likely candidates to be
incorporated in the Temporal module of the new SQL3 standard. Comparing functional
equivalent standard SQL queries and temporal SQL queries indeed shows that temporal
SQL queries are much easier and powerful than standard SQL queries. Furthermore, the
datamodel can be simplified by removing 1:N-constructs for storing history data.

Up to now, major database vendors like Oracle, Informix, IBM and Microsoft do not show
real interest for temporal support in their products althought prototype and commercial
front-ends have shown the possiblities of it. When asked for it, the vendors refer to their
support of time series. But time series are specialized in storing and manipulating large
amounts of frequently changing number-series and not in supporting and reasoning over
infrequently changing data. We have the feeling that database vendors and database
users are waiting for each other. As long as vendors do not offer temporal support, the
customers are not aware of the potentials of it and as long as the customers do not ask
for temporal support, the vendors will not offer it.

After having writen this report, we have the feeling that temporal support does indeed
simplify the development and maintenance of applications handling temporal data. As
the number of data warehouses (having time as an essential component) increases, the
added value of temporal support by the database will probably increase. It seems that up
to now, the ignorance of database users of the benefits of temporal support together with
the complexity of time theory, prevent the breakthrough of temporal databases.

Recommendations

To get a better idea of the actual added value of temporal support, comparing
experiments should be carried out. An interesting comparison would be between an
“ordinary” relational database implementation, a temporal implementation and a time
series implementation. These experiments will also indicate whether temporal support
does indeed offer added value over already existing time series support. If so, this
knowledge can be used to convince major database vendors of the benefit of temporal
support.

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 35

6 References

[ANSI96a] Snodgrass, R.T, Böhlen, M.H et. al.; Adding Transaction Time to
SQL/Temporal, ANSI change proposal, ANSI X3H2-96-502r2, October
1996.

[ANSI96b] Snodgrass, R.T, Böhlen, M.H et. al.; Adding Valid Time to
SQL/Temporal, ANSI change proposal, ANSI X3H2-96-501r2, October
1996.

[Böhlen95] Böhlen, M.H. Temporal Database System Implementations. SIGMOD
Record 24 (4), December 1995

[Böhlen95a] Böhlen, M.H , Announcement of ChronoLog 4.0,

http://www.cs.auc.dk/~boehlen/Software/ChronoLog4.0/ANNOUNCEMENT

[Böhlen96] Böhlen, M.H; Jensen, C.S., Seamless integration of time into SQL,
submitted to ACM Transactions on Dtabase Systems, December 1996.
http://www.cs.auc.dk/~tigeradm/

 [Dey96] Dey, D. Temporal Relations and Temporal Normal Forms, Louisiana
state university, dep of IS and decision sciences, July 1996

[Etzion98] O. Etzion , S. Jajodia , S. Sripada, Temporal Databases: Research and
Practic, Lecture notes in computer science, Vol. 1399, Springer, pp 115-
128, ISBN 3-540-64519-5, 1998

[OS95] Ozsoyoglu, G.; Snodgrass, R.T. Temporal and Real-Time Databases: A
Survey. IEEE Transactions for Knowledge and Data Engineering 7 (4).
August 1995, pp. 513-532

[SA86] Snodgrass, R.T.; Ahn, I. Temporal Databses. IEEE Computer 19(9),
September 1986, pp. 35-42

[Schmidt95] Schmidt, D et. al. Time Series, a Neglected Issue in temporal Database
Research?, Proceedings of the Int. workshop on temporal databases,
Switzerland, 17-18 September 1995.

[TDBG98] Jensen, C.S.; Clifford, J.; Elmasri, R.; Gadia, S.K.; Hayes, P.; Jajodia, S.
(eds.) Dyreson, C.; Grandi, F.; Käfer, W.; Kline, N.; Lorentzos, N.;
Mitsopoulos, Y.; Montanari, A.; Nonen, D.; Peressi, E.; Pernici, B.;
Roddick, J.F.; Sarda, N.L.; Scalas, M.R.; Segev, A.; Snodgrass, R.T.;
Soo, M.D.; Tansel, A.; Tiberio, P.; Wiederhold, G. A Consensus Glossary
of Temporal Database Concepts. At URL
http://www.cs.auc.dk/~csj/Glossary/

[Tiger98] Böhlen, M, Tiger reference manual, Department of computer science,
Univerisity of Aalborg, http://www.cs.auc.dk/~tigeradm/

[TSQL94] Snodgrass, R.T; Ahn, I. et. al., TSQL2 language specification,
September 1994. At URL http://www.cs.arizona.edu/people/rts/tsql2.html

[Wilson96] Wilson, C.C.V., Geographic Information Systems and Time, Department
of Geography, Carleton University, Ottawa,Canada, 1996
(http://www.carleton.ca/~cwilson/thesis.html)

[ZCFS+97] Zaniolo, C.; Ceri, S.; Faloutsos, C.; Snodgrass, R.T.; Subrahmanian,
V.S.; Zicari, R. Advanced database systems. Morgan Kaufmann
Publishers, San Francisco, California, 1997

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 37

Appendix A: Temporal query languages

This appendix shows some temporal relational query languages and temporal object
oriented query languages that have appeared in the literature (taken from [ZCFS+97]).

A.1 Temporal relational query languages

Name Underlying data model based on formal
semantics

HQL Sadeghi DEAL x
- HDM Ils x
Time-By-Example Tansel QBE x
- Bassiouni Quel x
HTQuel Gadia-1 Quel x
- Gadia-2 Quel
Tquel Snodgrass Quel x
Hquel Tansel Quel x
- ADM Relational Algebra x
- DM/T Relational Algebra x
- HRDM Relational Algebra x
Legol 2.0 Jones Relational Algebra
Temporal
Relational Algebra

Lorentzos Relational Algebra x

- McKenzie Relational Algebra x
TOSQL Ariav SQL
- Ben-Zvi SQL x
TSQL Navathe SQL
HSQL Sarda SQL
TDM Segev SQL x
TempSQL Yau SQL x
TSQL2 BCDM SQL-92
IXSQL Lorentzos SQL-92 x

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research38

A.2 Temporal object oriented query languages

Name Underlying data model Based on Implemented
- Sciore-1 Annotations
OODAPLEX OODAPLEX DAPLEX
- Sciore-2 EXTRA/EXCESS
VISION Caruso Metafunctions x
OQL/T OSAM*/T OSAM*/OQL
PICQUERY+ TEDM PICQUERY x
Postquel Postgres Quel x
MATISSE MATISSE SQL x
OQL OVM SQL x
Orion Kim SQL x
OSQL IRIS SQL x
TOOSQL TOODM SQL x
TQL TIGUKAT SQL x
TMQL TMAD SQL
TOSQL TOODM SQL

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 39

Appendix B: Relational and Object-Oriented data models

This appendix shows some temporal relational models and temporal object oriented
models that have appeared in the literature (taken from [ZCFS+97]).

B.1 Temporal relational datamodels

Data model name Temporal dimension(s) Identifier
Accounting Data Model Both ADM
- Both Ahn
Temporally Oriented Data Model Both Ariav
- Valid Bassinouni
- Both Bhargava
Bitemporal Conceptual Data Model Both BCDM
Time Relational Model Both Ben-Zvi
DATA Transaction DATA
DM/T Transaction DM/T
Extensional Data Model Both EDM
Homogeneous Relational Model Valid Gadia-1
Heterogeneous Relational Model Valid Gadia-2
Historical Data Model Valid HDM
Historical Relational Data Model Valid HRDM
- Valid Jones
- Transaction Lomet
Temporal Relational Model Valid Lorentzos
- Valid Lum
- Both McKenzie
Temporal Relational Model Valid Navathe
- Valid Sadeghi
- Valid Sarda
Temporal Data Model Valid Segev
- Both Snodgrass
- Valid Tansel
Time Oriented Databank Model Valid Wiederhold
- Both Yau

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research40

B.2 Temporal object oriented data models

Data model name Temporal
dimension(s)

Identifier Transaction
timestamp
representation

- Both Caruso Chronon
IRIS Transaction IRIS Chronon, identifier
- Transaction Kim Version hierarchy
MATISSE Transaction MATISSE Chronon, identifier
OODAPLEX Arbitrary OODAPLEX Arbitrary
OSAM*/T Valid OSAM*/T N/A20

OVM Transaction OVM Identifier
Postgres Transaction Postgres Period
- Arbitrary Sciore-1 Arbitrary
- Both Sciore-2 Chronon
TEDM Valid TEDM N/A
TIGUKAT Both TIGUKAT Identifier
TMAD Valid TMAD N/A
Temporal Object-Oriented
Data Model

Both TOODM Temporal element

20 Not Applicable

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research 41

Appendix C: Temporal database related activities

This appendix gives a description of the European research network
CHOROCHRONOS. During the writing of this report we had contact with this group. In
addition a list of conferences and workshops is given where temporal database research
has been presented.

C.1 CHOROCHRONOS21

C.1.1 Objectives

The main objective of CHOROCHRONOS is to allow European researchers working on
spatial and temporal databases to achieve a higher understanding of each other’s work,
integrate their results and methodologies, and advance the state of the art in this area
through an intensive three-year research programme. This will culminate in the design
and partial implementation of an architecture for Spatiotemporal Database Systems
(STDBMS). The Participants will also cooperate, through intensive workshops, with
researchers from other disciplines who are dealing with temporal and spatial information
in their research, and would benefit from the development of an STDBMS. This network
will stimulate training and mobility of young researchers working in the areas of spatial
and temporal databases. The Participants will actively pursue dissemination of results
throughout European academic institutions and industry.

C.1.2 Participants

• National Tech. Univ. of Athens (NTUA), Computer Science Division, Greece (Project
Coordinator) - Prof. Timos Sellis

• Aalborg University (AALBORG), Department of Computer Science, Denmark - Prof.
Christian Jensen

• FernUniversität Hagen (HAGEN), Praktische Informatik IV, Germany - Prof. Dr. Ralf
Hartmut Güting

• Universita Degli Studi di L'Aquila (UNIVAQ), Dipartimento di Matematica Pura ed
Applicata, Italy - Prof. Enrico Nardelli

• Univ. of Manchester - Institute of Science & Technology (UMIST), Department of
Computation, United Kingdom - Dr. Manolis Koubarakis and Dr. Babis Theodoulidis

• Politecnico di Milano (POLIMI), Dipartimento di Elettronica e Informazione, Italy -
Prof. Barbara Pernici

• Institut National de Recherche en Informatique et en Automation (INRIA), Projet
VERSO, France - Dr. Stephane Grumbach and Prof. Michel Scholl

• Aristotle University of Thessaloniki (AUT), Department of Informatics, Greece - Prof.
Yannis Manolopoulos and Agricultural

• University of Athens (AUA), Informatics Laboratory, Greece - Prof. Nikos Lorentzos
• Technical University of Vienna (TU VIENNA), Department of Geoinformation, Austria

- Prof. Andrew Frank
• Swiss Federal Institute of Technology, Zurich (ETHZ), Institute for Information

Systems, Switzerland - Prof. Hans-Jorg Schek

21 At URL: http://www.dbnet.ece.ntua.gr/~choros/index.html

Temporal Databases – A state-of-the-art Reportnr. 30432

KPN Research42

C.2 Conferences and workshops

• ACM SIGMOD International Conference on Management of Data
• ACM Transactions on Database Systems (TODS)
• ARTDB’97: The Second International Workshop on Active, Real-Time and Temporal

Database Systems, Como, Italy.
• CAiSE’97/IFIP 8.1 International Workshop on Evaluation of Modeling Methods in

Systems Analysis and Design
• Computer Software and Applications Conference(COMPSAC’96)
• HERMIS Conference
• ICTL’97: Second International Conference on Temporal Logic, Manchester, England
• IEEE Transactions on Knowledge and Data Engineering (TKDE)
• International Conference on Data Engineering (ICDE)
• International Conference on Database and Expert Systems Applications (DEXA)
• International Conference on Extending database Technology (EDBT)
• International Conference on Temporal Logic
• International Database Engineering and Applications Symposium (IDEAS)
• International Workshop on Active and Real-Time Database Systems. Workshops in

Computing
• International Workshop on Temporal Databases, Zurich, Switzerland
• International workshop on temporal reasoning in deductive and object-oriented

databases
• International Workshop on Temporal Representation and Reasoning (TIME)
• Spatial and Temporal Reasoning, a AAAI workshop, Seattle, Washington.
• TIME’97, Fourth International Workshop on Temporal Representation and Reasoning,

Daytona Beach, Florida
• TRDOOD: First International Post-Conference Workshop on Temporal Reasoning in

Deductive and Object-Oriented Databases, Singapore

