
TimeDB 2.0
Demo Version
August 1998

A TimeConsult Product

www.TimeConsult.com

© Andreas Steiner

This documentation describes the installation and use of TimeDB 2.0 Demo.

Information presented here is accurate as of the time of writing, but is
subject to change without notice.

Please send any comments, suggestions and bug reports to
steiner@timeconsult.com .

In no event shall TimeConsult or any persons working for TimeConsult
be liable for any consequential, incidental or special damages
whatsoever (including without limitation damages for loss of critical
data, loss of profits, interruption of business, and the like) arising out
of the use or inability to use this software.

Copyright © 1995-1998 by Andreas Steiner, TimeConsult.

Table of Contents

WHAT IS TIMEDB? .. 1

FEATURES OF TIMEDB ... 1

WHAT IS NEW IN TIMEDB 2.0? ...2
WHAT IS MISSING IN THE DEMO VERSION OF TIMEDB 2.0 ...3
DIFFERENCES TO ATSQL2..3

SOFTWARE REQUIREMENTS.. 3

SUPPORTED DBMS .. 3

USING TIMEDB 2.0.. 4

INSTALLING TIMEDB 2.0 ..4
USING THE INPUT TEXT AREA ..5
EXECUTING A FILE ..5
TIMEFLAG SEMANTICS ...6
NESTING OF TIMEFLAGS..6
SUPPORTED TEMPORAL EXPRESSIONS AND COMPARISON OPERATIONS7
CALENDAR..8
RESTRICTIONS CAUSED BY UNDERLYING DBMS ..9

AVAILABILITY OF THE FULL VERSION OF TIMEDB 2.0........................ 9

LITERATURE.. 1 0

GRAMMAR ... 1 1

1

©TimeConsult

What is TimeDB?
TimeDB implements a temporal version of SQL called ATSQL2 [SBJS96a,
SBJS96b, SBJS98]. It translates temporal SQL statements into standard SQL
statements which then are evaluated using a commercial database management
system (DBMS). TimeDB thus supports a uniform way to implement applications
dealing with historical (or temporal) data. By using TimeDB, it is possible to store
and manage not only a single database state (as it is done in all the currently
available commercial DBMS) but several ones. Research in the area of temporal
databases has shown that while it is usually no problem to store the validity time
periods of data in commercial DBMS in one way or another, it is very cumbersome
to query and update such data and keep it consistent. These drawbacks are
eliminated when using a temporal DBMS.

TimeDB, however, is not a temporal DBMS itself but is a frontend to a relational
DBMS. By translating temporal SQL into standard SQL statements, TimeDB
supports temporal functionality for a non-temporal relational DBMS. The advantage
of this approach is that existing databases stored in a commercial DBMS and
applications accessing this data still can be used while new applications dealing
with temporal data can be added. These applications then access the databases
via TimeDB. This is depicted in the following figure :

TimeDB

Commercial DBMS

Application Application

Features of TimeDB
TimeDB 1.0 was implemented during the design of ATSQL2 [SBJS96a, SBJS96b].
It helped refining the language and eliminating weaknesses. This prototype system

2

©TimeConsult

was implemented at the Swiss Federal Institute of Technology (ETH Z�rich) as part
of a Ph. D. thesis [S98]. The language implemented in TimeDB supports
· temporal queries
· temporal insert, update and delete statements
· temporal tables and views
· temporal table constraints and assertions

 It supports valid time (when was a fact true in the real world) and transaction time
(when was a fact stored in the database). These time lines are treated orthogonally
which means that for each valid-time query a corresponding transaction-time query
exists, for example.

What is new in TimeDB 2.0?

 There are several important differences between TimeDB 1.0 and TimeDB 2.0 :
· TimeDB 2.0 was implemented in Java and thus is platform independent
· TimeDB 2.0 uses JDBC and thus can be used with many different DBMS
· TimeDB 2.0 has a GUI and thus is easier to install and use
· TimeDB 2.0 is optimised with respect to the creation of auxiliary tables
· Different DBMS are supported by changing the preferences

 TimeDB 2.0 is a re-implementation of TimeDB 1.0. There were several reasons
why we implemented TimeDB 2.0 from scratch. First, with the spreading of the
object-oriented programming language Java, it becomes possible to run the same
code on different platforms without extra effort. Thus, we decided to go for a
platform independent implementation for the next release of TimeDB in order to
supply it to as many users as possible. Second, there were many inquiries of users
who wanted to use TimeDB together with a commercial relational DBMS. TimeDB
1.0 could only be used with the product of a single DBMS vendor, namely Oracle,
since the supported interface in TimeDB 1.0 used the Oracle Call Interface (OCI).
However, using JDBC [HCF97], a standardised way to access data in different
DBMS is possible. Thus, the DBMS interface of TimeDB 2.0 is based on JDBC and
hence is independent of any DBMS. Third, a graphical user interface (GUI) seemed
to be helpful to simplify the installation procedure and use of TimeDB.

 Future versions of TimeDB will also support an API to allow the development of
temporal applications using TimeDB (e. g. a temporal JDBC). Additionally, we plan
to add semantical query optimisation to provide faster query evaluation.

3

©TimeConsult

What is missing in the demo version of TimeDB 2.0

 The demo version of TimeDB 2.0 does not support all of the features found in
TimeDB 1.0. The full version of TimeDB 2.0, however, will have the same
functionality as TimeDB 1.0. The features missing in the demo version are:
· No support of views, assertions and constraints (derived tables are supported)
· No update and delete operations (only insert operations with a list of values

are possible)
· No subqueries
· No transaction time and bitemporal operations (snapshot, nonsequenced

valid and valid time operations are supported)
· Only a single minimal calendar is supported

Differences to ATSQL2

The temporal SQL supported in demo version is slightly different from ATSQL2 as it
is proposed in [SBJS96a, SBJS96b]. In the demo version, interval expressions after
timeflags (as shown in the example below) may only refer to constant values.
References to timestamps of tables are not allowed.

validtime period [1980-1990) select ...

Software Requirements
In order to run TimeDB, the following software is needed:
· Java 1.1
· A DBMS, e.g. Oracle (Version 8), Sybase (Version 11.5) or CloudscapeÕs

JBMS (Version 1.1)
· A JDBC driver for the DBMS

You also need a login and password for the database you will use, the JDBC driver
name and the URL to connect to your database (this information should be
provided in the documentation of the JDBC driver).

Supported DBMS

 While we developed TimeDB using the Oracle DBMS (Version 8), we also tested it
on SybaseÕs DBMS (Adaptive Server Enterprise 11.5) and CloudscapeÕs JBMS
(Version 1.1). We further plan to support DBMS such as

4

©TimeConsult

· Oracle Lite
· MicrosoftÕs Access
· Informix

Other DBMS may be supported on demand.

Using TimeDB 2.0
Installing TimeDB 2.0

The first step is to set up the Java environment correctly. Add the path to directory
TimeDB2.0D/classes (e. g. /home/steiner/TimeDB2.0D/classes) and the path to the
classes containing the JDBC driver to the classpath of your Java environment. Start
TimeDB 2.0 using a command which looks like

java -classpath <your classpath> TimeDB

After a few seconds, the main window of TimeDB should open up (see Figure 1 :
TimeDB's Main Window). The next step is to configure TimeDB. Select item
Preferences in menuTimeDB. A new window opens where you can set the path to
the TimeDB directory (application dir), the JDBC driver, the URL to your database
and the DBMS you are using. The path to the TimeDB directory can be set by
clicking on the corresponding text area which opens up a file selection dialog box.
Select any file in the main directory of TimeDB. Write the name of the JDBC driver
and the URL in the corresponding text areas and select the DBMS you are using.
Press Save to save this data.

Now you can connect to your database account. Select Open DB in menu
TimeDB. A window appears where you can enter your login and password (if there
is one needed). Click the ok button, and after a short while the status information
Database opened will be displayed in the result window.

The next step is to add the metadata needed by TimeDB to your database account.
You have to select the Create DB menu item in menuTimeDB which starts to create
the necessary tables and inserts metadata to your database.

If all of the above steps have been successfully completed, you can use TimeDB to
store and query temporal data. The directory demos contains example queries and
statements.

5

©TimeConsult

Figure 1 : TimeDB's Main Window

Using the Input Text Area

Temporal SQL statements can be written to the input text area in the main window
of TimeDB. Note that in any case only the first statement will be executed. Each
statement must end with a semicolon. If you would like to execute several
statements at once, you can write them to a file and execute the file.
The first statement in the input text area can be executed by pushing buttonExecute
in the button panel. Push Clear to clear the input text area. The results of your
statement are displayed in the result window.

Executing a File

To execute temporal SQL statements stored in a file, choose item Execute File in
menu File. A file selection dialog box opens up where you can select the file to be
executed. The output will be written into the result window.

Input
Text
Area

Button
Panel

Menus

6

©TimeConsult

Timeflag semantics

The language ATSQL2 distinguishes three different modes to evaluate an SQL
statement: snapshot semantics, sequenced and nonsequenced semantics.
Snapshot semantics means that only the database state valid at time instant now is
evaluated. This corresponds to evaluating a non-temporal SQL statement over a
non-temporal database containing data about the current state of the real world. In
ATSQL2, a statement without a time flag has snapshot semantics.
Sequenced semantics means that an SQL statement is evaluated over all
database states stored in the temporal database. A query with sequenced
semantics thus returns temporal data. In ATSQL2, a sequenced valid-time
statement starts with timeflag validtime.
Statements with nonsequenced semantics treat the timestamps as any other user
defined attribute. The algebra operations have non-temporal semantics. This
allows the comparison of different database states with each other. In ATSQL2, a
nonsequenced valid-time statement starts with timeflag nonsequenced validtime.

Table 1 gives an overview of the different timeflags together with the semantics of
the corresponding statements.

Nesting of Timeflags

Usually, timeflags are propagated from the outside to the inside of nested queries.
For example, in the query

validtime
 (select * from employees)

union
É

the timeflag validtime is propagated to the inner select statement.
Timeflags, however, may also be overwritten. In the query

validtime
 (nonsequenced validtime period [1980-1990)

 select * from employees)
union
É

the inner query has a different timeflag than the outer query. First, the inner select
statement is evaluated using nonsequenced semantics. Due to the interval
expression in the timeflag, it returns a valid-time table. The outer query then
calculates the valid-time union of this table and the rest of the outer query.

7

©TimeConsult

timeflag Semantics
no flag Snapshot semantics

Algebra operations have non-temporal
semantics. Queries return non-temporal
tables. Modification statements only refer
to the currently valid database state.

nonsequenced validtime Nonsequenced semantics
Algebra operations have non-temporal
semantics. Queries return non-temporal
tables. Modification statements do not
interpret timestamps.

nonsequenced validtime
<interval exp>

Nonsequenced semantics
Algebra operations have non-temporal
semantics. Queries return valid-time
tables where each tupleÕs valid-time
corresponds to <interval exp>.
Modification statements do not interpret
timestamps and set timestamps of
modified tuples to <interval exp>.

validtime Sequenced semantics
Algebra operations have temporal
semantics. Queries return valid-time
tables. Modification statements update
each database state separately.

validtime <interval exp> Sequenced semantics
Algebra operations have temporal
semantics. Queries return valid-time
tables and are evaluated during <interval
exp>. Modification statements update
each database state during
<interval exp>.

Table 1 : Timeflags

Supported temporal expressions and comparison
operations

TimeDB supports spans (a duration of time, e. g. two years and one month), events
(a time instant, e. g. June 12, 1964) and time intervals (e. g. from 1980 to 1990).
Spans, events and time intervals are treated just as any other values such as

8

©TimeConsult

strings, integers etc. and thus may appear anywhere in select and where clauses
where expressions are allowed.

According to the syntax given at the end of this document, a legal time span -
specified as a constant value - is, for example, interval 2 year 1 month. Additionally,
values of type span stored in tables may be referenced. Last but not least, new
spans may be calculated using the operators +, -, * and /. Allowed are the following
combinations:

span + span -> span
span - span -> span
number * span -> span
span / number -> span

Spans may be compared with other spans using the comparison operations =, <, >,
<=, >= and <>.

The expressions date Ô1964-06-12Õ, timestamp Ô1964-06-12 12:30:24Õ and date
1964/6/12~12:30:24 are legal event values. While the first two correspond to the
SQL standard, the third is used for output of event values and may also be used for
input. It is special in the sense that only the significant part of an event is displayed.
For example, 1964 actually is shorthand for 1964/1/1~00:00:00.
New events may be calculated by adding or subtracting a time span :

event + span -> event
event - span -> event

Events may be compared with each other using the comparison operations
precedes and =.

The constant period [1980-1990) is a legal time interval. TimeDB displays time
intervals as [1980-1990). Time intervals are closed on the lower and open on the
upper bound. Time intervals may be compared either with other time intervals
using the comparison operations precedes, overlaps, meets, contains and =, or
they may be compared with events. In the latter case, the following combinations
are supported:

interval contains event -> boolean
interval precedes event -> boolean
event precedes interval -> boolean

Calendar

TimeDB 2.0 Demo supports a simple minimal calendar. The calendar starts with
year 1. Each month has 30 days and each day 24 hours (0 to 23). Expressions
calculating new events may lead to illegal values which are represented as
<< NAD >> (not a date). The smallest non-decomposable time unit is a second.

9

©TimeConsult

Restrictions caused by underlying DBMS

Apart from the different data types supported in the different DBMS, there is another
restriction you should be aware of. CloudscapeÕs JBMS and Sybase do not support
the non-temporal set operations intersect and except. These operations thus are
not available in TimeDB, too, if it is used with one of these DBMS. However, you
still can calculate temporal intersect and except operations.

Availability of the full version of TimeDB 2.0

 The full version of TimeDB 2.0 will be available in fall 1998. Note that TimeDB 2.0
is not a prototype system anymore and must be purchased from TimeConsult.

10

©TimeConsult

Literature

[HCF97] G. Hamilton, R. Cattell, M. Fisher : JDBC Database Access with Java.
Addison Wesley.
July 1997.

[SBJS96a] R. Snodgrass, M. B�hlen, C. Jensen, A. Steiner : Adding Valid Time to
SQL/Temporal (Change Proposal).
ANSI X3H2-96-501r2, ISO/IEC JTC1/SC 21/WG 3 DBL-MAD-146r2.
November 1996.

[SBJS96b] R. Snodgrass, M. B�hlen, C. Jensen, A. Steiner : Adding Transaction
Time toSQL/Temporal (Change Proposal).
ANSI X3H2-96-502r2, ISO/IEC JTC1/SC 21/WG 3 DBL-MAD-147r2.
November 1996.

[SBJS98] R. Snodgrass, M. B�hlen, C. Jensen, A. Steiner : Transitioning
Temporal Support in TSQL2 to SQL3.
In Temporal Databases : Research and Practice.
O. Etzion, S. Jajodia and S. Sripada, editors.
LNCS 1399, Springer Verlag.
March 1998.

[S98] Andreas Steiner : A Generalisation Approach to Temporal Data
Models and their Implementations.
Ph. D. Thesis, ETH Z�rich.
November 1997.

11

©TimeConsult

Grammar
The following syntax defines the legal temporal SQL statements supported in
TimeDB 2.0 Demo :

statement ::= (query | ddl | dml | control) ';'

Query

timeFlag ::= ['nonsequenced'] 'validtime' [scalarExp]

coal ::= '(' 'period' ')'

query ::= [timeFlag] queryExp
queryExp ::= queryTerm { ('union' | 'except') queryTerm }
queryTerm ::= queryFactor { 'intersect' queryFactor }
queryFactor ::= '(' query ')' [coal] | sfw

sfw ::= 'select' selectItemList
 'from' tableRefList
 ['where' condExp]

selectItemList ::= '*' | selectItem { ',' selectItem }
selectItem ::= scalarExp [alias]

tableRefList ::= tableRef { ',' tableRef }
tableRef ::= '(' query ')' [coal] alias [colList] |
 identifier [coal] [alias]

alias ::= ['as'] identifier

condExp ::= condTerm { 'or' condTerm }
condTerm ::= condFactor { 'and' condFactor }
condFactor ::= ['not'] simpleCondFactor
simpleCondFactor ::= '(' condExp ')' |
 scalarExp condOp scalarExp

condOp ::= '<' | '>' | '<=' | '>=' | '<>' | '=' |
 'precedes' | 'overlaps' | 'meets' | 'contains'

scalarExp ::= term { ('+' | '-') term }
term ::= factor { ('*' | '/') factor }
factor ::= [('+' | '-')] simpleFactor
simpleFactor ::= colRef |
 const |
 '(' scalarExp ')' |
 'abs' '(' scalarExp ')'

colRef ::= identifier ['.' identifier]

12

©TimeConsult

const ::= integer |
 float |
 ''' string ''' |
 interval |
 event |
 span

interval ::= 'validtime' '(' identifier ')' |
 'period' intervalExp |
 'period' '(' scalarExp ',' scalarExp ')'
intervalExp ::= '[' time '-' time ')'
time ::= timeDBDate | eventExp

event ::= ('begin' | 'end') '(' scalarExp ')' |
 ('first' | 'last') '(' scalarExp ',' scalarExp ')' |
 eventExp

eventExp ::= 'now' |
 'beginning' |
 'forever' |
 'date' dateString |
 'date' timeDBDate |
 'timestamp' timestampString

dateString ::= ''' YYYY '-' MM '-' DD '''
timestampString ::= ''' YYYY '-' MM '-' DD ' ' HH ':' MM ':' SS '''
timeDBDate ::= YYYY ['/' MM ['/' DD
 ['~' HH [':' MM [':' SS]]]]]

span ::= 'interval' spanExp
spanExp ::= integer qualifier { integer qualifier }
qualifier ::= 'year' |
 'month' |
 'day' |
 'hour' |
 'minute' |
 'second'

Data Definition

ddl ::= ddlTable | 'drop' 'table'

ddlTable ::= 'create' 'table' identifier '(' colDefList ')' ['as'
'validtime']

colDefList ::= colDef { ',' colDef }
colDef ::= identifier dataType

13

©TimeConsult

colList ::= col { ',' col }
col ::= identifier

dataType ::= 'number' [typeLength] | /* Oracle */
 'numeric' [typeLength] | /* Sybase */
 'smallint' | /* Cloudscape's JBMS */
 'longint' | /* Cloudscape's JBMS */
 'integer' |
 'real' |
 'float' |
 'interval' |
 'date' |
 'period' |
 'char' [typeLength] |
 'varchar' [typeLength]

typeLength ::= '(' integer ')'

Data Manipulation

dml ::= [timeFlag] insert

insert ::= 'insert' 'into' identifier valExp
valExp ::= 'values' '(' valList ')'

Control

control ::= 'commit' | 'rollback'

