
Temporal Entity-Relationship
Models|a Survey

Heidi Gregersen and Christian S. Jensen

TR-3

A TimeCenter Technical Report

Title Temporal Entity-Relationship Models|a Survey

Copyright c
 1997 Heidi Gregersen and Christian S. Jensen. All

rights reserved.

Author(s) Heidi Gregersen and Christian S. Jensen

Publication History September 1996. Technical Report R-96-2039, Aalborg University.

January 1997. A TimeCenter Technical Report.

TIMECENTER Participants

Aalborg University, Denmark

Michael H. B�ohlen

Renato Busatto

Heidi Gregersen

Christian S. Jensen (codirector)

Kristian Torp

University of Arizona, USA

Hong Lin

Richard T. Snodgrass (codirector)

Individual participants

Curtis E. Dyreson, James Cook University, Australia

Michael D. Soo, University of South Florida, USA

Andreas Steiner, ETH Zurich, Switzerland

Any software made available via TimeCenter is provided \as is" and without any express or implied

warranties, including, without limitation, the implied warranty of merchantability and �tness for a

particular purpose.

The TimeCenter icon on the cover combines two \arrows." These \arrows" are letters in the so-

called Rune alphabet used one millennium ago by the Vikings, as well as by their precedessors and

successors, The Rune alphabet (second phase) has 16 letters. They all have angular shapes and lack

horizontal lines because the primary storage medium was wood. However, runes may also be found

on jewelry, tools, and weapons. Runes were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote \T" and \C," respectively.

Abstract

The Entity-Relationship (ER) Model, using varying notations and with some semantic varia-

tions, is enjoying a remarkable, and increasing, popularity in both the research community, the

computer science curriculum, and in industry. In step with the increasing di�usion of relational

platforms, ER modeling is growing in popularity. It has been widely recognized that temporal

aspects of database schemas are prevalent and di�cult to model using the ER model. As a result,

how to enable the ER model to properly capture time-varying information has for a decade and

a half been an active area of the database research community. This has led to the proposal of

almost a dozen temporally enhanced ER models.

This paper surveys all temporally enhanced ER models known to the authors. It is the �rst

paper to provide a comprehensive overview of temporal ER modeling, and it thus meets a need

for consolidating and providing easy access to the research in temporal ER modeling. In the

presentation of each model, the paper examines how the time-varying information is captured in

the model and present the new concepts and modeling constructs of the model. A total of 20

di�erent design properties for temporally enhanced ER models are de�ned, and each model is

characterized according the these properties1.

Keywords|Conceptual modeling, entity-relationship models, database design, temporal data-

bases, temporal data models, design criteria for temporal ER models, time semantics.

1 Introduction

The Entity-Relationship (ER) Model [2], in its di�erent versions, with varying syntax and with some

semantic variations, is enjoying a remarkable, and increasing, popularity in both the research com-

munity and in industry. The model is easy to comprehend and use. An ER diagram provides a good

overview of database design, and the model's focus on the structural aspects of database schemas, as

opposed to their behavioral aspects, also appears to match the levels of ambition for documentation

adopted by many users.

The ER model may be used for di�erent but related purposes, namely for analysis|i.e., for model-

ing a mini-world|and for design|i.e., for describing the database schema of the a computer system.

As a third alternative, the ER model may be supported directly by a DBMS. In that case, it may

be used as an implementation model. However, although graphical and textual ER query languages

have been proposed by the research community, the ER model is rarely used as an implementation

model. Rather, the typical use seems to be one where the model is used primarily for design, with the

design diagrams also serving as analysis diagrams, and where the constructed diagrams are mapped

to a relational platform. In step with the increasing di�usion of relational platforms in industry, ER

modeling is growing in popularity.

The use of ER modeling is supported by a wealth of textbook material. For example, most

introductory database textbooks (e.g., [10, 25, 3]) contain chapters on ER modeling, and several

complete books exist (e.g., [1, 32]) that are devoted entirely to ER modeling.

Companies either develop their own ER diagrams from scratch, or they purchase and modify

generic, standard diagrams2. Indeed, generic diagrams for a variety of types of applications are

commercially available, e.g., the FSDM from IBM.

Some companies build ER diagrams using only simple drawing tools. Other companies use one of

the many commercially available tools that are more sophisticated and better support the building

of diagrams and also map diagrams to implementation platforms. Such tools are either stand-alone,

e.g., SmartER from Knowledge Based Systems, Inc. and ER/1 from Embarcadero Technologies, or

are integrated parts of larger CASE tools, e.g., Teamwork/IM SQL from Cayenne Software, Inc. and

Visible Analyst Workbench from Visible Systems Corporation. Typical implementation platforms

include those provided by major SQL-based database systems.

1The authors are with the Department of Mathematics and Computer Science, Aalborg University, Fr. Bajers Vej

7E, Dk{9220 Aalborg �st, Denmark, fgregori;csjg@cs.auc.dk. This work is supported by grants 9400911 and 9502695

from the Danish Natural Science Research Council and the Danish Technical Research Council, respectively.
2In industry, ER diagrams are typically termed ER models. This is in contrast to common usage in the research

community, and in this paper, where a data model is a modeling notation, and a diagram is a description using some

notation.

1

In the research community as well as in industry, it has been recognized that temporal aspects

of database schemas are both prominent and di�cult to capture using the ER model. Put simply,

when modeling fully the temporal aspects, the temporal aspects tend to obscure and clutter otherwise

intuitive and easy-to-comprehend diagrams. As a result, some industrial users simply choose to ignore

all temporal aspects in their ER diagrams and supplement the diagrams with phrases such as \full

temporal support." The result is that the mapping of ER diagrams to relational tables must be

performed by hand; and the ER diagrams do not document well the temporally extended relational

database schemas used by the application programmers.

The research community's response has been to develop temporally enhanced ER models. Indeed,

almost a dozen such models have been reported in the research literature. Their informative names

include the Temporal Enhanced Entity Relationship model [12, 11], the Temporal Entity Relationship

model [31], and the Relationship, Attribute, Keys, and Entities model [13], to name but a few.

Two general, orthogonal temporal aspects have received widespread attention, namely valid time

and transaction time [15]. The valid time of a database fact is the time when the fact is true in the mini-

world. (We use the term \mini-world" for the part of reality that the database under consideration

stores information about.) Thus, all database facts have an associated valid time. Di�erent time

types may be used when modeling the valid-time aspect, e.g., single time instants, intervals, or sets of

intervals.

Perhaps more importantly, the valid time may or may not be captured explicitly in the database|

this is the choice of the database designer. In ER models, unlike in the relational model, a database is

not structured as a collection of facts, but rather as a set of entities and relationships with attributes.

Thus, the valid times are associated only indirectly with facts. As an example, consider an Employee

entity \E1" with a Department attribute. A valid time of June 1996 associated with value \Shipping"

does not say that \Shipping" is valid during June 1996, but rather that the fact \E1 is in Shipping"

is valid during June 1996. Thus, when valid time is captured for an attribute such as Department, the

database will record the varying Department values for the Employee entities. If it is not captured,

the database will record only one department value for each Employee entity.

Orthogonal to valid time, the transaction time of a database fact is the time when the fact is

current in the database and may be retrieved. Unlike valid time, transaction time may be associated

with any structure stored in a database, not only with facts. Still, all structures stored in a database

have a transaction-time aspect. And again, this aspect may or may not, at the designers discretion,

be captured in the database. The transaction-time aspect has a duration: from insertion to (logical)

deletion.

In addition to valid and transaction time, a data model may support arbitrary time attributes

with no built-in semantics in the data model. For employee entities, such attributes could record

birth dates, hiring dates, etc. A data model that supports such time attributes is said to support

user-de�ned time.

In summary, facts stored in a database have a valid time and a transaction time, although those

times may not be explicitly recorded [15]. We say that a data model supports a temporal aspect, i.e.,

valid or transaction time, if it provides built-in means for indicating where in an ER diagram this

aspect should be captured.

The temporal ER models attempt to more naturally and elegantly model the temporal aspects,

such as valid and transaction time, of information by changing the semantics of the ER model or by

adding new constructs to the model. The models take quite di�erent approaches to adding built-in

temporal support to the ER model.

This paper is the �rst to survey all known (to the authors!) temporal ER models. In addition, the

paper provides a comprehensive list of possible properties of temporal ER models, and it characterizes

the models according to those properties. With about a dozen models having been proposed over the

past 15 years, such a survey is in order. It consolidates in a single and easy-to-access source the central

ideas, concepts, and insights achieved in temporal ER modeling. The survey makes it easier for future

research and development to maximally build on, bene�t from, and extend past results. Thus, the

survey is aimed at researchers and practitioners interested in temporal data modeling and data model

design.

Four studies are somewhat related to or complement the study reported here.

2

Theodoulidis and Loucopoulos [34] describe and compare nine approaches to specify and use time

in conceptual modeling, here viewed as both semantic data modeling and requirement speci�cation, of

information systems. Their study includes only two of the ER models surveyed here. The comparison

of the models fall in three parts and classi�es the models in terms of time semantics, model semantics,

and temporal functionalities. Our criteria also characterize the models in terms of user-friendliness.

The primary focus of their paper is the examination of the ontology and properties of time in the

context of information systems, whereas our focus is the examination of how the extensions of the ER

model into temporal ER models are shaped.

McKenzie and Snodgrass [22] survey and evaluate twelve di�erent temporal extensions of the

relational algebra. They evaluate the algebras against 26 design criteria. These criteria are mainly

concerned with the properties of the data objects|temporal relations and their components|that

the algebras manipulate and with the properties of the algebraic operators themselves. While their

survey concerns internal algebras, our survey concerns notations for conceptual modeling. In addition,

our focus is on the properties of the structural aspects of the temporal ER models.

Without coauthors, Snodgrass has also conducted a critical comparison of temporal object-oriented

data models [28]. While ER models do incorporate some structural object-oriented features, our study

does not consider object-oriented models; for that, we instead refer the reader to Snodgrass' study.

Also unlike our study that emphasizes structural aspects, Snodgrass' study focused on the models'

query languages, i.e., on behavioral aspects.

Roddick and Patrick [24] survey the progress of incorporating time in various data models at the

conceptual and, primarily, logical level of database modeling, and in arti�cial intelligence. The work

describes nine di�erent properties of temporal modeling systems, but unlike our survey they do not

evaluate the models against the properties described. Their broad study brie
y covers two of the

temporal ER models in our study.

The descriptions in the literature of the di�erent models use diverse and, at times, incompatible and

con
icting terminology. In this survey, we adopt the coherent terminology of the temporal database

glossary [15] when possible. In addition, the original de�nitions of the models are often informal and

rely on the reader's intuition. In part also to achieve a homogeneous survey of a manageable size,

we will give informal descriptions of some aspects. Further, we will emphasize the common core of

features of the temporal ER models: the use of ER modeling to capture the structural aspects of a

database schema. We will not cover behavioral aspects such as query and rule languages in detail.

The paper is structured as follows. Section 2 provides an overview of all temporal ER models

known to the authors. Section 3 then identi�es a set of 20 evaluation criteria and evaluates each

model according to these criteria. Finally in Section 4, a conclusion and a discussion of future work is

given.

2 Existing Models

This section describes each existing ER model separately and in turn. Initially, an overview is provided

that explains the structuring of the descriptions and introduces a (\running") example that will be

used for exempli�cation throughout.

2.1 Overview

This section describes all the temporal ER models that we are aware of. We will assume that the

reader is familiar with Chen's standard ER model [2] and the various extensions of that model, e.g.,

subtyping (see, e.g., [10]).

We have chosen to present the models in chronological order of their �rst publication, with the

exception that the model RAKE is presented before the model TERM because RAKE has a graphical

notation while TERM does not.

The description of the models all have, with a few exceptions, the same basic layout. First, a short

introduction of the model is given. Second, we describe how the model captures time. Third, we give

an example diagram built using the model's notation. For each model, the sample diagram models

the same mini-world, to be described shortly. In order to keep the diagrams simple and still be able to

reach into the corners of the di�erent models, we in some places deviate slightly from the description

3

below. This way, it is possible to more concisely present the special features of the models. When we

do deviate, we will state this explicitly. Last, a short summary of the model is given.

Mappings of ER diagrams to implementation platforms for the models will only be explained if

they are described in the papers and di�er substantially from the typical mappings from the EER

model to relational platforms.

The mini-world that we describe next concerns a company divided into di�erent departments.

Each department has a number and a name and is in charge of a number of projects. A department

keeps track of the pro�ts it makes on its projects. Because the company would like to be able to make

statistics on its pro�ts, each department must record the history of its pro�ts.

join_date

hours/week
Employee

Birth_date

ID

work_period

Start_date End_date

Start_date End_date

Salary_period

Salary

Amount

Department

#

End_dateStart_date

period

Amount

Type

Manages

Start_date

Manager

Rank

Belongs_to

Name

First_name

Name

Last_name

Project

BudgetID

 for
Responsible

Profit

(1,N)

(1,1)

(1,1)

(1,N)

(1,N)

(1,N)

(1,1)

(1,1)

(1,N)

(1,N)

(1,N)

(1,N)

(1,N)

Works_for

Figure 1: ER Diagram Describing the Running Example

Each project has a manager and some employees working on the project. Each project has an

ID, and a budget. Each project is associated with a department which is responsible for the project.

Employees belong to a single department. Once an employee is assigned to a department, the employee

works for this department for as long as the employee is with the company. For each employee, the

company registers the ID, the name, the date of birth, and the salary. The departments would like to

keep records of the di�erent employees' salary histories.

Employees work on one project at the time, but employees may be reassigned to other projects,

e.g., due to the fact that a project may require employees with special skills. Therefore, it is important

to keep track of who works for what project at a given time and what time they are supposed to �nish

working on their current project.

Some of the employees are project managers. Once a manager is assigned to a project, the manager

will manage the project until it is completed or otherwise terminated. Figure 1 presents the ER

diagram describing the database design corresponding to this mini-world.

Figure 2 provides an overview of the surveyed models, along with their main citations, the models

on which they are based, and the identi�ers we will be using in the rest of the paper.

It is important that the presentation (and de�nition!) of a model is precise and complete. The

descriptions of the surveyed models range from very formal and detailed to vague and faulty.

The model we have found to be described the best is TERM, which in [17] is described in great

detail. Models MOTAR, ERT, and TER are presented in articles dedicated to this single purpose, but

their descriptions are not as detailed and comprehensive as that of TERM. Models RAKE, TEER,

and STEER are also presented in articles only concerning the presentation of the models, but their

descriptions are less comprehensive. The description of TempEER is further incomplete. For example,

the description of the mapping algorithm supposed to translate TEER diagrams to relational schemas

does not cover time-varying aspects. The description of TempRT is also incomplete, primarily because

this model is not yet fully developed.

4

Name Main citations Based on model Identi�er

Enhanced Entity Relationship model [10] ER EER

Relationships, Attributes,

Keys, and Entities Model [13] ER RAKE

Temporal Entity-relationship Model [17, 18] ER TERM

Model for Objects with Temporal

Attributes and Relationships [23] ER & OO MOTAR

Temporal EER model [12, 11] EER TEER

Semantic Temporal EER model [8, 9] ER STEER

Entity-Relation-Time model [33, 35, 21] ER ERT

Temporal ER model [31] ER TER

Temporal EER model [20] EER TempEER

Kraft's Model [19] ER TempRT

Figure 2: Short Presentation of the Surveyed Models

2.2 The Relationships, Attributes, Keys, and Entities Model

The Relationships, Attributes, Keys, and Entities model, RAKE, [13] was developed in 1984 as part

of a project at the U. S. Federal Reserve Board. One of the tasks in the project was to design a

database to \store data on the history, attributes, and interrelationships of American and foreign

�nancial institutions," and the model was developed to provide better support for this work than the

ER model.

RAKE fundamentally adopts the ER model, but replaces some of the ER model's modeling con-

structs with new ones and adds entirely new constructs. Most prominently, RAKE introduces so-called

key �elds in diagrams: Key attributes of entity types are places in \key boxes" in the upper-left corners

of the entity-type rectangles. This explicit representation of the entity-keys was unexpectedly found to

also be useful when modeling time-varying data, to record multiple states of entities and relationships

in the same application.

All new constructs are de�ned in terms of their mapping to relational tables and in terms of existing

ER constructs. Following a discussion of the representation of the time domain in RAKE, we consider

in turn the modeling of time-varying relationships and attributes.

2.2.1 The Representation of Time

The time type used in RAKE corresponds to the type DATE (or TIMESTAMP) supported by, e.g., various

SQL implementations of relational DBMSs. This type is used for modeling of valid time and user-

de�ned time, but it could also be used to capture transaction time.

It is noted that the history of entities and relationships consists of series of states succeeding one

another in time. The series are punctuated by events that transform one state into another. The

states have duration while the events do not. The valid times of states are thus modeled using a pair

of time attributes, BEGINstamp and ENDstamp, and the valid times of events are modeled using an

attribute Tstamp. Next, we shall see how these time attributes are used in RAKE diagrams.

2.2.2 The Model Components

As usual, entity types are represented by rectangles. The primary key of an entity type is placed, in a

so-called keybox, in the upper-left corner of its rectangle. Weak entity types are also represented by

rectangles. For these, the partial key is placed in the keybox, and the primary keys of the identifying

relationships are stacked ontop of the keybox.

Non-primary-key attributes of entity types are represented by circles that, as usual, are linked to

the entity types. If an attribute circle is enclosed by a square (also a rectangle), this means that the

attribute may be treated as an entity type. As in the ER model, relationship types are represented

by diamonds. As for attributes, if a relationship-type diamond is enclosed by a rectangle, this implies

that the relationship type may also be treated as an entity type.

5

In non-temporal databases, only the current, or last-known, state of entities and relationships are

stored. When recording multiple states, entities and relationships are identi�ed di�erently. Entities are

identi�ed by non-reusable identi�ers (e.g., serial numbers). In contrast, RAKE distinguishes between

di�erent relationships|that are instances of the same relationship type|solely by their timestamps.

Below, we delve into these and other temporal aspects.

Modeling Time-varying Relationships

When changing a binary relationship type where only a single state is recorded, to record multiple

states, the relationship type turns ternary. To see this, consider Figure 1. The Responsible for

relationship type consists of a set of pairs of Department and Project entities, with the entities being

represented by their primary-key values. In contrast, because we want to record project assignments

for di�erent times, it is necessary for Works for to be ternary: only with a third work period entity

is it possible to represent project assignments of the same employee to the same project, at di�erent

times.

Thus, the ternary relationship type in Figure 3(a) is the correct way to represent a temporal rela-

tionship between two entities in RAKE. To avoid cluttering the diagrams with time-period rectangles,

Employee
ID

BEGINstamp
ENDstamp

Time Period

Project

ID

Employee
ID

Project

ID

BEGIN
stamp

(b)

ENDstamp

Works_for

(a)

Works_for

Figure 3: The Representation of Time-varying Relationship Types in RAKE

RAKE eliminates this notation and instead introduces the semantically equivalent notation in Fig-

ure 3(b). In this way, RAKE represents temporal relationship types as weak entity types owned by a

time-period entity type that is not explicitly represented in the diagrams [13, pp. 282{283]. Together

with the primary keys of the other entity types participating in the relationship type, the ENDstamp,

which is part of the key of the owner entity type, is su�cient to uniquely identify instances of the

relationship type. The BEGINstamp, also a part of the owner entity type, is therefore simply treated

as an ordinary attribute.

Modeling Time-varying Attributes

The use of a circle for representing an attribute may be seen as a shorthand for a relationship between

a set of entities and a domain of attribute values. With this view, the domain of attribute values

becomes an entity type, and the technique for modeling temporal relationship types may be used for

modeling temporal attributes as well. Figure 4(a) illustrates this correspondence. When applying the

Employee
ID

Salary

(c)

ENDstamp

BEGIN
stamp

Employee
ID

Salary

(b)

ENDstamp

Employee
ID

Salary

BEGINstamp
ENDstamp

(a)

Time Period

Figure 4: Modeling Time-varying Attributes in RAKE

transformation technique from relationship types, we arrive at Figure 4(b). Again, by having made

the entity attribute relationship explicit, the relationship is treated as a weak entity with an implicit

time period as owner. This, in turn, is abbreviated to Figure 4(c), where the BEGINstamp attribute

is made implicit. This is how RAKE models temporal attributes.

6

Next, observe that the approach here is to use attribute-value timestamping. Each attribute is

treated in isolation. RAKE also has special provisions for timestamping sets of attributes of an entity

type. Assume that the Salary and Address of Employee are both temporal and that we want to

timestamp them together. Figure 5 illustrates how this is accomplished. Figure 5(b) illustrates the

Employee
ID

Address

Employee
ID

Salary,
Address

(a)

Salary

(b)

Snapshot

ENDstamp ENDstamp ENDstamp

Figure 5: Modeling Time-varying Attributes Together in RAKE

new construct and Figure 5(a) shows the equivalent old construct. When mapping the two diagrams to

a relational database schema, Figure 5(a) would be mapped to two relation schemas, while Figure 5(b)

would only be mapped to a single table. These database schemas have di�erent advantages. Indeed,

this is the rationale for permitting both modeling constructs.

Finally, it is also possible to timestamp attributes and relationships with time points, to model

temporal events. This is done simply be using an attribute Tstamp in place of ENDstamp and omitting

BEGINstamp from temporal relationships.

2.2.3 Summary

RAKE retains most of the constructs of the ER model, with their usual semantics, but modi�es the

handling of primary keys by introducing special keyboxes on entity types and weak entity types. RAKE

also introduces special constructs for modeling temporal relationship and attribute types. These are

modelled as weak entity types owned by implicit time-period entity types. The new constructs of

RAKE are de�ned in terms of their mapping to the relational model and of existing ER constructs.

2.3 The Temporal Entity-Relationship Model

TERM, the Temporal Entity-Relationship Model, was the �rst temporally extended ER model to be

proposed [17, 18]. The main motivation for TERM was \to provide database designers with a model

for data de�nition and data manipulation that allows a general and rigorous treatment of time" [17].

To accomplish this, TERM most notably introduces the notion of a history, which is a function from a

time domain to some value domain. Histories are then used for the modeling of time-varying aspects.

For example, the (time-varying) value of an attribute of an entity becomes a history, rather than a

simple value.

Unlike all the other temporal ER models, TERM does not have a graphical syntax, but has a

Pascal-like syntax.

2.3.1 The Representation of Time

In its outset, TERM makes a strict distinction between a real-world phenomenon and its ER-model

representation. For example, TERM distinguishes between \time" and the representation of time|

there is one \time," but many possible representations of time. This distinction extends to the other

modeling constructs, e.g. values and histories. We focus on the representations.

Domains are termed structures. A time domain is thus a time structure. With TERM, the

designer may de�ne time structures, but TERM also includes a prede�ned time structure of Grego-

rian dates. These dates are equipped with a variety of predicates, termed structure relations, e.g.,

\before date" and \is in leap" (is the argument date in a leap year?), and operators, e.g., \next-day"

and \least-recent." Figure 6 illustrates two value structures, one for employee names and one for

generic identi�ers. It also provides a (partial) time structure, termed \date," with one relation.

7

relations
function is_in_leap(t: date): boolean;
begin

is_in_leap := t.y mod 4 = 0 and
(t.y mod 100 < > 0

or t.y mod 400 = 0);
end

Structure
st_ID = integer;

name= packed array [1..20] of char;
Structure

record d,m,y: integer end

Structure
date =

where
this.y >= 1852
this.m
this.d

>=
>=

and
1 and this.m <= 12

and1 this.d <= 31
and
and

(this.d < > 31
or this.m in [1,3,5,7,8,10,12]) and

(this.d < > 30 or this.m < > 2) and
or this.m < > 2)

or mod and
mod 100 < > 0

or this.y mod

((this.d < > 29
(this.y 4 = 0
(this.y

400 = 0)));

Figure 6: Sample Value and Time Structures

A history is a mapping h : T ! V where T is a time structure and V is a value structure. Histories

are used for capturing the variability of time-varying aspects, as we shall see in the next section.

Attributes of entities and roles of relationships have atomic histories while, e.g., entire entities have

composite histories, i.e., histories composed of atomic and composite entities. All composite histories

are sets of histories: An entity (relationship) history consists of an existence history and the set of all

its attribute (role) histories.

The (atomic) history h is represented by the history structure 2T�V , i.e., by a set of (time, value)

pairs. To achieve a �nite history structure in situations were time structure T represents continuous

time, it is possible to introduce as part of the history structure a derivation function that uses the

stored (time, value) pairs to compute values for additional times.

Figure 7 exempli�es histories. First, a generic existence history for entities and relationships is

de�ned. The condition involving the three universally quanti�ed variables \s1", \s2", and \s" disallows

holes in existences. To the right, a salary history is de�ned that uses a step-wise constant derivation

function, deriv sal (least recent date, when applied to a pair of a set of dates and a date,\z" returns

the largest date in the set that is not larger than \z").

from wherethis

derivation
function

z: date) : real;
var
begin

x state of

deriv_sal(h: sal_history;

sal_history;

x:= that s1 where
s1.t=least_recent_date(those tx from date where

exists s2

from h

from h where
s2.t=tx, z);

end;

if x <> nil
deriv_sal:= x.v;

else
deriv_sal:= uncertain

Pattern
sal_history=

history
t : date;
v : real end;

Structure
standard_existence=

history
t : date;

where
v : kleenean end;

all s1, s2 from this where
((s1.v = true and s2.v = false and
impl all s

and
((s1.v = false and s2.v = true and

s
before_date(s, s1)

and
((s1.v = true and s2.v =true and
impl all s

before_date(s1, s) and before_date(s, s2)
impl

before_date(s1, s2)

before_date(s1, s2)

before_date(s1, s2)

impl all from this where

before_date(s2, s) impl s.v = falsebefore_date(s2, s) impl

from this where

s.v = false)

s.v = false)

s.v = true);

impl

Figure 7: TERM History De�nitions [18]

All data items within a database will not change at the same time. Moreover, for some database

items, only the current value is of interest, whereas for others, only some values in the past may be

known, while still other items require a history of the entire past. For these reasons, histories are

applied to individual database items instead of to the database as a whole.

2.3.2 The Model Components

The next step is to consider the association of histories with time-varying database items.

The basic modeling constructs of TERM are those of the ER model. Entities model the interesting

objects from the mini-world; values model the properties of the mini-world objects. The values are

associated with the entities via attributes.

If an attribute has no history, that is, if the value of an attribute never changes once it is assigned,

it is referred to as a constant attribute; otherwise it is variable. Constant attributes are represented

by a (attribute, value) pair, and variable attributes are represented by a (attribute, history) pair.

8

Entity types are declared by a name and a set of (constant and variable) attributes. The attribute

named existence is mandatory and describes the existence of the entity type. If the existence attribute

is speci�ed as constant, the attribute has Boolean/Kleenean as its domain. This domain has values

false, true, and unknown. A variable existence attribute has an associated Boolean/Kleenean-valued

history.

Two or more entities can enter into a relationship in which each entity plays a role. Like attributes

of entity types, roles of relationship types are represented by values, now entity references, or by

histories, now entity-reference valued.

Relationship types are declared by a name, an existence description, a set of roles, and a set of

attributes. Binary relations may be declared to express participation constraints such as 1:1, 1:N, and

N:1, where the constraints are enforced for each database state in isolation. Writing a one after the

role name restricts participation to at most one (at a time). By placing a total after a role name,

total participation is indicated.

A TERM schema consists of a set of entity type de�nitions and a set of relationship type de�nitions.

Figure 8 shows the two entity types, Project and Employee, and the relationship type, Works for,

between them.

Entity type
Project
existence

attributes

ID constant st_ID;

budget constant real;

variable
standard_existence;

Employee

attributes

existence

ID constant st_ID;

variable
standard_existence;

constant

constant name;

name;

Birth_date constant date;

Entity type

variable sal_history;

First_name

Last_name

Salary

Relationship type

existence

attributes

no_of_hours/week constant integer;

roles
emp

proj

total constant

variable work_history;

constant
kleenean;

Employee;

Works_for

Figure 8: Sample TERM Entity and Relationship Types

A general bottom-up procedure for designing TERM schemas has been provided. There are four

steps. The �rst step is to de�ne all nonstandard component value sets. Figure 6 exempli�es this step.

As illustrated by the date structure, it is possible to express constraints on the values of the value

sets. A so-called relation is also shown that determines whether or not a given date is in a leap year.

The next step is to de�ne histories. As illustrated in part by Figure 7, histories have a name, a time

structure, a value structure, an optional list of predicates for restricting the set of pairs forming a

history, a list of relations, and a list of operations. The third step is to de�ne patterns. A pattern is a

value structure together with at least one assertion, at most one derivation function, and zero or more

approximation functions, or it is a history structure together with at most one derivation function

and zero or more approximation functions. The sal history shown at Figure 7 is an example of the

latter. The �nal step is to de�ne entity and relationship types. These consist of a name and a list of

components. The components are speci�ed as either existence, attributes, or roles. Figure 8 give an

example of this step.

2.3.3 Summary

TERM was the �rst temporal ER model and has a Pascal-like syntax. It allows database designers to

model temporal aspects through the use of history structures as values of attributes and relationship-

type roles. In addition, histories are employed to model the existence of entities and relationships.

2.4 The Model for Objects with Temporal Attributes and Relationships

The motivation for the development of the Model for Objects with Temporal Attributes and Relation-

ships (MOTAR) [23] was to integrate database research in areas such as object-oriented databases,

knowledge-based systems, and temporal databases. MOTAR database schemas, termed Data Model

9

Diagrams (DMDs), are graphical and extend the ER model with temporal relationships and attributes,

and with rules. A tool for building DMDs is provided, as is a mapping of DMDs to relation schemas.

2.4.1 The Representation of Time

MOTAR provides built-in features for describing the temporal aspects of a database application, both

at the conceptual and the logical level.

MOTAR concentrates on the modeling of the valid-time aspect of data. If the application at hand

requires transaction-time support in the database, the approach is to simply add time columns (a

single column, registration time, is suggested) to the appropriate relational schemas that result from

mapping the DMD to the implementation schema.

At the conceptual level, explicit notation is added to describe the temporal aspects of a mini-world

and database design. With this notation, valid-time timestamps become implicit.

The meaning of the new modeling constructs follows from their mapping to logical-level relational

schemas. For every temporal aspect described at the conceptual level, corresponding timestamp

attributes are added to the relational tables by the mapping algorithm. At the logical level, valid-time

is modeled using SQL DATE columns; details will be given when the temporal constructs are discussed

in the following.

2.4.2 The Model Components

MOTAR includes four kinds of data types: regular entity types, relationship types (non-procedural

relationship types), attribute types, and rules (procedural relationship types). The model provides

separate notations for temporal attribute types and temporal relationship types. When describing

M
Belongs

to
Join-date

Name

ID TypeRank

Salary

Manages

Works
for

ID

BudgetID

A
Profits

Rule-1

Profits

hours/week

Manager

Department

Project

Start_date

First name Last name Birth-date

Employee
NUM

Figure 9: Describing the Running Example Using MOTAR

these constructs in the following, we will use the DMD in Figure 9 for exempli�cation.

Entity and Relationship Types

Entity types are represented by circles and may be primitive or composite. Composite entity types are

built from primitive and composite entity types. In Figure 9, Employee is a primitive entity type. En-

tity type Department is, as we shall see next, related to Project by means of a Component-Composite

relationship. Department entities thus contain Project entities, and Department is a composite entity

type.

MOTAR proposes a wider de�nition of relationship types than do the usual ER models. This

more general notion of relationship is introduced to make MOTAR general enough to support a wider

variety of applications.

10

MOTAR relationship types are procedural (rules) or non-procedural. Brie
y, the former operate

on attribute values of entities or relationships, and they produce results that may update the attribute

values of the same entity or relationship, or the attribute values of other sets of entities or relationships.

There are three kinds of non-procedural relationship types, each of which is illustrated in Figure 9

and explained next.

� Superclass-Subclass (SS) Relationship Types. These are represented by linking two entity

types with a dashed line, with an arrow pointing from the superclass to the subclass. In SS

relationship types, the instances of the subclass are of the same type as the instances of the

superclass, but additional information is needed for instances of the subclass. In the �gure,

Manager is a subclass of Employee.

Inheritance of attributes is supported. Thus instances of the subclass has the same attributes

as instances of the superclass, in addition to the attributes speci�ed for the subclass. This

inheritance is built into the mapping of SS relationship types to relational tables. For example,

the Employee-Manager relationship generates the following table.

EMP SUBCLASS MGR(EMP ID, MGR ID)

Each tuple in this table links information about a manager, in a Manager table, with information,

stored in an Employee table, about the manager. Joining this table with an Employee table on

EMP ID and then with a Manager table on MGR ID will retrieve all the attributes of a manager.

� Component-Composite (CC) Relationship Types. These are represented by linking two

entity types with a solid line, with an arrow pointing from the composite to the component.

The notation allows for specifying di�erent constraints. Components being optional is indicated

by using a double, solid line for linking the component and the composite. If the composite

entities may contain multiple occurrences of the component entity type, the line linking the

entity types is given a small circle at the component end. This is exempli�ed in Figure 9 by

letting Project be a component of Department (this is a deviation from the running example).

The CC relationship type between Department and Project results in the following relational

table being generated.

DEP COMPONENT PROJ(DEP NUM, PROJ ID)

If the composite only contains at most one occurrence of the component, the key of the above

relational table will be reduced to the composite identi�er only. Whether the component object

is optional or not does not matter to the mapping algorithm.

� General Relationship (GR) Types. These are relationships between entity types that are

neither of type SS nor type CC. They are represented by linking the involved entity types to a

diamond with solid lines. N-ary GR types are allowed.

Each entity type that participates in a GR type has a cardinality ratio that can be either 1

or N. A cardinality ratio of 1 for an entity type means that the same instances of the other

participating entity types are related to at most one instance on the entity type. A cardinality

ratio of 1 is represented by linking the entity type to the diamond with a solid line, as mentioned

before. A cardinality ratio of N for an entity type means that the same instance of the other

participating entity types may be related to more than one instance of the relationship type. A

cardinality ratio of N is represented using a solid line ending with a small circle at the diamond

side. The DMD in the �gure indicates that a department may have more than one employee,

but that one employee belongs to at most one department. The meaning of cardinality ratios

for time-varying GRs is not given.

All GR types have one reference entity type that indicates to which entity type the attributes of

the GR type refer. The reference entity type is determined from the semantics of the GR type.

Figure 9 exempli�es this: because hours/week is meant to describe how many hours per week an

employee is working on a project, Employee is the reference entity type of the relationship type

Works for. A reference entity type of relationship is indicated with a small line perpendicular

to the line connecting the entity type to the diamond; see the �gure.

11

Using special time-varying GR types, it is possible to describe relations that vary over time,

such as project assignments of employees and marriages. Time-varying GRs are represented by

double diamonds. In Figure 9, the relationship type Works for is time varying, stating that

employees may be reassigned to other projects. The meaning of time-varying GRs is revealed

by their mapping to relational tables in which DATE type attributes Start date and End date are

introduced. Speci�cally, the Works for relationship type will be mapped to the following two

tables.

REL WORKS FOR(EMP ID, PROJ ID)

WORKS FOR(EMP ID, PROJ ID, EMP Hours/week, EMP Start date, EMP End date)

From the second table, it can be seen that employees may only work for the same project once

because the key of the relation WORKS FOR only consists of EMP ID and PROJ ID. Almost

all the attribute names are pre�xed with EMP because Employee is the reference entity type of

Works for.

Attributes

There are four types of attributes in the model. They are initially divided into identi�ers and simple

attributes; and simple attributes are either regular, aperiodic, or periodic. Identi�ers are represented

by rectangles and are considered time-invariant. For example, ID is the identi�er of, e.g., the entity

type Project. Regular attributes do not change over time and are thus non-temporal. They are

represented by squares. For example, as departments' names are not expected to change, Name of

Department in Figure 9 is modeled as a simple, regular attribute.

Aperiodic attributes are expected to change over time, at irregular intervals. A double square

without a letter inside represents an aperiodic attribute. Attribute Salary of Employee is an example

of an aperiodic attribute; it is mapped to the following table.

EMP Salary(EMP ID, Salary date, Salary)

This mapping, with only one time attribute, results in several interpretations of the meaning of

aperiodic attributes. For example, aperiodic attributes may be assumed to be step-wise constant. For

example, the value of a salary remains constant between updates. The Salary date value of a tuple

then indicates when the tuple's Salary value takes e�ect. Another interpretation is that aperiodic

attributes are assumed to be discrete. For the Salary attribute, this means that a tuple's Salary value

is valid only at the time indicated by the value of its Salary date attribute. The intended meaning is

not clear from the description of the model.

Periodic attributes are expected to change over time within speci�c intervals, e.g., monthly or

weekly. A double square with a letter inside represents a periodic attribute. The letter indicates

the intervals with which the attribute is monitored. Two periodic attributes, Pro�ts, are used for

recording departments' pro�ts. One is sampled monthly, and the other is sampled annually. Rule-1

computes the annual pro�ts, taking the monthly pro�ts as input. Entity type Department is mapped

to the following tables.

DEP(DEP NUM, Name)

DEP Annual Pro�t(DEP NUM, Pro�t Year, Annual Pro�t)

DEP Monthly Pro�t(DEP NUM, Pro�t Month, Pro�t Year, Monthly Pro�t)

From this it can be seen that it is possible to specify a granularity for periodic attributes.

Rules

The notion of rules as known from knowledge-based systems is used for the modeling of procedural

relationships. Reference [23] provides argumentation for why rules are thought of as data in MOTAR.

Rules are represented using an arrow head that points from the condition of the rule to its conclusion.

In Figure 9, Rule-1 exempli�es this; for further details, see [23].

12

2.4.3 Summary

MOTAR provides the database designer with new modeling constructs for describing time-varying

attributes, both periodic and aperiodic, and for describing time-varying relationships. These constructs

\hide" the time attributes that would otherwise be necessary.

2.5 The Temporal EER Model

The motivation for developing the Temporal EER (TEER) Model [12, 11] was that its authors believe

that it would be more natural to specify temporal data and temporal queries in a conceptual, entity-

oriented model than in a tuple-oriented relational data model. TEER does not add new syntactical

constructs to the EER model; instead, it gives new meaning to the existing EER modeling constructs

making them temporal.

2.5.1 The Representation of Time

The time representation is similar to that proposed by Gadia and Yeung [14] for the relational model,

but is adapted to the requirements of the ER model. A time interval, denoted by [t1; t2], is de�ned

to be a set of consecutive equidistant time instants, where t1 is the starting instant and t2 the ending

instant. The distance between two consecutive time instants can be adjusted based on the granularity

of the application to be equal to months, days, or other suitable time units. A temporal element is a

�nite union of time intervals denoted by, fI1; I2; : : : ; Ing where Ii is an interval in [0; now]. A temporal

database stores historical information for a time interval [0; now] where 0 represents the starting time,

of the database mini-world application, and now represent the current time which is continuously

expanding.

The authors state that the TEER model has no limitations regarding support of time dimensions,

but due to space limitations, the articles consider only valid time.

2.5.2 The Model Components

The TEER model extends the EER model [10] to include temporal information on entities, rela-

tionships, superclass/subclasses, and attribute. Since the graphical representation of TEER model

components is similar to that of the EER model presented by Elmasri and Navathe [10], we will not

explain it in detail. Instead, we will concentrate our attention on the new meaning given to the

syntactical constructs of the EER model.

Department

Name

Profit

works_for

Project

ID Budget

Responsible
 for

Belongs_to

Manages

join_date

hours/week

Start_date Type

Employee

ID

Name

Birth_date

Salary

Manager

Rank

N 1

1
N

N

1

11

First name

Last name

Figure 10: A TEER Schema Modeling the Running Example

Entities and Entity types

In the TEER model, each entity e of entity type E is associated with a temporal element T (e) �
[0; now] that gives the lifespan of the entity. The lifespan of an entity can be a continuous time

interval, or it can be the union of a number of disjoint time intervals. In TEER, each entity type has

13

a system-de�ned SURROGATE attribute whose value is unique for every entity in the database. The

value of this attribute is hidden from the user and does not change throughout the lifespan of the

entity. The temporal element of the SURROGATE attribute of entity e de�nes the lifespan T (e) of

the entity.

The temporal properties of weak entities are similar to those of regular entities, except that the

temporal element T (e) of each weak entity must be a subset of the temporal element of its owner

entity.

Attributes and Keys

The attribute types of the TEER model are the same as those of the EER model, although they are

all temporal. The temporal value of each attribute Ai of e, denoted by Ai(e), is a partial function

Ai(e) : T (e)! dom(Ai). This is also referred to as a temporal assignment. The subset of T (e) in which

Ai(e) is de�ned and denoted by T (Ai(e)) is called the temporal element of the temporal assignment.

It is assumed that Ai has the value NULL or UNKNOWN during the time intervals T (e)� T (Ai(e)).

To give an example of the above, consider the database described by Figure 10, and assume that

the chosen granularity of time is a day. A particular EMPLOYEE entity e with lifespan T (e) =

[7=1=90; now] may have the temporal attribute values given in Figure 11.

SURROGATE(e) = f[7=1=90; now]! surrogate idg (system generated)

ID(e) = f[7=1=90; now]! 98765g

First name(e) = f[7=1=90; now]! Chrisg

Last name(e) = f[7=1=90; now]! Johnsong

Birth date(e) = f[7=1=90; now]! 8=23=46g

Salary(e) = f[7=1=90; 6=30=92]! $ 20K,

[7=1=92; now]! $ 30Kg

Figure 11: Example of a Lifespan of an Entity

The following constraint apply to attributes and keys in the TEER model. Simple single-valued

attributes have at most one atomic value for each entity at each time instant [t]. Multivalued attributes

can have more that one value for an entity at a given time instant [t]. For a given time instant [t],

the value of a composite attribute of an entity is the concatenation of the values of its components.

The temporal element of a temporal assignment of a composite attribute is the union of the temporal

elements of the temporal assignments of its components. A key attribute is an attribute of an entity

type with the constraint that at any time instant [t] in [0; now], no two entities will have the same

value for this attribute. TEER allows updates of key attributes since each entity is uniquely identi�ed

by its system-de�ned SURROGATE.

Relationship Types

Like entities of entity types, each relationship instance r is associated with a temporal element T (r)

that de�nes the lifespan of the relationship instance. A constraint states that T (r) must be a subset of

the intersection of the temporal element of the participating entities. That is, T (r) � (T (e1)\T (e2)\
: : :\T (en)) where T (ei) is the lifespan of the i'th entity participating in r. Relationship attributes are

treated similarly to entity attributes; the temporal value Ai(r) of each simple attribute Ai is a partial

function Ai(r) : T (r) ! dom(Ai) and its temporal element T (Ai(r)) must be a subset of T (r). The

cardinality ratios of the participating entity types have not been given any new meaning.

The TEER model also o�ers user-de�ned and predicate-de�ned superclass/subclass relationships.

An entity e of a superclass E will belong to a predicate-de�ned subclass C throughout all time intervals

where the de�ning predicate evaluates to true for that entity. For a user-de�ned subclass, the user

speci�es when the entity is to be a member of the subclass. In either case, the entity will have a

temporal element T (e=C) that speci�es the time intervals during which it is a member of the subclass

C. The constraint T (e=C) � T (e) on temporal elements must hold. Attributes of a subclass are

treated similarly to other attributes; the temporal elements of their temporal assignments must be

subsets of T (e=C).

14

2.5.3 Summary

TEER does not add any new syntactical constructs to the EER model, but changes the semantics of

all the standard EER constructs, making them temporal. TEER do not provide any mapping from

TEER diagrams to any implementation model.

2.6 The Semantic Temporal EER Model

The Semantic Temporal EER model (STEER) [8, 9] was developed in order to compensate for a lack

of consideration of the semantics associated with time in previous research that had concentrated on

temporal data models and query languages in the context of the relational model and not so much in

the context of conceptual data models. STEER introduces a new classi�cation concept for temporal

and conceptual objects and provides guidelines for identifying objects as conceptual or temporal.

2.6.1 The Representation of Time

The representation of time in STEER is very similar to the representation of time in the TEER model

just surveyed. Actually, the only di�erence is that the time domain T of the database application

is expanded from T = ft0; t1; t2; : : : ; tnowg to T = ft0; t1; t2; : : : ; tnow; tnow+1; : : :g. That is, it is now

possible to reference future time points. NULL is used to represent the unknown time point, and tnow
is used to represent the current time point. STEER only supports valid time.

2.6.2 The Model Components

The STEER model distinguishes between conceptual and temporal entities. A conceptual entity is

treated as an object with permanent existence. That is, once an entity is created in the database, it

can be referenced at any future point in time. A temporal entity|also called an entity role because

it models one of the several roles that a conceptual entity can participate in over time|on the other

hand, has a speci�c lifespan describing its existence. STEER distinguishes between temporal and

non-temporal attributes, and it di�erentiates between temporal and conceptual relationships as well.

It also de�nes temporal constraints among entity roles and conceptual and temporal relationships.

W_Employee

Salary

Belonged_to

Belongs_to

Join-
date

Worked_for

Act_Department

Cur_Project

Performed

Project

Profit

Budget

ID

Start-
date Type

W_Manager
Manages

l

Works_for

Hours/week

Employee

ID

Department

Birth_
date

e

e

Performs
e

NameRankLast name

First
name

Figure 12: The Running Example Modeled Using the STEER Model

Conceptual Entities and Their Entity Roles

To understand the idea behind the distinction between conceptual entities and entity roles, consider

an example. Initially, note that entities from the modeled mini-world need to be represented in the

database when they become of interest. For example, students exist in the mini-world as persons.

15

However, they do not become of interest to a university before they have been accepted at the uni-

versity. At that point, the university might want to record previous information about the students.

Then, when students leave the university, they often remain of interest to the university for some time.

So the conceptual existence of an entity does not directly correspond to the birth, dead, or change of

the entity. In this example, persons are modeled as conceptual entities, and (persons in their roles as)

students are modeled as entity roles.

Conceptual entities describe the conceptual aspects of the real world. A conceptual entity type is

a set of conceptual entities of the same type. Conceptual entity types are represented by rectangles

in STEER diagrams; in Figure 12, Employee is an example.

The temporal aspects of the real world are described by temporal entities which are also called

entity roles because they represent the active roles a conceptual entity can participate in. A role type

is a set of entity roles of the same type. Each role type is associated with a single entity type called its

owner entity. A role type is represented by a �lled rectangle and connected to its owner entity type.

W Employee in Figure 12 is an example. W Employee models all the employees currently employed

by the company.

Each conceptual entity e is associated with an existence time, ET . The start time point ST of the

existence time refers to the time when the entity was recorded in the database. The end time point of

an existence time is in�nity because an entity once created never ceases to exist. Hence, ET=[ST;1[.

Each entity role ro of a role type RO is associated with a temporal element T (ro) � [t0;1[that

gives the lifespan of the entity role. The lower bound (start time) tl of a lifespan [tl; tu] of an entity

role must be closed; tl cannot be NULL because the start time of an entity role cannot be unknown;

nor can it be tnow, since the current time is a dynamic concept. The upper bound (end time) tu can

either be closed or open; tu can be tnow if tl � tnow or NULL if tl > tnow.

The association between a conceptual entity and its entity roles can be viewed as some sort of

superclass/subclass relationship with mutual inheritance of attributes and relationship instances. The

following set of rules clarify this relationship.

1. A role type has exactly one entity type as owner.

2. The start time of the lifespan of en entity role must be greater than or equal to the start time

of the owner entity.

3. A role type can only have temporal attributes.

4. Attributes of a role type are \public" to the owner entity type, and attributes (temporal and

non-temporal) of the owner entity type are \public" to all the associated role types.

5. An entity role can access all relationship instances of relationship types in which the owner entity

participates, and, reversely, an entity can access all relationship instances of relationship types

in which the associated entity roles participates.

Non-temporal and Temporal Attributes

Non-temporal attributes can only be properties of conceptual entity types. The value of a non-temporal

attribute of an entity holds over the entire existence time of the entity. Non-temporal attributes are

diagrammically represented with circles. An example is the non-temporal attribute ID of Employee

in Figure 12.

Each entity is provided with a system-de�ned non-temporal SURROGATE attribute whose value

is unique for every entity in the database. The value is not visible to the user and is never altered.

Each entity type E or role type RO may have a set of temporal attributes TA1; TA2; : : : ; TAn,

and each temporal attribute TAi is associated with a domain of values, dom(TAi). In STEER dia-

grams, temporal attributes are represented by ellipses; an example is the temporal attribute pro�t of

Act Department in Figure 12.

The next de�nitions are very similar to those presented in Section 2.5. For entity roles, the temporal

value of each attribute TAi of ro, referred to as TAi(ro) is a partial function from T (ro) to dom(TAi).

The subset of T (ro) in which TAi(ro) is de�ned is denoted by T (TAi(ro)). It is assumed that TAi has

NULL or UNKNOWN as its value during the intervals T (ro) � T (TAi(ro)). The similar de�nitions

16

apply to entities, the only di�erence being that T (ro) is replaced by ET (e) (i.e., the lifespan of entity

e).

The partial function that describes the value of a temporal attribute is also called a temporal

assignment. The subset of time points during which a temporal attribute is de�ned is called the

temporal element of the temporal assignment. The di�erent types of temporal attributes are similar

to those of the TEER model. For non-temporal attributes of an entity, the temporal element of the

temporal assignment is equal to the existence time of the entity.

For an example of the above, consider the database described in Figure 12 and assume that the

chosen granularity of time is a day. A particular Employee entity e with existence time ET (e) =

[7=1=90;1[may have the following temporal attribute values:

SURROGATE(e) = f[7=1=90;1[! surrogate idg (system generated and non-temporal)

ID(e) = f[7=1=90;1[! 98765g (non-temporal)

First name(e) = f[7=1=90;1[! Chrisg (non-temporal)

Rank(e) = f[7=1=90;1[! Senior managerg (non-temporal)

Last name(e) = f[7=1=90; now] ! Johnsong

Birth date(e) = f[7=1=90;1[! 8=23=46g (non-temporal)

Salary(e) = f[7=1=90; 6=30=92] ! $ 20K;

[7=1=92; now] ! $ 30Kg

Conceptual and Temporal Relationships

A conceptual relationship type R of degree n has n participating entity types E1; E2; : : : ; En. Con-

ceptual relationship types cannot have role types as participants. Each relationship instance r in R

is an n-tuple he1; e2; : : : ; eni with ei 2 Ei. Each relationship instance r in R has an existence time

ET . The start time must be greater or equal to the start time of the existence time of each of the

n participating entities, i.e., ST (r) � ST (ei) for all ei. Conceptual relationships are represented by

diamonds in STEER diagrams. Worked for in Figure 12 is an example.

A temporal relationship type TR of degree n has n participating entity types or role types

O1; O2; : : : ; On where Oi is either an entity type or a role type. Thus, each temporal relationship

instance tr in TR is a n-tuple ho1; o2; : : : ; oni with oi 2 Oi. Temporal relationships are represented by

�lled diamonds, and an example in Figure 12 is Belongs to. Each temporal relationship instance tr is

associated with a temporal element T (tr) that give the lifespan of the temporal relationship instance.

This lifespan must be a subset of the intersection of the lifespans of the involved entity roles and

entities.

As for entities and entity roles, the association between a conceptual relationship type and a tem-

poral relationship type can be seen as some sort of superclass/subclass relationship. Two constraints

are enforced on temporal and conceptual relationships.

First there is the R-existence Constraint. This constraint, denoted by R=TR, holds between a

conceptual relationship type R and temporal relationship type TR where all the participating object

types are role types if for each tri = hro1; ro2; : : : ; roni in TR, the following two conditions hold.

� There exists a corresponding conceptual relationship ri = he1; e2; : : : ; eni inR such that owner(roj) =

ej for each roj in tri.

� The start time of the lifespan of tri must be greater than or equal to the start time of the

existence time of the corresponding conceptual relationship ri.

Second, there is the R-lifespan constraint, denoted by TR=R. This constraint holds between a

temporal relationship type TR where all the participating objects are role types and a conceptual

relationship type R if for each ri = he1; e2; : : : ; eni in R, the following two conditions hold.

� There exists a corresponding temporal relationship tri = hro1; ro2; : : : ; roni in TR such that

ej = owner(roj) for each ej in ri.

� The start time of the existence time of the conceptual relationship ri must be greater than or

equal to the start time of the lifespan of the corresponding temporal relationship tri.

17

The R-lifespan constraint is used to model the cases where a conceptual relationship cannot exist

until after a temporal relationship has started. For, example students cannot get transcript entries

for courses until after they have enrolled. R-existence and R-lifespan constraints are represented in

STEER diagrams by placing an oval with an e an a l, respectively, on the line connecting the involved

relationship types.

Superclass/Subclass Relationships

Like the EER model, STEER supports the concepts of sub and superclasses and the related concepts

of specialisation and generalization. A class is any set of entities; hence, an entity type is also a class.

A member entity of a conceptual subclass represents the same real-world entity as some member

entity in its conceptual superclass. Thus, an entity cannot exists in the database as a member of a

subclass without also being a member of the superclass. This implies that an entity that is a member

of a subclass will have the same existence time as the corresponding entity in its superclass.

Attributes of a superclass are inherited by its subclasses. A subclass entity also inherits all re-

lationship instances in which its corresponding entity in the superclass participates. The graphical

notation for superclass/subclass relationships is similar to that of the EER model [10]. However, one

should notice that when converting a non-temporal EER diagram into an STEER diagram, many or

most of the subclasses are likely to become role types. An example of this is given in Figure 13 where

the non-temporal EER schema to the left is converted to the STEER diagram to the right. This is

also the reason why no conceptual entity type Manager exists in Figure 12 and why the non-temporal

attribute Rank has to be moved to Employee.

Employee

Secretary

Manager

l
l

Engineer

l

Active_Employee

Employee

Secretary Manager Engineer

Figure 13: Mapping Non-temporal Superclass/subclass Relationships to the TEER Model

When role types participate in superclass/subclass relationships, two temporal constraints may be

indicated. An existence constraint holds between two role types ROi (superclass) and ROj (subclass)

if for all roles rojk in ROj, there exists a role roil in ROi such that rojk � roil. Next, a lifespan

constraint holds if the lifespan of any entity role rojk in ROj is a subset of the lifespan of the entity

role roil in ROi with rojk � roil. Notice that the lifespan constraint implies the existence constraint,

but not vice versa. In STEER diagrams existence and lifespan constraints are represented the same

way as R-existence and R-lifespan constraints. Figure 12 contains an example of a lifespan constraint

between W Employee and W Manager is shown. The l in the oval is replaced by an e if an existence

constraint is to be indicated.

2.6.3 Summary

STEER is a semantic temporal model where conceptual entities are considered to exist forever (or more

precisely, from when they become of interest to the application), whereas the roles they participate

in, i.e., the temporal entities, have lifespans to determine their existence. The same distinction holds

for relationships. A general set of constraints for preserving temporal consistency is presented.

2.7 The Entity-Relation-Time Model

The Entity-Relation-Time (ERT) model exists in two versions, the original version [33, 35] and a

recent re�nement [21]. We survey �rst the original model and then discuss the re�nements at the end.

18

The motivation for the development of the original ERT model was to meet the need for con-

ceptual models of enhanced system functionality. In ERT, this need is addressed through the use of

a conceptual modeling formalism that caters for the modeling of business rules, time, and complex

objects. This formalism is supported at the database level by an extension of the relational model

with temporal semantics and an execution mechanism that provides active-database functionality.

In the description of ERT, the term class is used instead of the term type. We will follow the

description. The basic structures of ERT are those of the binary entity-relationship model, with the

exception that it regards any association between objects as a relationship. Speci�cally, the distinction

between \attributeships" and relationships is avoided. The ERT model extends the ER model both

in its semantics and graphical notation in two directions: the modeling of time-varying information;

and the modeling of complex objects.

In the ERT model, the term time-varying information refers to pieces of information where the

modeler wants to keep track of their evolution, i.e., wants to record their variation over time.

2.7.1 The Representation of Time

Time is introduced in the ERT model via a distinguished entity class, the time period class, and the

time period is considered the most primitive temporal notion in the model. A time period starts and

ends in a tick and also has a duration expressed in ticks, i.e., a tick is de�ned as the smallest unit of

time permitted in ERT. Each time-varying entity class and relationship class is timestamped with a

time period class. That is, a time period with a speci�ed granularity is assigned to every time-varying

piece of information that exists in an ERT schema.

When a time period class is associated with an entity class, it models the lifespans of the entities

in the class. The lifespan of an entity is also referred to as its existence period. When a time period

class is associated with a relationship class, it models the time period during which a relationship is

valid. This is referred to as the validity period of a relationship instance and models the period in time

that the relationships holds. This latter time notion thus corresponds to valid time.

A number of assumptions were made in order to increase the feasibility and practicality of the

proposed approach, including the following.

1. System-generated surrogates are used for unique identi�cation of entities.

2. Reincarnation of entities is permitted, i.e., if an entity no longer is in the database, meaning

that the existence period of the entity ends in a tick less than the current time, it can return

using the same surrogate. This implies that entities keep their identity through time.

3. Existence and validity periods should always be mapped onto the calendar axis, i.e., they should

be speci�ed in absolute terms. That is,

� if the existence period of a timestamped entity is not speci�ed explicitly as an absolute

value, then the current time is taken as start point of the existence period, and

� if the validity period of a timestamped relationship is not speci�ed explicitly as an absolute

value, then the most recent starting point of the existence times of the involved entities is

taken as start point of the validity period of the relationship.

4. Non-timestamped entities and relationships are assumed to always exist, i.e., they exist from the

system start-up time until the current time.

2.7.2 The Model Components

The most central concept of the ERT model is that of a class, de�ned in the usual way. This means

that the most primitive data abstraction is classi�cation of individual objects. Thus, in ERT schemas,

entity classes, value classes, complex entity classes, complex value classes, and relationship classes are

speci�ed.

19

Project

ID

Budget

ofhas
(1,1)

(1,1)

has
of

(1,1)
(1,1)

T

Manager T

M_ID Rank

of of

has has(1,1)

(1,1) (1,N)

(1,1)

Employee T

 Birth_date

Department

Name

belongs_to

(1,1)

works_for

(1,1)

employs

(1,N) responsible_for (1,N)

manages
(1,1)

managed_by

(1,1)

assigned_to
(1,1)

(1,N)

uses

has

has

(0,N)

(1,1)

of
(1,N)

of
(1,N)

ID
has

(1,1)

of

(1,1)

TSalary
has

(1,1)

of
(1,N)

of

has

(1,1)

(1,1)

of

has

(1,1)

(1,1)
has (1,1)

Profit
of

(1,N)
T

 Name

Figure 14: ERT Schema Description of the Running Example

Simple Entity Classes and Simple Value Classes

A simple object cannot be decomposed into other objects and hence has independent existence|it is

irreducible. The simple objects classes of the ERT model are divided into two groups: simple entity

classes and simple value classes.

A simple entity class is represented by a rectangle, and if the entity class is time-varying, the

rectangle is expanded with a "time box." An example of a time-varying, simple entity class is Employee

(shown in Figure 14), and an example of non-timestamped entity class is Project.

A simple entity class can be derived. This implies that its instances are not stored by default,

but can be obtained dynamically when needed, by using derivation formulas. A derived entity class is

represented by a dashed rectangle. Derived entity classes can be time-varying as well. For each derived

entity class, there is exactly one derivation formula that gives the members of that entity class at any

time. If the derived entity class is not timestamped, the corresponding derivation formula instantiates

this entity class at all times; whereas if the entity class is timestamped then the derivation formula

obtains instances of this class together with their existence periods.

A simple value class is represented by a rectangle with a black triangle placed in the bottom right

corner. Simple value classes cannot be time-varying. An example of a simple value class is Name in

Figure 14. A simple value class can, like a simple entity class, be derived and is then represented by

a dashed rectangle with a black triangle placed as before.

Complex Entity Classes and Complex Value Classes

A complex object is an object that can be decomposed into other objects, and thus its existence

depends of the existence of its component objects. The relationship between the complex object and

its component objects is modeled using IS PART OF relationships. The complex object classes, like

the simple objects classes, are divided into two groups, complex entity classes and complex value

classes.

Complex value classes are represented by a double rectangle with the black triangle placed (as

usual) in the inner rectangle. Complex value classes can only have complex value classes or simple

value classes as components, and hence a complex value class cannot be time-varying. An example

of a complex value class is Name in Figure 14. The IS PART OF relationship cannot be seen at this

level of abstraction; an example of unfolding a complex class will be given later.

A complex entity class is represented by a double rectangle, and if it is time-varying, the \time

box" is added to the inner rectangle. The components of a complex entity class can be both simple

and complex, and they can be of value class and entity class type. The time semantics of timestamped

complex objects will be explained in detail after the explanation of the IS PART OF relationship.

In the presentation of MOTAR, Project was described as a component of the composite entity

type Department. This could also have been done in ERT by making Department a complex entity

20

class, but then it would not have been possible to describe the relationship between Project and, e.g.,

Employee.

Relationships Classes

In ERT there are four kinds of relationship classes. There are the user-de�ned relationship classes, the

IS PART OF relationships between complex objects and their composite objects, the ISA relationships

between subclasses and their superclasses, and the objecti�ed relationships. We explain each in turn.

User-de�ned relationship classes are binary and are represented by small �lled rectangles; if they are

time-varying, a \time box" is added. There are two constraints on the validity periods of a relationship

class' instances. First, the intersection of the existence periods of the participating entities must be

non-empty. Second, the validity period of the relationship instance must be a sub-period of the

intersection of the existence periods of the involved entities.

An instance of a user-de�ned relationship class is viewed as a named set of two (entity or value, role)

pairs, where each role expresses the way that a speci�c entity or value is involved in the relationship.

These two named roles are called relationship involvements and are required in a ERT schema for

completeness reasons. In addition to the relationship involvements, a cardinality constraint is required

to be speci�ed for each entity class participating in the relationship class. Each cardinality constraint

is a pair (�; �) where � indicates the minimum and � the maximum number of times that an entity

or value can participate in a relationship. The cardinality constraints are also used to specify whether

the involvement is optional or mandatory. If the involvement is mandatory then �=1, whereas if �=0,

the involvement is optional.

As an example, see the relationship class between Employee and Department shown in Figure 14.

The two relationship involvements are \belongs to" and \employs." The two corresponding cardinality

constraints state that each Employee instance is related to (i.e., belongs to) precisely one Department

instance, yielding a uniqueness constraint on Employee; and each Department instance is related to

(i.e., employs) from one to N Employee instances. If both the cardinality constraints of a relationship

class between a entity class and a value class are (1,1), this corresponds to the notion of a key in

database theory.

User-de�ned relationship classes can, like simple entity classes, be derived and are then represented

by dashed, non-�lled rectangles; and they can be time varying. As for a derived timestamped entity

class, the derivation formula of a derived timestamped relationship class speci�es a validity period for

each instances of the class.

ISA relationship classes are �rst divided into two groups, partial and total, that are further sub-

divided into overlapping and disjoint, yielding four types of ISA relationship classes. The partial ISA

relationship class is represented by a non-�lled circle with arrows
owing from the subclass to the circle

and an arrow
owing from the circle to the superclass. The total ISA relationship class is represented

by a �lled circle. If there is more than one subclass and more than one arrow is pointing into the

circle, the relationship class is disjoint; otherwise the relationship class is overlapping. The existence

time of a specialized entity should be a sub-period of the existence time of the corresponding parent

entity.

MOTORDOOR

COLOR POWER

Car

Has_Component

Is_Part_Of

Has_Component

Is_Part_Of

HasHas

Of Of

(2,5)

(1,1)

(1,1) (1,1)

(1,N)

(1,1)

(1,1)

(1,N)

Figure 15: Unfolding a Complex Entity Class

IS PART OF relationship classes are used to specify the relationships between the components of a

complex object and the complex object itself. Each directly subordinate object class is IS PART OF-

21

related to the complex object class, which in turn is HAS COMPONENT-related to the composite

object class. This composition mechanism does not make any distinction between aggregation and

grouping, but is rather general. Whether the HAS COMPONENT involvement is one of aggregation

or grouping can be indicated using cardinality constrains. That is, if the cardinality is one of (1,1) or

(0,1), the component is an aggregate, whereas if it is (0,N) or (1,N) the component is a set. Figure 15

gives an example.

In ERT, complex objects can be used to model both logical part hierarchies, where the same

component can be part of more that one complex object, and physical part hierarchies, in which an

object cannot be part of more than one complex object at the same time. To achieve this, four

di�erent IS PART OF relationship classes are de�ned using combinations of two orthogonal types of

constraints, namely dependency and exclusiveness. The dependency constraint dependent states that

when a complex object ceases to exist, all its components also cease to exist (dependent composite

reference), and the dependency constraint independent states that if a complex object ceases to exist,

this does not imply that the components cease to exist (independent composite reference). The

exclusiveness constraint exclusive states that a component object can be part of at most one complex

object (exclusive composite reference) at a time, and the exclusiveness constraint shared states that it

can be part of more than one complex object at a time (shared composite reference).

No speci�c notation is introduced for these constraints. Rather, they are given by the cardinality

constrains of the IS PART OF relationship. That is, assume that the cardinality constraint of the

IS PART OF relationship is (�; �). Then � = 0 implies independent dependency, � 6= 0 implies

dependent dependency, � = 1 implies exclusive exclusiveness, and � 6= 1 implies shared exclusiveness.

Timestamping in a time-varying IS PART OF relationship of a complex object is subject to di�er-

ent time constraints depending on whether it has dependent or independent dependency semantics and

exclusive or shared exclusiveness semantics. The dependency constraint dependent in time-varying

IS PART OF relationships implies that the existence time of the complex object and the component

object should end at the same time as does the validity period of the IS PART OF relationship. The

exclusiveness constraint exclusive implies that if an object A is part of objects B and C, then the

period during which A is part of B should have empty intersection with the period during which A is

part of C.

Student Subject

Subject_name

Student

Student_name

Subject

Subject_name

Student_name

(a) (b)

Is_enrolled_in Is_taken_by

Has

Of
Has Has

OfOf

Is_enrolled_in Is_taken_by

Enrolment

Grade

Has

Of

(1,1)

(1,1)

(1,N) (1,N)

(1,1)

(1,1)

(1,N)

(1,1)
(1,N)

(1,1)

(1,1)

(1,N)

(1,1)

(1,1)

Figure 16: Objecti�ed Relationship

In ERT, only binary relationship classes can be speci�ed. Thus attributes cannot be attached to

relationship classes since this would make the relationship class "ternary." As illustrated in Figure 16(a)

this may yield problems. If we want to add the class GRADE to this schema, we will face the problem

of where to add it. Speci�cally, GRADE has to be attached to either STUDENT or SUBJECT,

both of which are problematic. There is thus a need to model ternary relationships. To achieve

this, ERT permits relationship classes to participate in relationships. This is called nominalisation,

and the particular construct in which a relationship class is viewed as an entity class is called an

objecti�ed relationship. An objecti�ed relationship must include the two corresponding involvements.

The relationship class that is objecti�ed should always be many to many (the cardinality constraints

on both of the involvements must be (1,N)). The status of an objecti�ed relationship is that of an

22

entity class. As such, it may participate in any relationship except that of an ISA relationship. Also,

the existence periods of the objecti�ed timestamped relationship class' instances are the same as the

validity periods of the corresponding nominalised relationship class instances. The graphical notation

of objecti�ed relationships is depicted in Figure 16(b).

2.7.3 Re�ning the Original ERT Model

The original ERT model has recently been re�ned [21] in two respects. First, the de�nitions of

temporal objects (entities or relationships) are given mathematically, by specifying what constraints

are placed on the existence or validity periods of an object when a temporal marking is applied to it.

Second, temporal markings are used to represent temporal variation of object with respect to each

other. In particular, the period in which a relationship involvement can exist is related to the period

in which the associated entities exist, and the periods in which entity subclasses exist are related to

the period in which their superclass exists. Two distinct aspects of the temporal nature of relationship

involvements, called historical perspective and temporal variation, are identi�ed. As a precursor to

delving further into this, we consider a re�nement of ERT's time periods.

A notation for describing the ticks when an instance of a temporal entity class exists or a temporal

relationship class holds is introduced. The period over which an instance of a temporal entity class

or temporal relationship class x exists/holds is a set Ix = fta; tb; : : : ; tzg where ta; tb; : : : ; ; tz are the

ticks at which x exists/holds. Since the series of ticks usually is continuous, Ix is called an interval

although what actually has been de�ned is a set of intervals [21]. This de�nition of \intervals" allows

for the use of the usual set operators. To ensure a discrete bounded model, the possible ticks of an

interval are limited to the �nite set of @ = f0 : : : �g, and for all x, the interval Ix will satisfy Ix � @.
In the original ERT model, a relationship class could only be marked with a T-mark indicating

that the relationship was time-varying. The temporal marking is re�ned in [21] to include H-marks

and TH-marks. In the following, interval IE ranges over all intervals associated with entity class E;

and the properties of intervals that we give must hold for all instances of the entity class. Thus stating

IE � @ means that for all entities e in E, Ie � @.
If a relationship involvement exists for a subset of the ticks for which both the entities it associates

exist, and only associate entities which exist at the same time tick, then the relationship is said to

undergo temporal variation with respect to the entities it associates, and the relationship is T-marked.

If a relationship involvement exists at certain ticks between entity E1, which exists at those ticks,

and a entity E2, which exists at other ticks, then the relationship is said to have historical perspective,

and the relationship is H-marked. Note that such relationships are asymmetric, since at any tick only

E1 is required to exist; the inverse relationship (from E2 to E1) may not hold at the same tick.

The above-mentioned terms can be combined. Saying that a historical perspective has temporal

variation means that that one of the entities involved does not have the perspective for its entire

existence.

Four constraints on the validity period of an instance of a relationship class results. Initially, let IE1

and IE2
be the intervals for which entity classes E1 and E2 exist. First, if IR is the interval over which

the instances of E1 and E2 are involved in an unmarked relationship, then IR = IE1
\ IE2

. Second,

if IR is the interval over which the instances of E1 and E2 are involved in a T-marked relationship

class, then IR � IE1
\ IE2

. Third, assume that instances of entity classes E1 and E2 are related by

R. If the instances of E1 and E2 are involved in R over period IE1
and IE2

, respectively, and the

relationship class R is H-marked, then IE1
6= IE2

is allowed. To exemplify an H-marked relationship

class, consider the grandparent/grandchild relationship between persons. Here, related persons need

not exist simultaneously for any tick; a grandparent may die before the birth of a grandchild. As

we shall see next, the historical perspective of a relationship has a temporal direction. An H-marked

relationship class R relating E1 and E2 is described as

� past if E2 holds at ticks before the ticks at which E1 holds,

� current if E2 holds at the same ticks for which E1 holds, and

� future if E2 holds at ticks after the ticks at which E1 holds.

23

Finally, Boolean combinations of the above are possible. It follows that an unmarked relationship

class is merely a current historical perspective relationship class. In the above example the temporal

direction could be past and current (depending on what is E1 and E2). The characteristics of H-marked

relationships can be described using derived entity classes, for details see [21]. Fourth, assume that

instances of E1 are involved in R over period IE1R � IE1 and instances of E2 are involved in the same

relationship instance for IE2 and relationship R is TH-marked. Then IE1R 6= IE2 is allowed. This

TH-mark can be used to model that we do not want the grandparent to be related to the grandchild

before the grandchild is actually born.

2.7.4 Summary

The data model ERT extends a binary entity-relationship model with complex entity classes and

complex value classes. ERT provide the users with temporal markings of time-varying entity and

relationship classes, and instances of these classes are timestamped with time periods. The temporal

markings of classes have later been re�ned.

2.8 The Temporal ER Model

The Temporal ER model (TER) [31] has it origin in the ER model. Most centrally, TER replaces

the ordinary cardinality constraints with snapshot and lifetime cardinality constraints. This permits

a re�nement of the classi�cation of relationship types, thereby obtaining a total of six di�erent classes

of relationship types; and it leads to a re�nement of the optionality of relationship participation.

Designing a database using the TER model includes three steps. First, a TER diagram is con-

structed that uses the two new types of constraints for describing the time-varying aspect of relation-

ship types. No time attributes are included. Then, based on how often historic data is expected to

be accessed, a particular algorithm that translates TER diagrams into traditional ER diagrams is ap-

plied, leading to a diagram with only regular cardinality constraints and with explicit time attributes.

Third, the ER diagrams is translated into relational tables using a standard mapping.

2.8.1 The Model Components

The key di�erences between TER and the (binary) ER model are the inclusion of snapshot and lifetime

cardinality constraints, and the intermediate step of transforming TER diagrams to ER diagrams.

Time is thus implicit in TER diagrams. The TER diagram describing the running example is shown

in Figure 17. In the remainder of this subsection, we consider the cardinalities; the next subsection

considers the intermediate step.

Employee

Manager

Salary

Department

Project

Hours/week

Amount

S[1,n]

L[1,n]

S[0,1]

L[0,1]

ID

Birth_date

S[1,n]
L[1,n]

Amount

S[0,1]L[0,n]

S[0,1]

S[1,1]

L[1,1]
L[1,1]

S[1,10]L[1,n]
S[1,1]

L[1,n]

Name

ID

Budget

Profit
S[1,1]
L[1,n]

L[1,n]

#First name Last name

S[1,1]

L[1,n]
L[1,n] S[1,1]

L[0,n]

M_ID

S[1,1]

S[0,n]

L[0,n]
S[1,1]

Rank
Birth_dateLast nameFirst name

Figure 17: A TER Diagram of The Running Example

The modeling of time-varying information is improved in TER by replacing the traditional cardi-

nality constraints by two new types of constraints, the lifetime cardinality, denoted by L[minL,maxL],

and the snapshot cardinality, denoted by S[minS,maxS]. For an example, consider the relationship type

between entity types Department and Project in Figure 17. Relationship types have two directions,

24

with each direction having a source and a target. In TER diagrams, the cardinality constraints are

with respect to a direction of a relationship type, and they are placed next to the target entity type,

by the relationship type.

A lifetime cardinality constraint L[minL,maxL] states that the minimum and maximum number

of instances of the target entity related to one instance of the source entity over all of time is minL

and maxL, respectively. Similarly, a snapshot cardinality constraint S[minS,maxS] states that the

minimum and maximum number of instances of the target entity related to one instance of the source

entity at any single point in time is minS and maxS, respectively. Below, the conditions that de�ne

any valid combination of cardinalities for any given relationship direction in TER are de�ned.

0 < maxS and 0 < maxL

0 � minS � maxS � maxL

0 � minS � minL � maxL

In the relationship type between Department and Project, a Department instance (a \department")

may have from 1 to n associated Project instances (\projects") during its lifetime, but it may have

at most 10 associated projects at any single point in time. A project is associated with precisely one

department at any single point in time; and a project is associated with precisely one department

throughout its lifetime. Thus, projects cannot be reassigned from one department to another.

As it is the case for cardinality constraints in the ER model, cardinality constraints in the TER

model can also express connectivity. Thus, a set of connective values of relationship type directions

are de�ned as follows.

one for (maxS =) maxL = 1

oneT for maxS = 1 and maxL > 1

many for maxS > 1

The introduction of the new connective value oneT (\one at a time") leads to a re�ned classi�cation

of relationship types. Traditionally, there are three distinct and exhaustive classes of relationship

types: one-to-one, one-to-many, and many-to-many. While still disjoint, these classes are no longer

exhaustive when snapshot and lifetime cardinality constraints are used, as the classes no longer cover all

valid combinations of values for minS and minL in both directions. Therefore, three new relationship

classes are added to the before mentioned three, namely one-to-oneT, oneT-to-oneT, and oneT-to-

many.

Up until now, the optionality of a relationship-type direction has been implicit. It has been assumed

that if minS = 0 in a direction, this implies that participation is optional in that direction. But

given the de�nitions of snapshot and lifetime cardinalities, the notion of optionality can be re�ned. A

relationship-type direction is snapshot optional (optS) ifminS = 0; otherwise, it is snapshot mandatory

(mandS). A relationship-type direction is lifetime optional (optL) if minL = 0; otherwise, it is lifetime

mandatory (mandL). The re�nement implies that columns in the relational tables, that result from

snapshot mandatory directions of relationship types are not allowed to have null values. The following

holds for the re�ned optionalities:

optL implies optS

mandS implies mandL

mandS and optL are incompatible

In TER diagrams such as that in Figure 17, the entity types do not include attributes that make

is possible to distinguish di�erent states of entities. For example, there are no means of recording

di�erent states of Employee entities. These means are implicit, and they are brought out by the

mapping of TER diagrams to ER diagrams, as described next.

2.8.2 Mapping TER Diagrams to ER Diagrams

One consequence of introducing the temporal aspects of relationships into TER is that there now exists

a basis for the semi-automatic incorporation of time-varying data in relational tables. How applications

25

are to deal with time-varying data largely depends on the volume of such data, the frequency of access

to it, etc. TER provides three general approaches of dealing with time-varying data. They are based

on the frequency of access to non-current data.

Never If there is no interest in the non-current data, there is no reason for storing it. No provisions

for retaining non-current data are needed; old data is simply overwritten by new.

Occasional If the non-current data is accessed infrequently, it would be rather ine�cient to store

it together with the much more frequently accessed current data. Thus, separating the current

data from the non-current data at the conceptual level simpli�es the design process.

Frequent If the non-current data is anticipated to be accessed almost as frequently as the current

data, it is most e�cient to store them together.

TER then provides three di�erent algorithms for translating TER diagrams into ER diagrams,

one for each category. Figure 18 shows the result of using the algorithms on a fraction of the running

example.

Project

ID Budget

Department

Dep&Proj

Start_date Project

ID Budget

Department

Project

ID Budget

Name#

[1,10]

[1,1]

Name#

End_date

Start_date

Dep&Proj_His

Name#

End_date

Start_date

Dep&Proj_His

Department

Occasional FrequentNever

[1,10]

[1,1]

[1,1]

[1,1]

[0,1]

[1,1]

[1,n]

[1,1]

[1,1]

[1,1]

[0,n]

[1,1]

Figure 18: Mappings of TER Diagrams to ER Diagrams

The mappings only provide means of recording multiple states of time-varying TER relationship

types; while not documented, it should be straightforward to extend them to also provide means of

recording multiple states of time-varying entities and attributes. Note how lifetime and snapshot

constraints are replaced with appropriate regular cardinality constraints.

2.8.3 Summary

The TER model provides means for better time-varying data modeling. Speci�cally, ordinary cardi-

nality constraints are replaced with snapshot and lifetime cardinality constraints. Using these, TER

rede�nes the classi�cation of relationships and the notion optionality. Speci�cally, a new, oneT car-

dinality is introduced. Time is implicit in TER diagrams, but the temporal aspects are made explicit

through the mapping of TER diagrams to ER diagrams.

2.9 The TempEER model

The motivation behind TempEER3 [20] is to be able to capture temporal information in a conceptual

model (speci�cally, the EER model) and then, via an appropriate mapping, in the relational data

model.

In achieving this, TempEER does not add new syntactical constructs to the EER model, but

assumes a temporal dimension to the existing EER constructs. The mapping to the relational-model

3The authors gave their model the same name as the TEER already proposed by Elmasri et al. We adopt the name

\TempEER."

26

level, adds two attributes, ValidTime and TransTime, to all the relation schemas that a conventional

mapping algorithm yields. It is an underlying assumption that the TempEER model is a design model

only and that the implementation platform is relational.

2.9.1 The Representation of Time

TempEER captures both valid and transaction time, both of which are assumed to have discrete

domains, and di�erent granularities may be speci�ed for both of these domains. Time intervals are

used as valid-time values, and time instants are used as transaction-time values.

Valid-time intervals are a subset of [0;UNTIL], with UNTIL being a time value greater than or

equal to the current time. Thus, the time domain for valid times extends beyond that used in the

TEER model (Section 2.5). Transaction times never exceed the current time.

2.9.2 The Model Components

The TempEER model does not add any new syntactical constructs to the EER model; rather, the

temporal aspects are implicit in TempEER diagrams. The TempEER diagram of the running example

is therefore identical to that of Figure 10.

Entities and Entity Types

In TempEER diagrams, each entity of an entity type is associated with a lifespan capturing the valid

time of the entity. The lifespan can be a time interval or a temporal element.

When mapped to a relational platform, an entity is represented by a set of tuples where each tuple

describes one state of the entity over time. An entity type is mapped to a relation schema with the

attributes dictated by a standard mapping and with an interval-valued ValidTime attribute. Thus,

any change to an attribute of an entity results in the creation of new tuple capturing the new state

of the entity. The lifespan of an entity is then the union of the ValidTime intervals in the set of

tuples that represent the entity. In addition to the ValidTime attribute, each tuple has a TransTime

attribute that records the insertion time of the tuple, making it possible to capture the transaction

time of each tuple.

To exemplify, let us reconsider the entity described by the example given in Figure 11. This entity

has lifespan T = [7=1=90;UNTIL] and is represented by the following two tuples at the relational level.

VT ID First name Last name Birth date Salary TT

7/1/90,6/30/92 98765 Chris Johnson 8/23/46 $ 20K 6/15/90

7/1/92,<em UNTIL 98765 Chris Johnson 8/23/46 $ 30K 6/30/92

Figure 19: The Relational Representation of an Employee Entity

The temporal information of weak entity types is stored exactly as for ordinary entity types. The

constraint that the lifespan of a weak entity must be a subset of the lifespan of its owner entity is

enforced (the interaction with transaction time is not considered).

Attributes

The attribute types of TempEER are those of the EER model, with the exception that their changing

values over time are retained.

A single-valued attribute has one atomic value for any point in time; multivalued attributes can

have more that one value at a given point in time; and the value of a composite attribute at a given

point in time is the concatenation of the values of its components at that point in time.

The valid time associated with an attribute value can be deduced from the tuples at the relational

level representing the entity. For example, the temporal element associated with the attribute value

Johnson of the above entity is [7=1=90;UNTIL], whereas the temporal element associated with the

value 20K is [7=1=90; 6=30=92]. The temporal element of an attribute value of an entity must be a

subset of the lifespan of the entity.

27

Relationships Types

Each relationship instance of a relationship type is associated with a lifespan de�ned in the same way

as for entities. The lifespan of a relationship instance must be a subset of the intersection of the

lifespans of the participating entities.

Finally, TempEER also has superclass/subclass relationships. The lifespan of a subclass entity

must be a subset of the lifespan of its superclass entity.

2.9.3 Summary

The sparsely documented TempEER model does not add any new syntactical constructs to the EER

model, but instead changes the meaning of the existing constructs. TempEER diagrams are mapped

to tuple-timestamped bitemporal relation schemas. Temporal constraints are introduced.

2.10 The TempRT Model

In a working paper, Kraft [19] proposes TempRT4 that incorporates valid time support into a binary

ER model. To motivate his approach, he �rst considers capturing valid time using explicit timestamp

attributes, which is unattractive.

In his approach valid time is captured through temporal relationships, temporal entities, and

temporal attributes. The basic temporal construct is the temporal relationship type. While ER

diagrams are usually translated to relational schemas, in this model there is an extensional level with

is own graphical notation associated with the ER diagrams. In this notation, nodes represent the

instances of entities and the edges represent relations between instances.

The valid time domain employed is discrete, but is not otherwise described.

2.10.1 The Model Components

The model is based on a binary ER model, and Figure 20 exempli�es the notation. In this model

only entity types, described by rectangles, and relationship types, described by \crows' feet," may

be speci�ed. The attributes in Figure 20 are actually shorthand for one-to-many relationship types

between an entity type with all possible values of some value domain as instances and the entity

type having the attribute. Two diagonal lines are used to indicate that a construct is temporal. For

example, the relationship type between Employee and Emp Proj is marked as temporal. The temporal

markings of Employee and Emp Proj are deviations from the running example.

Department

Name

Profit

ID

Budget

Project

Emp_Proj

Salary Employee

ID Firstname

LastnameBirthdate

Salary

Birthdate

Lastname Rank

FirstnameID

Manager

Hours/week

Figure 20: TempRT Diagram Modeling the Running Example

Temporal Relationship Types

The basic temporal structure is the temporal relationship. The semantics of a temporal relationship

is an extension of the semantics of an ordinary relationship.

4The author has not given the model a name. To clearly identify the model, we adopt the name \TempRT."

28

In Figure 21(a), on the left hand side, the non-temporal relationship between Employee and De-

partment is repeated, and on the right hand side, some instances are shown. The meaning of the

relationship is that every instance of Employee must at any point in time be related to one and only

one instance of Department, and every instance of Department may be related to zero or more in-

stances of Employee. Only one (the current) department assignment of an employee is recorded. Thus,

if an employee is reassigned to a new department, the previous assignment is lost.

Salary DepartmentEmployee

ID Firstname

Birthdate

Name

Lastname Profit

t 1

t 2

t 3

t 4

1t 2t 3t t 4

now

time

Administration

Alice

Sales

Development

Description level Instance level

Michael

Janice

Alice

John

Mary

Peter

Sales

Development

Administration

Salary DepartmentEmployee

ID Firstname

Birthdate

Name

Lastname Profit

(a)

(b)

Figure 21: Temporal Relationships

In Figure 21(b), the relationship type is considered to be temporal. The semantics of the temporal

relationship type is almost the same as for the non-temporal relationship type. Every Employee

instance still has to be related to one and only one instance of Department at any point in time. The

di�erence is that temporal relationships are timestamped and retained. As an illustration of this, the

right hand side of Figure 21(b) gives the employment history of Alice. At time t1, Alice becomes

associated with Sales, and at time t2 she is associated with Development. Then at t3 she is attached

to Administration, and lastly, at time t4 she returns to Sales. The union of all the timestamps of a

temporal relationship between two instances describes the lifespan of the relationship.

Temporal Entity Types and Attributes

Entity types do not have to be temporal. A non-temporal entity that participates in a temporal

relationship cannot ever be changed or deleted. If this consequence is unwanted, the concept of

lifespans has to be added to the instances, making them temporal.

The lifespan of an instance is modeled through temporal relationships. Speci�cally, a universal

entity type U with only one instance is introduced. This entity type is connected, using a temporal

relationship type, with the entity type we want to be temporal. Figure 22(a) illustrates this. The time

in which an Employee instance references the U instance gives the lifespan of the Employee instance.

Figure 22(b) shows the shorthand used in the model.

Salary Employee

ID Firstname

Birthdate Lastname

1

USalary Employee

ID Firstname

Birthdate Lastname

(a) (b)

Figure 22: Temporal Entity Types

29

Temporal attributes are also de�ned using temporal relationships. As mentioned, a (non-time-

varying) attribute is a shorthand for a regular many-to-one relationship between an entity with all

possible values of some value domain as instances and the entity having the attribute. In order to

make an attribute temporal, the ordinary relationship between the entity having the attribute and the

entity modeling the value domain is replaced by a temporal relationship.

2.10.2 Summary

The TempRT model makes it possible to specify temporal relationships, temporal entities, and tem-

poral attributes. The temporal entities and attributes are de�ned by temporal relationships.

3 Design Criteria and Evaluation of the Models

In Sections 2.2 to 2.10, we described all temporal ER models known to us. It is a common characteristic

that few or no speci�c requirements to the models were given by their designers. To compare and

better understand the models, this section de�nes a comprehensive set of design criteria for temporal

ER models and evaluates the models against these criteria. We have chosen to also evaluate the EER

model against the criteria. When doing so, the model will be treated as a temporal model, capturing

time through timestamp attributes.

We have identi�ed a total of 19 design criteria covering time semantics, model semantics, temporal

functionality, and user-friendliness. The criteria are numbered C1 through C19. With each criterion

de�ned, we indicate its source, if possible. We have attempted to only include criteria that have an

objective basis for being evaluated. Together, the criteria identify important aspects of designing a

temporal ER model. The possible outcomes of an evaluation of a model with respect to each criterion

will be stated explicit together with the de�nition of each criterion, unless the possible outcomes are

N.A., Yes, and No.

Figures 23, 24, and 25 present the results of the evaluations of evaluating the models with respect

to criteria C1{C3, C4{C13, and C14{C19, respectively.

C1 C2 C3

EER UDT none N.A.

RAKE UDT, VT temporal relationships types and attributes Optional

TERM UDT, VT history structures and patterns Optional

MOTAR UDT, VT temporal relationship types and attributes Optional

TEER UDT, VT temporal entity types, attributes, and relationship types Mandatory

STEER UDT, VT conceptual entity types, entity roles, temporal attributes,

and conceptual and temporal relationship types

Mandatory

ERT UDT, VT timestamped entity classes, relationship types, complex en-

tity classes, and temporal constraints

Optional

TER UDT, VT snapshot cardinalities, lifetime cardinalities, and OneT con-

nective

Mandatory

TempEER UDT, VT, TT temporal entity types, attributes, and relationship types Mandatory

TempRT UDT, VT temporal relationship types, entity types, and attributes Optional

Figure 23: Evaluation of Criteria C1, C2, and C3

C1|Time Dimensions with built-in Support Valid and transaction time are general|rather

than application speci�c|aspects of all database facts. As such, they are prime candidates for being

built into a temporal ER model that is to be used for both analysis and database design. Being orthog-

onal and independent aspects of database facts, it is possible to support the two times independently.

Support for these times may take di�erent shapes and may be more or less elaborate. Another kind

of time exists, namely the so-called user-de�ned time (UDT). This refers to \support" for temporal

aspects with no built-in support in the model. User-de�ned times are supported when time-valued

attributes are available. These are then employed for giving temporal semantics|not captured in data

model, but only externally, by the database designer|to the the ER diagrams. We will say that a

30

time is supported simply if some support has been documented. The possible outcomes of evaluating

a model against this criterion are UDT, VT, TT, and N.A. (and combinations of VT and TT).

For a model to be considered temporal, at least one time dimension must be supported. Almost

all the models support valid time. The only model that does not is the EER model that only supports

user-de�ned time. All the models support user-de�ned time. Transaction time is supported by only

TempEER. That is, the valid-time aspect of a database application seems to be regarded as the most

interesting aspect to support, thereby aiming at high-�delity modeling of the mini-world.

C2|New Temporal Constructs Two general approaches to providing temporal support exist.

With implicit temporal support, explicit timestamp attributes are \hidden" in the temporal seman-

tics of the modeling constructs. For example, no timestamp attributes are necessary on a temporal

relationship type to indicate that the instances of the type record their variation over time. With this

approach, it is possible to obtain a temporal ER model without adding any new syntactical constructs

to the ER model. Rather, the existing ER constructs are simply made temporal by changing their

semantics. For example, ordinary relationship types are given temporal semantics, making their in-

stances record variation over time, rather than just single states. It is also possible with this approach

to retain the existing ER constructs and their semantics and add new temporal constructs to capture

the time-varying information. The new notation for a temporal relationship type in MOTAR is an

example. The extent of the changes made to the ER model may range from minor changes to a total

rede�nition of the model.

With explicit temporal support, the semantics of the existing ER constructs are retained. With this

approach, timestamp attributes are explicit. Any new modeling constructs are notational shorthands

introduced to make the modeling of temporal aspects more convenient.

Nearly all the models have added new temporal constructs. Some of the models have changed

the semantics of the ordinary ER model constructs entirely. These models are TEER and TempEER.

Other models have retained the old ER constructs and have added new temporal constructs. These

models include TERM, MOTAR, ERT, TER and TempRT. RAKE does not add any new constructs

to the ER model; instead, it introduces notational shorthands for certain patterns made up of ordinary

ER constructs. However, we will consider these notational shorthands to be temporal constructs. One

model has both changed the semantics of the ER constructs and added new temporal constructs,

namely STEER. The speci�c names of the added constructs can be seen in the third column of

Figure 23 (they are mentioned in the order in which they are introduced in this paper). The EER

model has not added any new constructs|it captures time solely through timestamp attributes.

C3|Mandatory vs. Optional Use of Temporal Constructs The extent of changes made to

the notation of the ER model determines whether the use of the temporal constructs added to the

model are mandatory or optional. If all the original ER modeling constructs have simply been made

temporal, the original constructs are no longer available. Mandatory use of the temporal constructs

means that the designer cannot use non-temporal constructs in diagrams. Optional use of the temporal

constructs provides the designer with the possibility of mixing temporal and non-temporal constructs

in the same diagram. The possible outcomes of evaluating the models against this criterion are N.A.,

Mandatory and Optional.

The models with mandatory use of the temporal constructs are TEER, STEER, TempEER and

TER. TEER and TempEER have changed the semantics of all the original ER model constructs to be

temporal. STEER has|besides making the original ER constructs temporal|added new temporal

constructs to the model. Since TER has replaced the ordinary cardinality constraints with two new

ones, and it is mandatory to specify the constraints, it becomes mandatory to use the temporal

constructs, even if the users later decide to only record a single state of data.

The models that have retained the ordinary ER constructs and have added new temporal construct

have optional use of temporal constructs. Thus, it is possible to mix temporal and non-temporal

constructs in these models that include MOTAR, ERT, and TempRT. TERM has optional use of

history structures and history patterns since all attributes (inclusive the existence and roles attributes)

can be declared as constant. RAKE also has optional use of the temporal constructs since these are

31

notational shorthands for patterns made up of ordinary ER constructs. Since the EER model has not

added new constructs, N.A. is the result of evaluating the model against this criterion.

C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

EER N.A. N.A. No No N.A. No No No N.A. Yes

RAKE instant, interval N.A. No No No No No No (Yes) Yes

TERM instant, interval N.A. Yes Yes Yes Yes Yes Yes No No

MOTAR instant N.A. Yes No Yes No No No (Yes) Yes

TEER temporal element N.A No No No Yes Yes Yes No No

STEER temporal element N.A. No No No (Yes) (Yes) Yes No No

ERT interval N.A. No No Yes Yes Yes Yes (Yes) Yes

TER instant N.A. No No No No No No (Yes) No

TempEER interval instant No No No Yes Yes Yes No No

TempRT interval N.A. No No No (Yes) (Yes) No (Yes) Yes

Figure 24: Evaluation of Criteria C4|C13

C4|Data Types Supported for Valid Time Di�erent data types for implicit or explicit times-

tamps may be used for indicating the valid time of an object, e.g., an attribute value or a relationship.

Possible time data types include instants, intervals, and temporal elements. For example, one option

is to associate valid-time intervals with attribute values of entities. Another option is to timestamp

attribute values with valid-time elements, �nite unions of intervals. An attribute value may also be

de�ned as a function from a time domain to a value domain. In this way, an attribute may associate

a value with a set of time instants. We will consider this element timestamping, and we will also

consider the timestamping with sets of instants and intervals as being element timestamping. Since

all models surveyed adopt a discrete model of time, we will not distinguish between support for closed

versus open or half-open intervals.

A data model may provide the database designer with a choice of data types. This may increase

the utility of the model. Possible outcomes includeN.A., instant, interval, and temporal element.

All three data types mentioned may encode validity for durations, and the instant data type may also

encode validity for single instants of time. In the former case, instants have associated interpolation

functions (see Criterion C8). The impact of which data types are available is dependent on whether

the model under consideration is used solely as a design model or is also used as an implementation

model, complete with database instances and a query language.

The models that timestamp with instants include RAKE (events), TERM, MOTAR, and TER.

The models RAKE, TERM, ERT, TempEER, and TempRT timestamp with intervals. The models

TEER and STEER timestamp with temporal elements. Finally, this criterion is not applicable to the

EER model, since it does not support valid time.

C5|Data Types Supported for Transaction Time As valid and transaction time have di�erent

semantics, the timestamp types available for the two times may di�er. The possible outcomes are as

for valid time. TempEER is the only model that supports transaction time. The timestamp used for

transaction time in TempEER is instants (that encode durations). N.A. is indicated in the �gure for

all the other models.

C6|Support for Multiple Granularities It may be that the temporal variability of di�erent

objects in the mini-world are captured using times of di�erent granularities [36, 37, 6]. They should

then also be captured in the database using these di�erent granularities. For example, the granularity

of a minute may be used when recording the actual working hours of employees, while the granularity

of a day may be used when recording the department assignments of employees. Notice that this

criterion relates to valid time.

There are two models in which it is possible, at the conceptual level, to specify the granularity of

the timestamps. In MOTAR, the user is allowed to specify the frequency of the recording of periodic

attributes. In TERM, atomic histories can have di�erent time domains. The rest of the models only

32

brie
y state that the granularity of the timestamps should be suitable for speci�c applications and

hence postpone the choice of granularity to the logical design phase.

C7|Support for Temporal (Im-) Precision The temporal variability of di�erent objects in

the mini-world may be known with di�erent precisions [17, 4, 7, 5]. Although some imprecision may

be captured using multiple granularities, granularities are not a general solution. For example, the

variability of an attribute may be recorded using timestamps with the granularity of a second, but

the varying values may only be known to the precision of �5 seconds of the recorded value. This

phenomenon may be prevalent and important to capture in scienti�c and monitoring applications that

store measurements made by instruments.

The only model which support temporal precision is TERM, where it is possible to specify precision

on the timestamps (and also the values of attributes).

C8|Temporal Interpolation Functions Temporal interpolation functions derive information

about times for which no data is explicitly stored in the database (see, e.g., [17] and [16, pp. 35{40]).

For example, it is possible to record times when new salaries of employees take e�ect and then de�ne

an interpolation function (using so-called step-wise constant interpolation) that gives the salaries of

employees at any time during their employment. In the scienti�c domain, interpolation is particularly

important, e.g., when variables are sampled at di�erent rates.

User-de�nable temporal interpolation functions are supported by TERM, MOTAR, and ERT. In

TERM, functions handle both incomplete and not-explicitly-stored data, while the derivation functions

in ERT only handle data not explicitly stored. In MOTAR, rules can be considered as some sort of

derivation functions. The other models do not consider how to handle incomplete and not-explicitly-

stored data.

C9|Lifespans of Entities The lifespan of an entity is the time over which the entity exists in the

mini-world. Entities may exist beyond the times when their attributes have (non-null) values, making

it impossible to infer lifespans from the assignments of timestamps to attribute values. If the concept

of lifespan of entities is supported, this means that the model has built-in support for capturing the

times when entities exist.

Four models support the concept of lifespan for all entity types, namely TERM, TEER, ERT,

and TempEER. The lifespans for the entity types with constant existence in TERM and the lifespans

for non-timestamped entity types in ERT are given implicitly as the lifespan of the database. Some

models support lifespans for a subset of the entity types|for these models, we enclose the Yes in

parentheses. These models are STEER, which supports lifespans for entity roles, and TempRT, which

supports lifespans for temporal entity types. The models that do not support lifespans of entity types

include RAKE, MOTAR, TER, and EER.

C10|Lifespans of Relationships The concept of lifespan is also applicable to relationships, with

the same meaning as for entities. When a model provides a built-in notion of relationship lifespans,

it may also enforce certain temporal constraints that involve these lifespans. For example, it does not

make sense for an entity to have an attribute value at a time when the entity does not exist.

The models that support lifespans for all relationship types include TERM, TEER, ERT, and

TempEER. STEER and TempRT support the concept of lifespan for a subset of the relationship

types, namely the temporal relationship types|for these, we enclose the Yes in parentheses. The

models that do not support lifespans of Relationship types include RAKE, MOTAR, TER, and EER.

C11|Temporal Constraints A temporal data model may include built-in temporal constraints

and facilities for user-de�nable temporal constraints. If built-in temporal constraints are not present,

then the possibility of having illegal data is present. For example, a (binary) relationship between

two entities can usually not exist if the entities do not exist. The presence of an appropriate set of

(built-in) constraints on the built-in temporal constructs is thus of essence. Next, it should be possible

for the database designer to specify additional temporal constraints. For example, we have seen that

33

the TER model (Section 2.8) supports two types of temporal constraints on relationship types, namely

snapshot and lifetime cardinality constraints.

Temporal constraints are supported by TERM, TEER, ERT, STEER, TER, and TempEER, while

the models RAKE, MOTAR, TempRT, and EER do not support temporal constraints.

C12|User-speci�able Temporal Support A temporal ER model o�ers user-speci�able tempo-

ral support if it is up to the database designer to decide which temporal aspects of data to capture.

For example, a temporal ER model may provide built-in support for both valid and transaction time,

but a speci�c application may only require support for transaction time. It should then be possible

to omit support for valid time.

The models RAKE, MOTAR, ERT, and TempRT partly satisfy this criterion. In RAKE, MO-

TAR, ERT, and TempRT the temporal support is valid time, but only if the database designer uses

the temporal constructs of the models. So does TER, but not at the conceptual level|only when

translating the TER diagram to ER diagrams. If the designer wants to record the variations of data,

the temporal dimension supported is valid time; and if no access is wanted, no temporal support is

given. This criterion is not applicable to the EER model which supports only user-de�ned-time. The

remaining models have enforced temporal support.

C13|Upward Compatibility A temporal ER model is upward compatible with respect to the

conventional ER model if any legal conventional ER diagram is also a legal ER diagram in the temporal

model and if the meanings of the diagram in the two models is the same. Upward compatibility is very

important because it enables legacy ER diagrams to be used immediately in the new temporal model.

Investments in legacy systems are protected, and a basis for a smooth transition to a temporally

enhanced ER model is provided [30].

When evaluating a model against this criterion, we will evaluate whether the model is upward

compatible with respect to the ER model that it extends, if speci�ed; otherwise, we will use Chen's

ER model [2] for models without superclass/subclass relationships and the EER model [10] for models

with superclass/subclass relationships.

Five models|RAKE, MOTAR, ERT, and TempRT|are upward compatible with respect to their

basic models. In these models, no syntactical constructs from the basic models have been given new

semantics. The EER is also upward compatible with itself; this holds trivially true. TERM is not

upward compatible since its existence attributes have to be speci�ed for all entity and relationship

types. TEER and TempEER are not upward compatible with respect to the EER model because

these models have changed the semantics of the existing EER modeling constructs. STEER has both

changed the semantics of the original model and added new syntactical constructs. Due to the change

of semantics of the original model, STEER is not upward compatible with the EER model. TER is

not upward compatible with the ER model since it has replaced the ordinary cardinality constraints

with the snapshot and lifetime cardinality constraints.

C14 C15 C16 C17 C18 C19

ERR N.A. Yes Relational model Yes Yes Yes

ER model

RAKE Yes ? Relational model No Yes No

TERM Yes ? Relational model No No No

MOTAR Yes ? Relational model No Yes No

TEER Yes ? None Yes Yes (Yes)

STEER Yes N.A. None Yes Yes No

ERT N.A ? Relational model Yes Yes Yes

TER N.A Yes ER model No Yes Yes

TempEER Yes ? Relational model Yes Yes (Yes)

TempRT Yes Yes None No Yes No

Figure 25: Evaluation of Criteria C14{C20

34

C14|Snapshot Reducibility of Attribute Types Temporal ER models that add temporal

support implicitly may include temporal counterparts of the ordinary attribute types, i.e., provide

temporal single valued, temporal multi-valued, temporal composite, and temporal derived attribute

types. These temporal attribute types may be snapshot reducible [26] with respect to their corre-

sponding snapshot attribute types. This occurs if snapshots of the databases described using the

temporal ER diagram constructs are the same as databases described by the corresponding snapshot

ER diagram where all temporal constructs are replaced by their snapshot counterparts. For example,

a temporal single-valued attribute is snapshot reducible to a snapshot single-valued attribute if the

temporal single-valued attribute is single valued at each point in time.

Generalizing snapshot constructs this way yields a natural temporal model that is easily understood

in terms of the conventional ER model.

The models that have snapshot reducible attribute types are RAKE, TERM, MOTAR, TEER,

STEER, and TempEER. RAKE has only single-valued attribute types. These are snapshot reducible

since the temporal attributes are modeled through relationships treated as weak entity types owned

by time-period entity types, thereby having ENDstamp as part of the key. This structure cannot

have more than one value at any point in time. TERM has only single-valued attributes, and all

variable attributes have a atomic history structure to ensure that the attribute only have one value at

a time. The temporal attributes of MOTAR are also snapshot reducible since the mapping algorithm

ensures that timestamps are made part of the key in the relations representing the attributes. TEER,

STEER, TempEER all have temporal single-valued, multivalued, and composite attribute types. The

models also have the mutually same semantics for these attribute types, and the semantics state that

they are snapshot reducible. TempRT only has single-valued attribute types, and since the temporal

attributes of this model are de�ned using the temporal relationship that is snapshot reducible, see the

next criterion, the temporal attributes must be snapshot reducible. Because ERT, TER, and EER do

not have temporal attributes, this concept is inapplicable to these models.

C15|Snapshot Reducibility of Relationship Constraints Snapshot reducibility also applies

to the various constraints that may be de�ned on relationship types, including specialized relationship

types such as ISA (superclass/subclass) and PART-OF (composite/component) relationships. For

example, the temporal cardinality constraint 1{N on a binary temporal relationship type is snapshot

reducible to the snapshot cardinality constraint 1{N on a binary snapshot relationship type if at any

single point in time, the 1{N snapshot constraint applies to the possible instances of the temporal

relationship type.

Only three models have snapshot reducible relationship constraints: TER, by virtue of the se-

mantics of the snapshot cardinality constraint; TempRT, due to the semantics given to its temporal

relationships (these semantics explicit states that the cardinality constraints given by the relationship

should hold at any point in time); and EER, trivially, because it does not propose any additional types

of relationships and constraints. The models RAKE, TERM, MOTAR, TEER, ERT, and TempEER

do not describe what the meaning of the di�erent relationship constraints that can be speci�ed are

in a temporal database. This is the reason for the question marks in Column C15 of Figure 25. The

STEER model does nor include cardinality constraints on relationship types, making this criterion

inapplicable.

C16|Mapping Algorithms Available A mapping algorithm translates an ER diagram in a

temporal ER model into a corresponding database schema in another data model. The temporal ER

models are typically considered to be design models. Upon designing an ER diagram, the diagram is

mapped to a schema of an available DBMS, i.e., is mapped to an implementation platform. The most

popular mappings are to the relational model (or, the platform of a speci�c relational product). It is

also possible to map temporal ER diagrams to conventional ER diagrams. Then mappings from the

conventional ER model may be exploited.

Most of the models provide mapping algorithms into regular ER diagrams or the relational model.

The only model that can be mapped into both ER diagrams and the relational model is RAKE.

The TER model provide an algorithm that transforms TER diagrams into ER diagrams, which can be

transformed into a relational schema by a standard algorithm. The models that provide a algorithm for

35

translation into a relational schema include TERM, MOTAR, ERT, and TempEER. Models TEER,

STEER, and TempRT do not specify any mappings of their diagrams. One good reason for an

absence of mappings is that the models themselves may be considered implementation models, see the

discussion of the next criterion.

C17|Query Language Provided As an alternative to mapping ER diagrams to the schema of

a separate implementation platform, another approach is to assume a system that implements the

ER model directly. With this approach a mapping to an implementation platform is not required.

Instead, a query language should be available for querying ER databases.

No query languages is provided for the following models: RAKE, TERM, MOTAR, TER, and

TempRT. A temporal extension of the query language GORDAS is provided as query language for the

models TEER and STEER. The ERT model is provides with a query language called the External

Rule Language. As query language for the TempEER model, a temporal extension of SQL is proposed.

C18|Graphical Notation Provided While it is usually assumed that a graphical notation is

available for describing ER diagrams, this needs not be so. It is also possible to provide only a textual

notation for describing ER diagrams. It is generally believed that ER models with a graphical notation

have an advantage over ER models with a programming language-like notation. Graphical notations

tend to be easier to learn, and we believe that the simplicity of the graphical ER notation is one of

the main reasons for its success.

The only model that does not have a graphical notation is the TERMmodel, which has a Pascal-like

syntax.

C19|Graphical Editor Available If the notation of a model is graphical, then the presence of

an editor supporting the model is very important if the model is to be used widely. Potential users

should have the opportunity to try and use at least some prototype of an editor supporting the model.

Two models, namely TER and ERT, come with an editor to support their use. The editor for

TER is called MODELLER [31] and is a commercially available product; and the editor for ERT is

called the ERT-TOOL. Models TEER and TempEER can use editors that supports the EER model

for schema design, but not for mapping to their implementation models. Thus, a Yes in parentheses

has been indicated for these models. Editors for EER exist in the public domain. No other model is

accompanied by an editor.

4 Conclusion and Future Work

This paper has surveyed nine proposals for extending the ER model to better capture the temporal

aspects of data. Although the detailed motivation for the development of each proposal varies, it is a

general observation that while temporal aspects of data are prevalent, the ER (and EER) model does

not provide adequate support for elegantly and concisely capturing these aspects.

The survey has emphasized the common aspect of the temporal ER models, namely their use

as design models that are employed to capture, in a conceptual model, a database design that is

implemented in a separate data model, typically the relational model. This yields a focus on structural

aspects, rather than on ER query languages.

The proposed extensions are based on quite di�erent approaches. One approach is to devise new

notational shorthands that replace some of the patterns that occur frequently in ER diagrams when

temporal aspects are being modeled. One example is the pattern that occurs when modeling a time-

varying attribute in the ER model. Another approach is to change the semantics of the existing

ER model constructs, making them temporal. In its extreme form, this approach does not result in

any new syntactical constructs|all the original constructs have simply become temporal. With this

approach, it is also possible to add new constructs. Yet another approach is to retain the existing ER

constructs.

Many of the models assume that their schemas are mapped to schemas in the relational model that

serves as the implementation platform. The algorithms that map the schemas of these models to the

relational model are constructed to add appropriate time-valued attributes to the relation schemas.

36

This corresponds to how the ER model is (currently) used in industry. In contrast, three of the models

we have examined are themselves implementation models and provide a query language for the model.

We have identi�es a total of 19 design properties that are relevant for the evaluation of temporal

ER models and should be taken into consideration when designing a temporal ER model. None of the

19 design properties we have presented this paper are incompatible|they can all be ful�lled at the

same time. We have evaluated the nine models against the design properties discovered. While no

single model satis�es all the properties, the models seem to collectively cover the design space. The

models illustrate di�erent ways in which the temporal aspects of data can be conveniently captured

at the conceptual level, and it is our contention that all the temporal ER models, to varying degrees,

have succeeded in more naturally capturing the temporal aspects of data than does the ER model.

In our work with the models, we have come to the conclusion that the approach where all existing

ER model constructs are given a temporal semantics is attractive. The database designers are likely

to be familiar with the existing ER constructs. So, upon understanding the principle at work when

making these constructs temporal, the designers are ready to work with, and bene�t from using, the

temporal ER model.

However, this approach is not totally without problems. This approach rules out the possibility of

designing non-temporal databases or databases where some part of a database is non-temporal and the

rest is temporal. Another problem is that old diagrams are no longer are valid, i.e., while their syntax

is valid, their semantics have changed, and they therefore no longer describe the existing relational

database schemas.

The models that retain the existing constructs with their old semantics and introduce new temporal

constructs have the opposite problems and advantages. It is likely to be more di�cult for the database

designers to learn and understand the new temporal model. The larger initial investment in training

that this induces may prevent a model from being accepted in industry. On the other hand, the

models taking this approach may not face the problem of the diagrams not describing the underlying

relational database, since the semantics of the existing ER constructs are retained. This is important

for industrial users with many legacy diagrams. it is also possible to design non-temporal databases

as well as databases where some parts are non-temporal and others are temporal.

The ideal temporal ER model is easy to understand in terms of the ER model; does not invalidate

legacy diagrams and database applications; and does not restrict database to be temporal, but rather

permits the designer to mix temporal and non-temporal parts.

As stated, most of the models rely on another data model as an implementation model: their

schemas are mapped to schemas in these other models, and it is these other schemas that are subse-

quently populated and queried.

The relational model is the implementation model of choice. Either, temporal ER diagrams are

mapped to relation schemas directly, or they are mapped to regular ER diagrams which are then

mapped to relation schemas. The time-valued attributes that result from mapping ER diagrams to

relation schemas are not interpreted by the relational model,i.e., they have no built-in semantics in

the relational model. As a result, queries on time-varying data are often hard to formulate in SQL

[29].

None of the models have one of the many time-extended relational models proposed [27] as their

implementation model. The temporal relational models have data-de�nition and query-language ca-

pabilities that better support the management of temporal data and would thus constitute natural

candidate implementation platforms.

To summarize, since most DBMSs used in industry are relational, temporal ER models should

ideally includes mappings to several implementation platforms: the relational model (as
eshed out

in the di�erent DBMS products), temporal relational models, and emerging models (e.g., SQL3). It

is a challenge to design mappings that maximally exploit these and other candidate implementation

platforms.

References

[1] S. Ceri, S. B. Navathe, and C. Batini. Conceptual Database Design. An Entity-Relationship

Approach. The Benjamin/Cummings Publishing Company, Inc., California, 1992.

37

[2] P. P-S. Chen. The Entity-Relationship Model { Toward a Uni�ed View of Data. ACM Transaction

on Database Systems, 1(1):9{36, March 1976.

[3] C. J Date. An Introduction to Database Systems, Volume I of Addison-Wesley Systems Program-

ming Series. Addison-Wesley Publishing Company, 5th edition, 1990.

[4] C. E. Dyreson and R. T. Snodgrass. Valid-time Indeterminacy. In Proceedings of the 9th Inter-

national Conference on Data Engineering, pages 335{343, Vienna, Austria, 1993.

[5] C. E. Dyreson and R. T. Snodgrass. Temporal Granularity and Indeterminacy: Two Sides of the

Same Coin. Technical Report TR 94-06, University of Arizona, Department of Computer Science,

February 1994.

[6] C. E. Dyreson and R. T. Snodgrass. Temporal Granularity. In R. T. Snodgrass, editor, The

TSQL2 Temporal Query Language, Chapter 19, pages 347{383. Kluwer Academic Press, 1995.

[7] C. E. Dyreson and R. T. Snodgrass. Temporal Indeterminacy. In R. T. Snodgrass, editor, The

TSQL2 Temporal Query Language, Chapter 18, pages 327{346. Kluwer Academic Publishers,

1995.

[8] R. Elmasri, I. El-Assal, and V. Kouramajian. Semantics of Temporal Data in an Extended ER

Model. In 9th International Conference on the Entity-Relationship Approach, pages 239{254,

Lausanne, Switzerland, October 1990.

[9] R. Elmasri and V. Kouramajian. A Temporal Query Language for a Conceptual Model. In N. R.

Adam and B. K. Bhargava, editors, Advanced database systems, volume 759 of Lecture Notes in

Computer Science, Chapter 9, pages 175{195. Berlin, Springer-verlag, 1993.

[10] R. Elmasri. and S. B. Navathe Fundamentals of Database Systems. The Benjamin/Cummings

Publishing Company, INC, 2nd edition, 1994.

[11] R. Elmasri, G. Wuu, and V. Kouramajian. A Temporal Model and Query Language for EER

Databases. In A. Tansel et al., editor, Temporal Databases: Theory, Design, and Implementation,

Chapter 9, pages 212{229. Benjamin/Cummings Publishers, Database Systems and Applications

series, 1993.

[12] R. Elmasri and G. T. J. Wuu. A Temporal Model and Query Language for ER databases. In

Proceedings of the Sixth International Conference on Data Engineering, pages 76{83, 1990.

[13] S. Ferg. Modeling the Time Dimension in an Entity-Relationship Diagram. In 4th Interna-

tional Conference on the Entity-Relationship Approach, pages 280{286, Silver Spring, MD, 1985.

Computer Society Press.

[14] S. K. Gadia and C. S. Yeung. A Generalized Model for a Relational Temporal Database. In

Proceedings of ACM SIGMOD International Conference on Management of Data, pages 251{

259, Chicago, IL, June 1988.

[15] C. S. Jensen, J. Cli�ord, R. Elmasri, S. K. Gadia, P. Hayes, and S. Jajodia (eds). A Glossary of

Temporal Database Concepts. ACM SIGMOD Record, 23(1):52{64, March 1994.

[16] C. S. Jensen and R. T. Snodgrass. Semantics of Time-varying Information. Information Systems,

21(4):311{352, 1996.

[17] M. R. Klopprogge. TERM: An Approach to Include the Time Dimension in the Entity-

Relationship Model. In Proceedings of the Second International Conference on the Entity Re-

lationship Approach, pages 477{512, Washington, DC, October 1981.

[18] M. R. Klopprogge and P. C. Lockeman. Modeling Information Preserving Databases: Conse-

quences of the Concept of Time. In Proceedings from the Ninth International Conference on Very

Large Data Bases, pages 399{416, October 1983.

38

[19] P. Kraft. Temporale Kvaliteter i ER Modeller. Hvordan? Working paper 93, The Aarhus School

of Business, Department of Information Science, January 1996.

[20] V. S. Lai, J-P. Kuilboer, and J. L. Guynes. Temporal Databases: Model Design and Commer-

cialization Prospects. DATA BASE, 25(3):6{18, 1994.

[21] P. McBrien, A. H. Seltveit, and B. Wangler. An Entity-Relationship Model Extended to Describe

Historical Information. In International Conference on Information Systems and Management of

Data, pages 244{260, Bangalore, India, July 1992.

[22] E. McKenzie and R. Snodgrass. An Evaluation of Relational Algebras Incorporating the Time

Dimension in Databases. ACM Computing Survey, 23(4):501{543, December 1991.

[23] A. Narasimhalu. A Data Model for Object-Oriented Databases With Temporal Attributes and

Relationships. Technical report, National University of Singapore, 1988.

[24] J. F. Roddick and J. D. Patrick. Temporal Semantics in Information Systems { a Survey. Infor-

mation Systems, 17(3):249{267, October 1992.

[25] A. Silberschatz and H. F. Korth. Database System Concepts. McGraw-Hill International Editions,

2nd edition, 1991.

[26] R. T. Snodgrass. The Temporal Query Language TQUEL. ACM Transaction on Database

Systems, 12(2):247{298, June 1987.

[27] R. T. Snodgrass. Temporal Databases. In A. U. Frank, I. Campari, and U. Formanti, editors,

Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, volume 639 of Lecture

Notes in Computer Science, pages 22{64. Springer-Verlag, 1992.

[28] R. T. Snodgrass. Temporal object oriented databases: A critical comparison. In W. Kim, editor,

Modern Database Systems: The Object Model, Interoperability and Beyond, chapter 19, pages

386{408. Addison-Wesley/ACM Press, 1995.

[29] R. T. Snodgrass, I. Ahn, G. Ariav, D. S. Batory, J. Cli�ord, C. E. Dyreson, R. Elmasri, F. Grandi,

C. S. Jensen, W. Kafer, N. Kline, K. Kulkanri, T. Y. C. Leung, N. Lorentzos, J.F. Roddick,

A. Segev, M. D. Soo, and S. M. Sripada. The TSQL2 Temporal Query language. Kluwer academic

Publishers, 1995.

[30] R. T. Snodgrass, B�ohlen M., C. S. Jensen, and A. Steiner. Change Proposal to SQL/Temporal:

Adding Valid Time|Part A. International Organization for Standardization, 40 pages, December

1995. ANSI Expert's Contribution.

[31] B. Tauzovich. Toward Temporal Extensions to the Entity-Relationship Model. In The 10th Inter-

national Conference on the Entity Relationship Approach, pages 163{179, San Mateo, California,

October 1991. E/R Institute.

[32] T. J Teorey. Database Modeling and Design. Morgan Kaufmann Series in Data Management

Systems. Morgan Kaufmann Publishers, Inc., San Mateo, Calefornia, 1990.

[33] C. Theodoulidis, B. Wangler, and P. Loucopoulos. The Entity Relationship Time Model. In

Conceptual Modelling, Databases, and CASE: An Integrated View of Information Systems Devel-

opment, Chapter 4, pages 87{115. John Wiley, 1992.

[34] C. I. Theodoulidis and P. Loucopoulos. The Time Dimension in Conceptual Modelling. Informa-

tion Systems, 16(3):273{300, 1991.

[35] C. I. Theodoulidis, P. Loucopoulos, and B. Wangler. A Conceptual Modelling Formalism for

Temporal Database Applications. Information Systems, 16(4):401{416, 1991.

39

[36] X. Wang, S. Jajodia, and W. Litwin. Dealing with Granularity of Time in Temporal Databases.

In R. Anderson et al., editors, Proceedings of the 3rd International Conference on Advanced

Information Systems Engineering. Lecture Notes in Computer Science, Vol. 498, Springer Verlag,

1991.

[37] G. Wiederhold, S. Jajodia, and W. Litwin. Dealing With Granularity of Time in Temporal

Databases. In Proc. 3rd Nordic Conf. on Advanced Information Systems Engineering, Trondheim,

Norway, May 1991.

40

