
Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 1	 ©2017	Association	for	Computing	Machinery	

Mixing	Computation	with	People	
	

An	Interview	with	Marianne	Winslett		

by	Richard	T.	Snodgrass	

	
	

Editor’s Introduction

In this interview, we learn about five fascinating subjects: security in manufacturing, negotiating
trust in the web, updating logical databases, differential privacy, and scientific computing
(including its security issues). This is a confluence that has, at its roots, the thorny problems that
arise when you mix computation with people. Some beautiful technical results, many originated
by Marianne Winslett, now address those challenges, but some surprises crop up along the way.

	

	
	

	

	

	

	

	

	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 2	 ©2017	Association	for	Computing	Machinery	

Mixing	Computation	with	People	
	

An	Interview	with	Marianne	Winslett		

by	Richard	T.	Snodgrass	

	
Richard	 Snodgrass:	 Today	 I	want	 to	explore	with	 you	a	 variety	of	 technical	 topics	 that	 you	
have	been	confronting	over	your	30-plus	year	career	in	computer	science	research.		

It	seems	to	me,	a	core	impulse	of	your	research	is	the	interaction	between	computer	science	
applications	and	the	blood-and-guts	humans	who	create	and	update	these	applications.	That	
interaction	can	elicit	very	interesting	technical	issues.	

The	 first	 topic	 I	 would	 like	 to	 explore	 is	 how	 do	 we	 protect	 manufacturing	 from	 being	
attacked?	

Marianne	Winslett:	Until	recently,	the	special	security	needs	of	the	manufacturing	community	
had	 escaped	 the	 notice	 of	 the	 computer	 security	 research	 community,	 which	 is	 unfortunate	
since	 our	 factories	 are	 already	 under	 heavy	 attack	 today.	 The	 driving	 factor	 behind	 these	
attacks	 is	 for	 high	 value	 products,	 like	 airplanes	 or	 pharmaceuticals,	 it	 can	 be	 quite	 a	 bit	
cheaper	and	faster	to	steal	the	intellectual	property	(IP)	associated	with	those	products	than	to	
try	to	come	up	with	that	IP	on	one’s	own.	Here	IP	means	two	different	things.	First,	there’s	the	
design	of	the	product.	And	second,	quite	separately,	there’s	the	process	used	to	fabricate	that	
design.	Each	manufacturer	has	 its	own	secret	 sauce,	a	way	 to	make	parts	 faster,	 cheaper,	or	
better	than	its	competitors.	That’s	the	manufacturer’s	competitive	advantage.	

	
RS:	Would	these	manufacturers	have	patents	on	these	processes?	

MW:	 If	 you	 file	 for	 a	 patent,	 you	 have	 to	 reveal	what	 you’re	 patenting.	 I	would	 think	many	
manufacturers	would	prefer	to	keep	their	processes	secret	instead.	The	Coca-Cola	formula	is	a	
trade	secret	because	that	way	you	don’t	have	to	divulge	the	formula.	

	

RS:	What	would	be	an	example	of	a	high-value	product	exhibiting	this	problem?	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 3	 ©2017	Association	for	Computing	Machinery	

MW:	One	example	is	the	key	parts	of	an	airplane,	like	its	turbines.	My	favorite	story	to	illustrate	
the	prevalence	of	IP	theft	is	the	first	time	the	F-35	airplane	took	a	test	flight;	its	entire	operating	
system	and	all	the	data	readings	had	been	stolen	by	the	time	it	landed.	

	

RS:	How	do	they	know	it	was	stolen?	

MW:	Maybe	they	observed	unauthorized	transmissions	of	data	during	flight.	Or	maybe	it’s	an	
urban	legend.	All	I	know	for	sure	is	Edward	Snowden	released	documents	that	mention	the	F-35	
blueprints	were	stolen.	Then	competitors	came	up	with	airplane	designs	that	looked	quite	a	bit	
like	 the	 F-35,	without	 having	 to	 spend	 the	 billions	 of	 dollars	 necessary	 to	 figure	 out	 how	 to	
design	and	manufacture	it.		

	

RS:	That’s	astounding	to	me	given	the	F-35	is	a	military	fighter	jet.	And	so	I	would	think	the	
military	would	have	all	sorts	of	procedures	for	ensuring	this	didn’t	happen.		

MW:	Yes,	but	when	you	make	an	airplane,	there	may	be	a	thousand	vendors	involved,	making	
all	sorts	of	different	parts,	and	it’s	hard	to	protect	the	information	in	such	an	enormous	supply	
chain.	My	colleague	Bill	King	tells	me	about	50	of	those	parts	are	the	critical	ones,	 the	things	
whose	designs	and	manufacturing	processes	you	 really	don’t	want	 to	get	 stolen.	The	 turbine	
blade	shape	 is	one	of	 those	secrets.	When	 installed	 in	an	airplane,	 those	50	critical	parts	are	
physically	surrounded	by	maybe	500	other	parts,	so	that	if	you	stole	the	details	for	enough	of	
the	surrounding	parts,	you	could	reconstruct	some	of	those	critical	parts.		

Among	the	thousand	of	companies	making	the	parts	for	the	plane,	there’s	a	 long	tail	of	small	
manufacturers	 that	 have	 vital	 know-how	 about	 how	 to	 manufacture	 important	 parts	 better	
than	other	companies	do.	So	you	can’t	drop	those	small	manufacturers	from	the	manufacturing	
supply	chain	for	the	plane.	But	these	small	manufacturers,	these	mom	and	pop	places,	they’re	
not	IT	experts.	They’re	quite	vulnerable	to	theft,	and	not	just	from	the	computers	in	their	front	
office.	Factories	typically	have	PCs	out	on	the	factory	floor,	and	those	PCs,	by	policy,	are	never	
patched	or	upgraded.	

	

RS:	Is	this	an	operational	problem	in	that	we	could	have	operational	changes	to	solve	it?	Or	
does	this	have	some	deep	computer	science	aspects	to	it?	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 4	 ©2017	Association	for	Computing	Machinery	

MW:	 I	 would	 say	 both	 things	 are	 true.	 It’s	 true	 we	 need	 to	 come	 up	 with	 a	 better	 kind	 of	
software	 system	 controlling	 the	 information	 flow	 and	 processes	 on	 factory	 floors.	 And	 it’s	 a	
research	area	that	definitely	needs	to	be	 looked	 into,	something	that’s	 futuristic	and	forward	
looking.	

But,	 also,	 at	 the	 same	 time,	 there	 are	 reasons	 for	 everything	 that’s	 done	 on	 a	 factory	 floor.	
There’s	a	reason	they	never	patch	and	never	upgrade.	It’s	because	any	time	you	do	that,	you’re	
at	significant	risk	of	downtime.	As	computer	scientists,	we	can	appreciate	the	fact	 that	 if	you	
upgrade	one	little	thing	somewhere	or	patch	one	little	thing,	it	can	make	everything	else	break.	
And	a	factory	that’s	running	24/7	really	can’t	afford	the	downtime	that	comes	with	computer	
system	failure.	So	there’s	an	“if	it	ain’t	broke,	don’t	fix	it”	attitude.		

To	make	things	worse,	when	you	buy	factory	floor	machinery	nowadays,	it	typically	comes	with	
a	 PC	 embedded	 in	 it.	 I’ve	 seen	 an	 $800,000	 brand	 new	machine	 that’s	 running	Windows	 XP	
internally.	And	it	will	run	Windows	XP	until	the	day	the	machinery	is	scrapped.	If	you	buy	really	
high	quality	factory	machinery,	 it	can	 last	30	years,	and	 it	will	 forever	be	running	what	 it	was	
running	 on	 the	 day	 that	 you	 bought	 it.	 Long	 before	 that	 day,	 Microsoft	 will	 have	 stopped	
supporting	that	operating	system,	so	there	won’t	be	any	patches	available	for	newly	identified	
vulnerabilities.	 So	 you	 couldn’t	 patch	 it	 even	 if	 you	 wanted	 to.	 And	 even	 before	 that,	 the	
computer	might	not	be	powerful	enough	to	run	the	latest	version	of	the	operating	system	and	
other	software.	

	

RS:	Is	one	of	the	problems	that	it’s	even	running	a	large	operating	system	rather	than	a	very	
small,	specialized	system?	

MW:	Even	if	the	manufacturer	buys	a	dumb	machine	that	just	has	firmware	on	it,	the	firmware	
can	be	attacked.	Even	a	machine	from	the	1970s,	with	just	a	programmable	logical	controller,	
we	know	how	to	attack	those	if	we	so	choose.		

	

RS:	Is	this	on	the	radar	screen	for	funding	agencies?	

MW:	Bill	King	and	I	have	a	grant	now	from	the	Department	of	Homeland	Security	to	see	how	to	
help	make	the	manufacturing	sector	more	secure.	It’s	a	particularly	critical	problem	right	now,	
because	manufacturers	 realize	 that	 if	 they	 collect	 and	 save	 a	 lot	 more	 information	 about	 a	
product	throughout	its	lifecycle,	they	can	shorten	the	time	necessary	to	create	new	versions	of	
it.	For	example,	they	can	analyze	information	from	maintenance	records	and	use	it	to	make	the	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 5	 ©2017	Association	for	Computing	Machinery	

product	more	maintainable,	more	usable,	and	so	on.	So	they	see	real	competitive	advantages	in	
storing	and	making	use	of	a	lot	more	information.		

But	 they’re	 also	 terrified	 at	 the	 potential	 attack	 avenues	 that	 having	 this	 information	 easily	
available	will	open	up,	and	rightfully	so.		

	

RS:	Is	the	security	community,	in	general,	working	on	this	really	important	problem?	

MW:	 I’d	 say	 it’s	 not	 really	 on	 people’s	 radar	 screens.	 In	 part,	 that	 might	 be	 because	 the	
manufacturing	sector	did	try	to	sweep	it	under	the	rug,	rather	like	the	electrical	power	sector	
used	to	try	to	believe,	or	pretend,	they	didn’t	face	major	security	challenges.	This	 is	a	natural	
human	 tendency.	 But	 I	 think	 things	 are	 changing	 now.	 Manufacturers	 are	 becoming	 more	
willing	to	admit	the	magnitude	of	the	problem.		

We	 do	 need	 some	 forward	 looking,	 “rethink	 everything	 from	 the	 ground	 up”	 approaches	 to	
factory	floor	systems.	But,	on	the	other	hand,	there	are	some	really	interesting	things	you	can	
do	to	protect	legacy	equipment.	If	you	respect	the	fact	that	a	factory	machine	could	last	for	50	
years,	rather	like	a	space	craft	that’s	shot	off	by	NASA—it	is	what	it	 is,	you’ve	got	to	live	with	
it—then	what	can	you	do	to	protect	 that	machine?	That’s	an	 interesting	research	problem	 in	
and	of	 itself.	So	 in	our	project,	we’ve	been	 looking	at	a	 lot	of	possibilities	 for	protecting,	 in	a	
respectful	way,	these	legacy	machines	with	their	old	hardware	and	software.	

	

RS:	Can	you	give	us	a	hint	as	to	how	one	might	do	that?	

MW:	One	example	is	manufacturers	are	afraid	of	having	their	factory	floor	accessible	over	the	
internet	because	that	could	open	the	factory	floor	up	to	attack.	So	instead,	they	put	the	recipes	
for	what	 the	 factory	 floor	machines	are	supposed	to	be	doing	onto	USB	memory	sticks,	 flash	
drives,	and	bring	them	to	the	factory	floor	that	way.	And	they	have	no	idea	these	flash	drives	
are	a	great	vector	for	attack.	They	think	using	USB	drives	is	safer	than	using	the	internet.	

When	I	heard	that—and	given	that	even	the	most	expensive,	modern	factory	floor	equipment	
made	 today	 comes	 with	 a	 USB	 interface—it	 just	 made	 me	 smack	 my	 head	 as	 a	 security	
researcher.	 I	can’t	believe	they’re	doing	this	and	they	think	 it’s	safe	and	they	trust	these	USB	
drives.	 Manufacturers	 have	 heard	 of	 Stuxnet,	 and	 it	 alarms	 them—as	 it	 should—but	 still	
somehow	they	don’t	realize	how	vulnerable	they	are	and	that	just	preventing	outside	access	to	
the	machines	over	the	internet	doesn’t	cut	it.	To	be	protected,	they	have	to	do	more.		

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 6	 ©2017	Association	for	Computing	Machinery	

A	similar	problem	occurs	when	you	have	to	call	outside	vendors	to	repair	 factory	equipment.	
Every	minute	the	factory	 line	 is	shut	down	you’re	 losing	money.	The	repair	person	shows	up,	
and	maybe	you	know	the	person	and	trust	them,	maybe	you’ve	never	seen	them	before.	Either	
way,	the	repair	person	walks	up	to	the	machine	and	sticks	a	USB	into	it.	Heaven	knows	where	
that	USB	has	been.	It	horrifies	me	to	think	of	it.		

The	first	step	 in	changing	that	 is	to	make	manufacturing	people	aware	of	the	risks	associated	
with	using	USB	memory	sticks,	and	the	second	step	 is	 to	offer	 them	an	easy-to-use,	 low-cost	
alternative.	For	the	first	step,	there’s	a	consortium	called	the	Digital	Manufacturing	and	Design	
Innovation	 Institute	 up	 in	 Chicago	 that	 has	 beautiful	 new	 factory	 equipment,	 and	 brings	
together	many	people	across	the	manufacturing	sector.	With	that	kind	of	audience	in	mind,	we	
are	putting	together	a	demonstration	of	various	ways	these	machines	can	be	attacked	through	
USBs,	 explained	 in	 a	 way	we	 think	will	make	 sense	 to	 a	manufacturing	 expert	 who	 is	 not	 a	
computer	scientist.	We	need	to	show	them	you	just	can’t	trust	people’s	USBs,	and	it’s	easy	to	
introduce	 self-replicating	malware	 onto	 your	 PC	 and	 have	 it	 spread	 across	 the	 factory	 floor.	
[Note:	Videos	of	those	attacks	are	now	up	on	YouTube.]			

As	 for	 the	 second	 step,	 offering	 manufacturers	 a	 good	 alternative:	 You	 can	 already	 buy	
protective	devices	intended	to	guard	against	USB	malware,	but	they	don’t	offer	what	is	needed	
in	a	manufacturing	environment.	One	of	our	entrepreneurially	minded	team	members,	Avesta	
Hojjati,	has	teamed	up	with	another	professor	to	address	that	problem,	and	I	hope	they	come	
up	with	a	great	solution.	

	

RS:	So	these	are	just	some	kind	of	simple	things	that	might	help	a	lot,	along	with	realization	
of	 the	attack	vectors	 that	might	be	present.	What	are	 some	of	 the	more	computer	 science	
research	questions?	

MW:	The	whole	problem	of	how	to	protect	USB	drives	is	much	broader	than	a	manufacturing	
concern.	 Attacks	 on	 programmable	 logic	 controllers	 (PLCs)	 are	 kind	 of	 hot	 in	 the	 security	
research	community	 right	now.	People	are	 looking	at	 them	because	of	 the	 internet	of	 things	
(IoT),	 and	 the	 manufacturing	 sector	 is	 just	 one	 example	 of	 an	 existing	 internet	 of	 things.	
[Editor’s	Note:	since	we	spoke,	the	first	really	big	attack	exploiting	IoT	took	place	on	September	
20,	2016.]	Any	attack	you	can	do	on	IoT	you	can	probably	also	do	on	the	factory	floor	(although	
they’re	not	exactly	the	same,	for	example,	because	of	the	importance	of	legacy	hardware	and	
software	in	factories).		 	
	
In	 a	 factory,	or	 anywhere	else,	 you	need	 to	be	able	 to	protect	 your	 firmware.	 Even	 if	 you’re	

http:/dmdii.uilabs.org
http:/dmdii.uilabs.org
https://en.wikipedia.org/wiki/Mirai_(malware)
https://en.wikipedia.org/wiki/Mirai_(malware)

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 7	 ©2017	Association	for	Computing	Machinery	

allowing	firmware	upgrades,	if	you’re	allowing	vendor	upgrades,	there	needs	to	be	some	form	
of	attestation	that	will	let	you	trust	that	upgrade.	That’s	an	interesting	issue	that’s	been	getting	
a	lot	of	attention	in	the	past	few	years	for	the	case	of	advanced	metering	infrastructure	in	the	
power	 grid	 industry.	 Of	 course,	 the	 power	 grid	 world	 and	 the	 manufacturing	 world	 aren’t	
exactly	the	same.	But	as	with	all	cyberphysical	systems,	there	are	overlaps	in	what	the	security	
issues	are	and	in	potential	solution	approaches.	

	Another	concern	is	researchers	haven’t	really	explored	all	of	the	additional	ways	you	can	attack	
a	factory	floor.	Our	most	recent	piece	of	work	is	about	the	case	where	your	smartphone	is	near	
a	factory	floor	machine,	and	whether	you	know	it	or	not,	your	phone	is	recording	the	sound	the	
machine	makes	and	perhaps	recording	the	information	from	some	of	its	other	built-in	sensors.	
For	a	3-D	printer	and	a	CNC	mill,	we	showed	recording	is	enough	to	allow	a	reconstruction	of	
the	design	and	manufacturing	process	for	the	object	being	fabricated.	In	other	words,	just	the	
sound	the	machine	makes	is	enough	to	figure	out	what	the	factory	is	doing.	

	

RS:	Wow.	It’s	amazing	that	the	audio	can	provide	that	level	of	information.	

MW:	 It	could	even	be	that	you	get	a	phone	call	while	you’re	standing	next	to	the	machine.	 If	
the	caller	records	the	background	audio,	it	can	tell	them	what’s	being	made	and	how	it’s	being	
made.	 [Editor’s	 Note:	 Since	we	 spoke,	 this	 attack	was	 published	 in	 CCS’16,	 as	was	 a	 related	
attack	from	another	group.]	

If	 I	were	an	attacker,	though,	 I	don’t	think	I’d	have	to	resort	to	a	phone-based	attack	to	steal	
manufacturers’	 IP.	 I’d	 try	 to	 break	 into	 the	 factory’s	 network,	 from	 the	 comfort	 of	my	 own	
office.	 If	 that	 didn’t	work,	 I’d	 try	 to	 break	 into	 one	 of	 the	 factory’s	 repair	 vendors,	 and	 take	
advantage	of	the	holes	that	the	factory	opens	to	give	those	repair	people	remote	access	when	
things	break	down.	Time	is	money	for	an	attacker,	so	I’d	take	the	easiest	route.		

In	 our	 research	 project,	 our	 goal	 is	 to	 raise	 the	 cost	 of	 stealing	 manufacturing	 designs	 and	
processes,	which	currently	is	quite	low.	And	theft	is	the	number	one	threat,	but	it’s	not	the	only	
threat.	 As	 an	 attacker,	 you	 could	 introduce	 flaws	 that	 damage	 factory	 machines,	 your	
competitors’	 machines.	 You	 could	 make	 them	 self-destruct,	 as	 StuxNet	 did.	 Once	 the	
equipment	 is	physically	damaged,	 it	 can	 take	a	 very	 long	 time	 to	 repair	or	 replace	 it.	Or	 you	
could	introduce	faults	into	the	designs	or	the	recipe	so	that	the	objects	that	were	manufactured	
had	flaws	that	were	going	to	make	them	break.	

	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 8	 ©2017	Association	for	Computing	Machinery	

RS:	One	thing	I	always	think	about	when	I	hear	about	research	on	new	attacks,	when	smart	
researchers	 figure	 out	 really	 interesting	 attacks	 that	 weren’t	 perhaps	 known	 before,	 and	
publish	details	on	them,	does	that	make	the	situation	worse?	

MW:	It	can.	And	for	that	reason,	security	researchers	usually	give	the	vendor	a	chance	to	come	
up	with	a	patch	before	they	announce	a	new	vulnerability	in	the	vendor’s	product.	Of	course,	
that	courtesy	won’t	help	if	the	intended	victims	don’t	install	the	patch,	or	if	no	one	can	come	
up	with	a	patch,	or	if	the	product	is	no	longer	supported.		

Another	 consideration	 is	 that	 any	 new	 vulnerability	 we	 researchers	 think	 of	may	 already	 be	
available	 for	 sale	 as	 a	 zero-day	exploit.	And	probably	 a	number	of	 spy	 agencies	 in	 the	world	
already	 know	 about	 the	 vulnerability,	 too.	 Neither	 of	 those	 groups	 is	 going	 to	 publicize	 the	
problem.	So	it’s	probably	just	as	well	if	the	vulnerability	comes	to	public	attention,	so	that	it	can	
be	patched.		

For	 example,	 there’s	 a	 very	 powerful	 USB	 attack	 called	 “BadUSB.”	 Its	 publication	 spurred	
vendors	 to	 come	 up	 with	 a	 more	 secure	 design	 for	 the	 firmware	 inside	 of	 new	 USBs.	 The	
vendors	would	never	have	done	that	work	if	they	hadn’t	realized	how	vulnerable	every	USB’s	
internal	code	is	to	attack.	And	the	essential	concept	behind	BadUSB	has	been	turned	into	a	nice	
penetration-	testing	tool	by	another	entrepreneurial	soul.	Still,	BadUSB	can	be	used	to	do	nasty	
things.	

So	publication	of	 new	attacks	 is	 both	 good	 and	bad.	 It’s	 always	 an	 arms	 race	 in	 the	 security	
world.		

	

RS:	 Let’s	 shift	 gears.	 One	 of	 the	words	 I	 associate	 with	 you	 in	my	mind	 is	 “trust,”	 in	 two	
senses.	First,	you	are	a	very	trustworthy,	honest	person.	And	second,	you	have	made	many	
contributions	in	the	area	of	“trust.”	

One	of	your	most	referenced	papers	has	the	evocative	title,	“Negotiating	Trust	 in	the	Web”	
(in	IEEE	Internet	Computing,	2002).	I’m	reminded	of	the	prevalent	cartoon	of	a	dog	typing	at	
his	(her?)	computer	with	the	caption,	“On	the	Internet,	nobody	knows	you're	a	dog.”	In	what	
specific	way	is	the	web/internet	different	in	terms	of	the	fundamental	notion	of	“trust”?	

MW:	The	web	added	an	interesting	new	wrinkle	to	the	problem	of	authorization.	In	the	olden	
days,	before	the	internet	was	very	popular,	 inside	a	computer	system,	you	were	always	doing	
business	with	users	who	you	knew.	You	knew	what	their	privileges	should	be.	You	knew	what	

https://en.wikipedia.org/wiki/On_the_Internet,_nobody_knows_you're_a_dog

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 9	 ©2017	Association	for	Computing	Machinery	

they	 should	 be	 allowed	 to	 do	 and	 not	 allowed	 to	 do.	 It	 was	 a	 closed	 system,	 no	 strangers	
allowed.		

The	web	changed	that	very	quickly.	All	of	a	sudden,	users	whom	you’d	never	heard	of	before	
were	coming	to	your	web	hosts	and	asking	for	services.	And	so	the	question	became:	How	do	
you	decide	whether	a	stranger	is	authorized	to	do	an	action	that	they	ask	to	do?	That	dynamic	
problem	didn’t	really	exist	before.		

The	web	was	our	first	enormous	open	system.	It	opened	up	some	interesting	new	directions	of	
research	 for	 authorization,	 including	 issues	 associated	 with	 privacy	 for	 the	 users	 who	 were	
asking	for	authorization.	The	move	to	open	systems	spawned	a	whole	new	kind	of	work	in	the	
community,	a	shift	from	a	focus	on	authentication—who	are	you—to	more	subtle	issues.		

	

RS:	What	is	your	sense	as	to	the	situation	today	with	regard	to	this	problem?	

MW:	Most	 popular	 systems	 today	 are	 relying	 on	 one	 authority	 that	 knows	 the	 user	 well	 to	
share	 information	 about	 that	 user	 with	 other	 places.	 Sometimes	 this	 sharing	 is	 benign,	 and	
sometimes	it	isn’t.	A	benign	example	is	Eduroam	[a	secure,	world-wide	roaming	access	service	
developed	for	the	international	research	and	education	community],	which	you	probably	have	
seen	when	 you	 visited	 other	 universities.	 If	 I’m	 not	mistaken,	 Eduroam	 is	 a	 Shibboleth-style	
system	that	exploits	the	fact	that	your	home	institution	knows	a	lot	of	your	attributes,	including	
the	 key	 fact	 that	 you	 are	 a	 member	 of	 their	 community.	 Your	 home	 institution	 uses	 its	
knowledge	 of	 your	 attributes	 to	 help	 other	 institutions	 decide	 whether	 you	 should	 be	
authorized	to	do	something	there.		

The	 Eduroam	 model	 is	 a	 good	 model.	 It	 doesn’t	 involve	 your	 home	 institution	 sharing	
everything	it	knows	about	you	with	other	places.	But	out	in	the	commercial	world,	you	see	a	lot	
of	requests	for	you	to	log	in	with	Facebook,	or	Google	Plus.	

	

RS:	Or	LinkedIn.	

MW:	That’s	not	nearly	so	benign	because	there’s	always	a	commercial	incentive	to	share	a	lot	
of	data	about	you	so	 that	advertising	can	be	 targeted	more	precisely	 to	your	exact	behavior.	
Asking	 you	 to	 log	 in	 with	 Facebook	 is	 a	 way	 to	 collect,	 in	 one	 logically	 centralized	 place,	
information	about	everything	you’ve	ever	done	on	the	internet	and	then	use	that	for	marketing	
purposes.	

www.eduroam.org
https://shibboleth.net

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 10	 ©2017	Association	for	Computing	Machinery	

RS:	How	 is	your	behavior	different	 from,	say,	your	daughter’s	because	of	your	security	and	
privacy	research?	

MW:	First,	 I	never,	ever	log	into	anywhere	with	Facebook	or	any	other	site.	 I	never	use	those	
kinds	of	setups.	Never.		

Second,	my	phone	has	almost	no	apps.	Every	app	you	put	on	your	phone	is	an	additional	attack	
surface,	 and	 your	 phone	 is	 as	 vulnerable	 as	 its	most	 vulnerable	 app.	 Apps	 can’t	 be	 properly	
vetted	for	security	vulnerabilities	in	the	App	Store.	There	aren’t	enough	people	to	do	that,	and	
the	automated	techniques	aren’t	quite	there	yet	to	do	it	in	a	very	thorough	way.	So	every	time	
you	add	an	app,	you’re	just	adding	another	potentially	open	door	for	someone	to	attack	your	
phone.	My	phone	has	very	few	apps.		

My	browser	has	almost	no	plugins	or	extensions.	Exact	same	story	there.	In	fact,	we	won	a	prize	
at	Usenix	Security	some	years	ago,	for	a	paper	about	tools	for	automatically	looking	for	security	
vulnerabilities	 in	browser	 add-ons.	 Every	 toolbar,	 every	plugin,	 and	every	 add-on	 you	put	on	
your	browser,	it	can’t	be	thoroughly	checked	for	vulnerabilities.	It’s	just	not	possible.	So	I	don’t	
use	them.		

	

RS:	What	does	a	normal	user	do?	Do	they	download	a	lot	of	apps	and	plugins?	

MW:	Oh,	absolutely,	totally,	yes.	That’s	totally	normal	behavior	to	have	a	phone	that’s	packed	
with	apps.	And	each	one	is	a	security	risk	and	also	a	privacy	risk,	because	a	lot	of	them	do	track	
various	sorts	of	behavior	of	yours.	To	me,	it’s	not	worth	it.	

	

RS:	So	have	you	impressed	upon	your	daughter	this	concern?	

MW:	Not	 so	much	 as	 I’ve	 just	mentioned	 that	 it	 exists,	 because	my	daughter	 is	 naturally	 an	
extremely	cautious	person.	And,	in	fact,	I	never	said	to	myself	that	I’m	not	going	to	put	these	
things	 on	 my	 computer	 and	 phone.	 But	 since	 I	 was	 part	 of	 a	 research	 project	 that	 was	
demonstrating	 how	 vulnerable	 these	 things	 actually	 are,	 I	 just	 naturally	 found	 myself	 not	
wanting	 to	 add	 them,	 unless	 they	 had	 a	 really	 high	 value	 for	 me	 personally,	 which	 is	
occasionally	the	case.	But	I	bet	my	daughter	doesn’t	have	nearly	as	many	apps	on	her	phone	as	
most	people	do,	just	from	comments	I’ve	made	at	home.	

	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 11	 ©2017	Association	for	Computing	Machinery	

RS:	 Is	 this	 a	 failure	 of	 our	 community	 (computer	 science	 researchers	 and	 practitioners)	 to	
protect	the	public,	given	that	we	develop	the	technology	of	plugins	and	apps	to	begin	with?	

MW:	 One	 of	 the	 reasons	 code	 has	 bugs	 is	 that	 developers	 are	 kind	 of	 optimists.	 They’re	
thinking	about	a	particular	use	case,	and	they’re	thinking	what	code	they	can	build	to	make	this	
use	 case	 work.	 They	 aren’t	 really	 thinking	 about	 all	 of	 these	 extraordinary,	 unusual	
circumstances	 that	 don’t	 match	 that	 use	 case	 and	 could	 cause	 the	 code	 to	 fail.	 And	 in	
particular,	developers	are	not	very	good	at	thinking	like	attackers.	Actually,	they’re	no	good	at	
that	at	all.	It’s	a	specialized	skill,	and	when	you’re	training	someone	to	be	a	security	researcher,	
the	first	thing	they	have	to	learn	is	to	think	like	an	attacker.	Attacking	is	all	about	not	following	
the	usual	use	case	and	looking	for	sneaky	little	openings	that	a	developer	probably	didn’t	think	
about.	For	an	attacker,	nothing	is	cheating.	

A	trivial	example	is	buffer	overflow.	Buffer	overflows	create	vulnerabilities	that	good	attackers	
can	 exploit.	 But	 as	 you	work	 to	 create	 a	 new	piece	 of	 functionality,	 how	often	 do	 you	 think	
about	the	fact	that	a	printf	statement	could	have	a	buffer	overflow?	Not	very	often.		

Maybe	 we	 have	 a	 social	 responsibility	 to	 train	 future	 software	 engineers	 and	 software	
designers	to	think	like	attackers,	so	they	can	design	and	build	systems	a	little	more	defensively.	
If	you	don’t	know	how	an	attacker	thinks,	it’s	very	hard	for	you	to	recognize	and	close	a	lot	of	
the	gaps	that	an	attacker	might	try	to	exploit.	So	maybe	we	have	a	social	responsibility	to	quash	
this	natural	optimism.	On	the	other	hand,	no	system	can	be	invulnerable	because	every	system	
has	bugs,	and	bugs	are	potential	avenues	for	attack.		

	

RS:	It’s	kind	of	a	frustrating	situation.	It	doesn’t	seem	like	there	are	easy	answers	anywhere	
here.		

MW:	I	agree.	No	easy	solutions.	

	

RS:	Let’s	talk	about	another	area	of	research,	one	you	started	right	after	your	doctorate,	that	
of	updating	logical	databases.	

MW:	My	background	was	in	databases,	but	I	found	myself	hanging	around	with	AI	people	who	
were	worried	about	 the	problem	of	how	to	update	a	description	of	 the	state	of	 the	world	 in	
response	to	new	information.		

	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 12	 ©2017	Association	for	Computing	Machinery	

RS:	What	would	be	a	simple	example?	

MW:	One	 classical,	 ancient	 example	 from	 the	 domain	 of	 non-monotonic	 and	 counterfactual	
reasoning	would	be	 if	 I	 told	 you,	 “Matilda	 is	my	 favorite	 bird.”	 If	 you	heard	 that,	 you	would	
probably	have	a	mental	model	of	a	wing-flapping,	beak-pecking,	egg-laying	creature.	But	then	if	
I	add	that	you	can	read	about	her	at	angrybirds.com,	then	you	would	revise	your	view	of	the	
world	 to	 reflect	 the	 fact	 that	Matilda	probably	actually	doesn’t	 fly.	 She	 is	probably	a	cartoon	
bird.	 Humans	 have	 no	 problem	 with	 absorbing	 new	 information	 that	 contradicts	 what	 they	
believed	before,	but	contradictions	make	a	mess	out	of	traditional	logical	reasoning.	

	

RS:	Here’s	some	new	information	about	my	world:	It	was	sunny	when	we	started	talking,	but	
now	it’s	raining	outside.		

MW:	 If	we	 imagine	 you	have	 a	 set	 of	 logic	 formulas	 that	 describes	 how	 the	world	 is,	 you’re	
going	to	revise	those	formulas	to	reflect	the	fact	that	it’s	now	raining	when	it	wasn’t	before.	But	
when	you	make	that	change,	you	don’t	want	to	change	the	completely	unrelated	parts	of	your	
beliefs	about	the	world.	For	example,	you	don’t	also	decide	your	spouse	has	taken	a	flight	to	
New	Guinea.		

Hence,	everything	else	should	more	or	less	remain	unchanged.	You	want	to	change	your	set	of	
beliefs	as	little	as	possible	to	accommodate	the	fact	that	it’s	now	raining.	Your	changes	would	
only	 include	 small	 things	 like	 there	 are	 going	 to	 be	 puddles	 and	 people	 might	 be	 using	
umbrellas.	Little	changes.	

When	 I	 first	 because	 aware	of	 this	 problem,	 people	were	 taking	 the	 exact	 formulas	 in	 these	
theories	 at	 face	 value	 and	 treating	 them	 as	 first-class	 objects.	 So	 for	 example,	 if	 your	 set	 of	
beliefs	had	included	the	formula	“It’s	not	raining	right	now	and	my	spouse	is	downstairs	making	
breakfast,”	the	approaches	to	revising	those	beliefs	that	people	were	looking	at	the	time	would	
treat	that	quite	differently	from	the	case	where	your	beliefs	included	the	two	formulas	“It’s	not	
raining	 right	 now”	 and	 “My	 spouse	 is	 downstairs	 making	 breakfast.”	 Even	 though,	 from	 a	
mathematical	 point	 of	 view,	 one	 formula	 or	 two	 simpler	 formulas	 are	 just	 different	
representations	of	the	same	information.		

I	realized	the	key	difficulty	was	that	the	way	people	had	proposed	to	revise	a	set	of	beliefs	was	
quite	dependent	on	the	way	those	beliefs	were	represented.	That	meant	their	revisions	would	
produce	very	different	results	depending	on	the	exact	formulas	used	to	represent	the	beliefs.	
That	 sensitivity	 was	 bad,	 because	 there	 are	 many	 equivalent	 ways	 to	 represent	 the	 same	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 13	 ©2017	Association	for	Computing	Machinery	

underlying	 reality.	 Putting	 it	 another	 way,	 the	 logic	 formulas	 used	 to	 represent	 beliefs	 had	
semantics,	i.e.,	an	underlying	(mathematical)	reality,	and	we	needed	to	define	what	it	meant	to	
change	 a	 set	 of	 beliefs	 with	 respect	 to	 the	 semantics,	 i.e.,	 the	 underlying	 reality,	 not	 with	
respect	to	the	specific	syntactic	representation	used	to	represent	that	reality.		

	

RS:	What	are	the	relevant	approaches	now	for	belief	maintenance?	

MW:	 Back	 in	 those	 days,	 people	 thought	 we	 were	 going	 to	 be	 able	 to	 conquer	 all	 sorts	 of	
reasoning	 problems	 in	 AI	 using	 mathematical	 logic.	 But	 it	 turned	 out	 to	 be	 really	 hard	 to	
represent	 the	 way	 humans	 think	 using	 logic.	 Statistical	 and	 probabilistic	 approaches	 have	
shown	a	lot	more	promise	in	a	lot	of	areas	and	have	become	the	dominant	paradigm	now	in	AI.	

But	to	the	extent	that	things	can	be	represented	 in	 logic,	 I’d	say	everybody	understands	now	
that	when	 you	want	 to	 revise	 a	 set	of	 beliefs	 to	be	 consistent	with	 a	new	observation,	 then	
those	 revisions	 must	 defined	 with	 respect	 to	 the	 set	 of	 possible	 worlds—realities—that	 are	
represented	by	your	formulas.		

At	 their	core,	 I	 think	probabilistic	and	statistical	approaches	are	consistent	with	a	 logic-based	
approach.	But	 the	key	 contribution	of	 the	newer	probabilistic	and	 statistical	 approaches	 is	 in	
how	 they	 assign	 probabilities	 to	 states	 of	 the	 world.	 And	 that’s	 really	 important.	 That	 was	
needed.	And	people	hadn’t	really	gone	in	that	direction	yet,	back	in	the	1980s.		

	

RS:	Is	there	a	connection	with	trust	in	this	regard?	

MW:	Not	 in	 the	 security	 sense	of	 the	word	 trust	 in	our	 conversation	earlier,	 though	 it’s	 true	
that	belief	and	trust	are	interrelated,	and	probability	is	relevant	for	both	of	them.	When	you’re	
trying	to	do	common	sense	reasoning,	you’re	not	really	very	worried	about	 the	corner	cases.	
You’re	just	trying	to	figure	out	what	the	most	likely	world	is	and	gracefully	handle	contradictory	
information	that	comes	 in.	Whereas	 in	security,	you	have	to	be	quite	concerned	about	 those	
low	 probability	 worlds	 because	 an	 attacker	 can	 take	 advantage	 of	 the	 loopholes	 in	 those	
situations	and	sneak	into	your	system.	So	it’s	almost	the	opposite.		

	

RS:	When	you	were	in	Singapore,	you	headed	a	large	project	on	differential	privacy.	Some	of	
our	readers	might	be	more	familiar	with	privacy-preserving	methods	such	as	“k-anonymity.”	
How	do	these	two	compare,	and	how	do	they	differ?	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 14	 ©2017	Association	for	Computing	Machinery	

MW:	K-anonymity	 is	 a	 feel-good	privacy	measure	 that	ordinary	humans	 can	understand:	The	
personally	identifiable	information	in	my	records	will	be	indistinguishable	from	that	of	k	other	
people.	But	 the	 reality	 is	measures	 like	 k-anonymity	don’t	 guarantee	anything	about	privacy.	
Researchers	kept	 identifying	holes	 in	k-anonymity	and	subsequent	proposed	approaches,	and	
proposing	ways	 to	 patch	 those	 holes,	without	 end.	 For	 example,	 here’s	 a	 nice	 little	 example	
(given	 below),	 I	 think	 originally	 from	 Vitaly	 Shmatikov,	 that’s	 k-anonymous,	 l-diverse,	 and	 t-
close,	but	you	can	still	figure	out	exactly	who	is	HIV	positive.	So	these	measures	don’t	give	you	
any	real	privacy	guarantees.		

			 	

On	the	other	hand,	k-anonymity	and	similar	measures	are	better	than	doing	nothing,	because	
they	 do	 raise	 the	 cost	 of	 a	 successful	 attack.	 The	 attacker	 does	 have	 to	 do	 some	 mental	
gymnastics	to	figure	out	which	person	a	record	is	about.		

Differential	privacy	is	different	in	the	sense	that	it	gives	a	firm	upper	bound	on	the	chance	that	
an	attacker	can	figure	out	whether	a	particular	 individual	 is	 included	in	the	data	set	or	not.	 It	
works	by	adding	noise	to	the	results	of	an	analysis.	The	fact	that	differential	privacy	gives	you	
specific	provable	numerical	guarantee	is	lovely.	But	it’s	not	a	cure-all	for	a	number	of	reasons.		

The	first	problem	has	to	do	with	accuracy.	When	you	add	noise	to	an	analysis	result	to	make	it	
differentially	private,	you	can	measure	how	much	accuracy	you	lose.	If	you	add	noise	using	the	
vanilla	method,	usually	you	 lose	so	much	accuracy	the	results	aren’t	useful	 for	their	 intended	
purpose.	And	that’s	why	there’s	so	much	research	on	this	topic.	If	you’re	very	clever,	you	may	
be	able	 to	come	up	with	a	new	method	of	making	analysis	 results	differentially	private	while	
preserving	a	lot	more	accuracy	than	the	vanilla	method	does.	And	that’s	great,	when	it	works.		

Another	 problem	 is	 differential	 privacy	 is	 easy	 to	 abuse	 when	 deployed	 in	 the	 field.	 For	
example,	there’s	this	notion	of	a	privacy	budget	for	the	dataset,	and	each	analysis	you	do	chips	
away	 at	 the	 budget.	 No	 one	 understands	 how	 to	 set	 the	 budget	 in	 the	 first	 place,	 i.e.,	 how	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 15	 ©2017	Association	for	Computing	Machinery	

much	privacy	is	enough.	And	when	the	day	arrives	that	you’ve	used	up	the	budget,	you	should	
stop	doing	new	analyses	of	the	dataset,	forever.	Do	you	think	people	will	have	the	discipline	to	
stop	 analyzing	 their	 data	when	 the	 budget	 runs	 out?	 Analyses	 of	 overlapping	 data	 owed	 by	
different	organizations	can	chip	away	invisibly	at	each	other’s	budgets.		

For	example,	maybe	you	want	to	produce	a	report	every	month	about	the	prevalence	of	HIV	on	
each	 block	 of	 your	 city.	De	 facto,	 the	 data	 sets	 for	 each	month	 overlap	 heavily.	 Every	 single	
month,	you’re	going	to	 leak	a	 little	bit	more	info,	you’re	going	to	use	up	a	 little	more	of	your	
budget.	Maybe	after	you’ve	done	this	for	five	years	the	budget	is	gone,	and	if	you	publish	one	
more	report,	the	privacy	guarantee	won’t	hold	anymore.		

Another	problem	 is	 differential	 privacy	only	 guarantees	 that	 it	will	 be	hard	 to	 tell	whether	 a	
particular	person	was	included	in	the	dataset,	and	that’s	not	always	the	information	that	needs	
to	 be	 kept	 private.	 As	 an	 extreme	 example,	 a	 differentially	 private	 analysis	 concludes	 99	
percent	of	 the	people	on	my	block	are	 currently	 infected	with	 the	Zika	 virus,	 then	 it	 doesn’t	
matter	whether	I	was	included	in	the	study	or	not.	Everybody	is	going	to	know	I	am	probably	
also	infected	with	the	Zika	virus,	so	my	blood	can	potentially	transmit	Zika	to	other	people	until	
my	 infection	 runs	 its	 course.	 Differential	 privacy	 can’t	 wave	 a	magic	wand	 and	 preserve	my	
privacy	here,	given	the	statistical	conclusions	that	came	out	of	the	study.		

Differential	privacy	 is	an	endless,	bottomless	pit	 for	 research	because	 for	every	single	kind	of	
analysis	 that	you	can	 imagine	anyone	doing	on	any	dataset,	maybe	 if	 you	are	clever	enough,	
you	can	come	up	with	a	way	 to	preserve	enough	accuracy	 for	differentially	private	 results	 to	
still	be	accurate	enough	to	be	useful.		

Our	 research	 project	 focused	 on	 differential	 privacy	 for	 biomedical	 data.	 If	 I	 summarize	 the	
entire	 project,	 I	 would	 say	 differential	 privacy	 is	 great	 when	 it	 works,	 that	 is,	 when	we	 can	
preserve	enough	accuracy	for	the	analysis	results	to	still	be	useful	for	their	intended	purpose.	
But	 right	 now,	many	 analyses	 you	want	 to	 do	 couldn’t	 be	 accurate	 enough	with	 differential	
privacy,	or	you	would	run	into	problems	because	you	need	to	do	the	analysis	repeatedly	over	
the	 same	 individuals.	 So,	 in	 sum,	when	 it	works,	 it’s	wonderful,	 and	 the	 rest	of	 the	 time,	 it’s	
useless	except	as	a	good	research	problem.	

	

RS:	 You	mentioned	 it	might	 be	 possible	 to	 come	up	with	 a	method	where	 you	 could	 do	 a	
monthly	 report	 pretty	 much	 forever	 and	 not	 use	 up	 your	 budget.	 Are	 there	 any	 negative	
results	 in	 this	 area	of	 analysis,	 accuracy	 versus	differential	 privacy	 that	 say	 that	 something	
cannot	be	done?	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 16	 ©2017	Association	for	Computing	Machinery	

MW:	There	are	 some	negative	 results,	 yes,	 and	 some	beliefs	 in	 the	 theory	 community	about	
what	 is	 not	 possible.	 There’s	 also	 been	 a	 fair	 bit	 of	 wishful	 thinking	 about	 what	 differential	
privacy	can	do,	much	of	which	was	summarized	in	a	nice	2011	paper	called	“No	Free	Lunch	in	
Data	Privacy”	by	Daniel	Kifer	and	Ashwin	Machanavajjhala.		

We	actually	hit	up	against	one	of	the	theoreticians’	beliefs	in	our	project.	Suppose	you	wanted	
to	make	a	dataset	differentially	private.	That’s	not	something	people	normally	do,	because	you	
lose	so	much	accuracy.	 Instead,	 they	 just	make	the	result	of	an	analysis	differentially	private.	
But	suppose	you	wanted	to	make	a	dataset	differentially	private.	We	thought	we	could	retain	
more	 accuracy	 if	 we	 first	 compressed	 the	 data	 using	 compressive	 sensing,	 which	 retains	 its	
essential	features,	and	then	added	noise	to	it.	We	were	right	about	the	improved	accuracy,	by	a	
significant	factor,	and	theoreticians	got	excited	about	that.	But	you	still	lose	so	much	accuracy	
that	our	technique	isn’t	practical.		

	

RS:	In	your	intuition,	do	you	think	this	is	going	to	be	like	other	parts	of	the	security	arms	race?	
Or	 do	 you	 think	 there	 is	 a	 possibility	 that	 some	magic	 thing	 like	 public	 key	 cryptography,	
which	seems	to	do	a	lot	of	things	right,	will	emerge?	

MW:	Even	public	key	crypto	is	an	arms	race,	at	a	minimum	in	terms	of	key	length.	As	computers	
get	more	 and	more	 powerful,	we	 can	 break	 things	 that	were	 encrypted	 long	 ago	with	 short	
keys.	So	there	is	an	arms	race	even	there.	It’s	just	a	slow	motion	arms	race	because	it’s	based	
on	how	 fast	 computers	 get	 faster.	 So	 could	 there	be	 some	magic	 secret	 sauce	 in	differential	
privacy?	I	think	there	could	be.	But	don’t	ask	me	what	the	secret	sauce	is.	I	would	love	to	know.	

	

RS:	What	kind	of	training	should	someone	have	to	work	on	differential	privacy?	

MW:	First,	you	really	need	to	understand	probability	and	statistics.	Second,	differential	privacy	
is	very	technically	challenging.	It’s	easy	to	come	up	with	what	you	think	are	clever	ways	to	make	
your	analysis	more	accurate	but	still	differentially	private,	while	in	fact	you	made	a	mistake,	and	
the	results	are	no	longer	differentially	private.	

	A	 few	 years	 back,	 when	 a	 lot	 of	 differential	 privacy	 papers	 started	 to	 be	 submitted	 to	
conferences,	our	team	was	asked	to	review	a	lot	of	them.	Most	of	these	papers	had	technical	
errors	in	them,	fundamental	flaws,	and	that’s	not	what	you	normally	find	with	submissions	to	
major	conferences.	We	saw	very	smart	people	who	are	well	known	in	other	areas	make	fatal	
errors	when	they	were	new	to	differential	privacy.	One	good	way	to	avoid	that	is	to	collaborate	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 17	 ©2017	Association	for	Computing	Machinery	

with	someone	who	has	already	worked	 in	differential	privacy,	who	has	a	trained	eye	and	can	
tell	 you	 cheated	 when	 you	 did	 this	 or	 that,	 and	 you	 don’t	 meet	 the	 guarantee	 of	 privacy	
anymore.	Xiaokui	Xiao	filled	that	guru	role	in	our	project.		

If	you	want	to	use	other	people’s	published	results	in	differential	privacy,	then	you	need	to	be	
extremely	careful!	The	area	is	so	technically	challenging	you	should	not	assume	that	published	
techniques	are	correct,	even	in	top-tier	conferences,	even	for	papers	with	well-known	authors	
from	other	areas	of	research.	I	am	sorry	to	say	as	of	2016,	incorrect	papers	are	still	appearing	in	
top	venues.	There	aren’t	enough	referees	yet	with	a	trained	eye	for	this	tricky	topic.	

	

RS:	Does	one	need	domain	knowledge	like	bioinformatics	for	this?	Or	is	it	mainly	the	statistics	
and	probability?	

MW:	As	a	referee,	you	just	need	an	excellent	grasp	of	the	relevant	statistics,	and	what	to	watch	
out	 for	 in	 terms	of	 violations	 of	 the	differential	 privacy	 guarantee.	As	 a	 researcher,	 if	 you’re	
theoretically	inclined,	then	the	same	is	true	because	you’re	trying	to	come	up	with	results	that	
aren’t	 specific	 to	 any	 particular	 domain.	 But	 in	 our	 project,	we	were	 focusing	 on	 biomedical	
data,	so	we	also	needed	to	work	with	a	biostatistician	who	knew	what	types	of	analyses	were	
the	most	 important	 in	that	area,	where	privacy	was	most	needed,	and	what	 level	of	accuracy	
was	needed.	They	were	mostly	 interested	in	various	types	of	regression,	and	in	genome-wide	
association	surveys.	

In	 genomic	 research,	 their	 goal	 was	 to	 be	 able	 to	 share	 analysis	 results	 openly	 and	 freely	
without	 having	 to	 go	 through	 an	 IRB	 [institutional	 review	 board]	 process	 to	 address	 privacy	
concerns.	 They	 wanted	 to	 accelerate	 research	 in	 genomic	 and	 other	 types	 of	 biomedical	
research	by	not	having	to	worry	about	privacy	issues	in	the	analysis	results.	They	wanted	to	be	
able	to	publish	their	results	on	the	web	and	not	worry.		

	

RS:	This	sounds,	in	part,	more	like	statistics	research	than	computer	science	research.	

MW:	It’s	very	statistical,	as	are	some	kinds	of	data	mining.	But	the	kind	of	clever	tricks	you	need	
to	come	up	with	to	retain	accuracy,	that’s	kind	of	a	puzzle	solving,	traditional	computer	science	
type	of	problem.	We	computer	scientists	are	good	at	solving	puzzles.		

	

RS:	So	a	variety	of	skills	are	needed	in	this.	And	it’s	a	really	important	problem.	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 18	 ©2017	Association	for	Computing	Machinery	

MW:	A	good	non-biomedical	example	of	its	importance	is	census	records.	Census	data	products	
are	very	 important	for	the	economy.	Lots	of	businesses	buy	them	and	use	them	to	figure	out	
what	 they	 should	 be	 selling	 where.	 It’s	 been	 known	 for	 a	 very	 long	 time	 that	 these	 data	
products	 leak	 private	 information.	 The	 Census	 Bureau	 realized	 they	 might	 be	 able	 to	 make	
some	of	their	data	products,	 in	other	words,	the	results	of	analyses,	differentially	private	and	
then	 sell	 them	without	having	 to	 feel	 bad	about	 the	 fact	 that	 they	were	 leaking	 information	
about	some	individuals.	Now	they	sponsor	research	in	this	area.	For	example,	they	sponsored	
an	 early	 project	 by	 Johannes	Gehrke	 and	 his	 colleagues	 on	making	 the	 analysis	 of	 commute	
data	 in	 Boston	differentially	 private,	 so	 the	 data	 product	wouldn’t	 leak	 so	much	 information	
about	where	individuals	worked	and	lived.	

	

RS:	It	strikes	me	that	the	original	use	of	punch	cards	was	in	the	census	of	1890,	and	we’re	still	
having	data	issues	with	the	census	130	years	later.	

MW:	Yeah,	it’s	tough.	

	

RS:	But,	 obviously,	 important.	 The	 census	was	 societally	 important	 even	back	 then.	 You’ve	
got	 another	 big	 research	 area	 in	 scientific	 data	 management.	 What	 role,	 if	 any,	 did	 the	
presence	of	the	National	Center	for	Supercomputing	Application	(NCSA)—which	is,	of	course,	
at	the	University	of	Illinois—play	in	your	getting	into	this	topic?	

MW:	 There’s	 so	 much	 use	 of	 parallel	 computing	 at	 Illinois	 that	 I’ve	 come	 to	 believe	 any	
computer	 scientist	 who	 is	 there	 long	 enough	will	 eventually	 do	 or	 be	 influenced	 by	 parallel	
computing.	 Throughout	 the	 College	 of	 Engineering,	 so	 many	 scientists	 and	 engineers	 use	
parallel	computing	to	do	enormous	simulations:	the	weather,	or	the	Big	Bang,	or	fluid	flow	in	a	
rocket,	or	whatever	interests	them.	Parallel	computing	is	a	very	common	tool	on	our	campus.	
The	most	recent	project	I	did	in	this	area	was	tons	of	fun,	a	data	science	project	about	I/O	usage	
on	supercomputers.		

In	supercomputer	design,	I/O	is	the	poor	second	cousin	to	computation,	because	the	designers	
focus	on	getting	as	much	computing	power	as	possible.	There’s	also	a	frustrating	gap	between	
the	advertised	peak	performance	of	 the	 I/O	 system	and	what	people	actually	 get	when	 they	
write	out	files	from	an	application.	To	help	figure	out	what	was	going	on,	we	had	a	data	science	
project	 that	 analyzed	 and	 visualized	 the	 data	 collected	 by	 Darshan,	 a	 very	 lightweight	 I/O	
monitoring	 application	 from	Argonne	National	 Laboratory,	which	 runs	on	a	number	of	major	

http://www.mcs.anl.gov/research/projects/darshan/

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 19	 ©2017	Association	for	Computing	Machinery	

supercomputer	installations.	The	main	focus	in	the	project	was	on	figuring	out	what,	out	of	all	
of	 this	 logged	 data,	 was	meaningful	 to	 show	 to	 people,	 how	 to	 characterize	 it,	 and	 how	 to	
visualize	it	for	them	so	they	could	just	look	at	a	graph	and	understand	what	was	going	on	with	
their	application	or	their	job	or	their	platform.	That	required	a	lot	of	domain	knowledge,	which,	
fortunately,	we	already	had.	

We	were	shocked	by	the	results.	For	example,	we	found	most	jobs	using	POSIX	or	MPI-IO	got	
less	 I/O	 bandwidth	 than	 you’d	 get	 with	 four	 modern	 USB	 flash	 drives.	 The	 users	 are	 on	 a	
supercomputer,	and	they’re	getting	four	thumb	drives	of	I/O	bandwidth!	It	was	just	ridiculous.		

	 	

RS:	 Where	 is	 all	 of	 that	 bandwidth	 being	 lost?	 I	 mean,	 the	 hardware	 has,	 as	 you	 say,	
tremendous	 I/O	 bandwidth.	 You’re	 not	 getting	 it	 at	 the	 end	 of	 the	 application.	 Is	 it	 the	
operating	system?	Is	it	the	API?	Where	was	the	bottleneck?	

MW:	The	bandwidth	 is	 lost	 all	 along	 the	 line.	Anywhere	 you	 can	 imagine	 it	 being	 lost,	 some	
application	is	losing	it	there.	The	funniest	example:	You’d	be	amazed	how	many	supercomputer	
users	out	there	were	writing	out	their	data	with	fprintf	statements,	which	is	about	as	slow	as	
you	can	get.	We	found	a	quarter	of	the	jobs	on	a	major	platform	were	completely	bypassing	the	
I/O	 facilities	 intended	 for	 them,	 and	 were	 instead	 using	 functions	 like	 fprintf	 and	 fscanf.	 Of	
course	those	users	were	getting	abysmal	performance.	 It	was	shocking	because	nobody	knew	
they	were	doing	this.	That’s	the	glory	of	a	data	science	project	like	that,	you	can	discover	what	
you	never	even	 imagined	was	going	on.	 In	our	case,	 that	 included	users	who	were	not	 really	
prepared	to	run	on	a	supercomputer	and	didn’t	understand	that	that’s	not	the	right	way	to	do	
I/O.	 It’s	 fantastic	you	can	use	data	 science	 techniques	 to	pick	out	applications	 that	are	doing	
their	I/O	in	a	very	naive	way,	and	then	suggest	to	their	developers	they	attend	I/O	boot	camp.	
When	 the	 camp	 instructors	 explain	 how	 to	 get	 good	 I/O	performance,	 the	 users	 see	 it’s	 not	
really	 harder	 than	 using	 fprintf	 statements.	 The	 developers	 are	 happier,	 the	 system	
administrators	are	happier,	everyone	benefits.	

I	came	 into	the	project	with	a	 lot	of	preconceived	 ideas	about	what	the	 focus	of	 research	on	
parallel	 I/O	 should	be.	Those	myths	got	busted	pretty	quickly.	 Instead	of	 focusing	on	how	 to	
make	the	peak	I/O	performance	even	higher,	we	need	to	be	thinking	about	how	to	ensure	that	
everyone	reaches	a	certain	minimum	 level	of	performance.	 If	every	 job	got	 the	equivalent	of	
four	USB	flash	drives	of	throughput	(1	GB/sec),	then	an	enormous	amount	of	system	resources	
would	be	freed	up.	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 20	 ©2017	Association	for	Computing	Machinery	

Another	 preconceived	 idea	 of	 mine	 that	 got	 busted	 was	 my	 beliefs	 about	 how	 parallel	 I/O	
should	 be	 performed.	 There	 are	 three	 major	 paradigms	 for	 parallel	 I/O,	 and	 we	 discovered	
none	 of	 them	 guarantee	 good	 I/O	 throughput.	 Perhaps	 more	 surprising,	 none	 of	 them	
guarantee	bad	 I/O	 throughput	 either	 (fprintf	 doesn’t	 count	 as	 a	 paradigm).	 For	 example,	we	
saw	many	jobs	that	wrote	out	millions	of	files.	Millions,	just	for	one	single	job,	if	you	can	believe	
that.	And	users	 typically	 run	 their	 applications	over	and	over	again,	with	each	and	every	 run	
generating	millions	of	 files.	We	thought	 this	 is	 just	so	bone-headed!	But,	 in	 fact,	 some	of	 the	
users	who	did	that	got	great	throughput.	More	generally,	we	found	for	every	major	paradigm	
for	 parallel	 I/O,	 the	 devil	 is	 in	 the	 details.	 You	might	 get	 really	 good	 I/O	 throughput	 or	 not,	
depending	on	how	you	tune	 it.	 It’s	kind	of	unfortunate	because,	 for	example,	 if	you	move	to	
another	platform,	 it’s	unlikely	your	 I/O	will	work	at	the	same	throughput	as	on	your	previous	
platform.	It’s	probably	going	to	need	to	be	retuned.		

Our	 results	 were	 very	 warmly	 received	 by	 the	 parallel	 computing	 community.	 My	 graduate	
student	who	did	the	project	enjoyed	it	so	much	she	changed	from	being	a	parallel	computing	
person	to	a	data	science	person—a	convert!	 	 It’s	rare	for	a	researcher	to	have	clients	eagerly	
awaiting	her	 results.	 The	project	was	enormous	 fun	 and,	 I	 hope,	 eye	opening	 for	 the	people	
who	design	supercomputers	as	well	as	the	people	who	administer	and	use	them.		

	

RS:	I	can	see	you	as	the	host	of	a	Myth	Busters	TV	show.	

MW:	I	never	thought	of	that,	but	it’s	true	that	by	applying	data	science	to	log	data,	you	can	bust	
a	lot	of	myths	by	discovering	what’s	actually	happening	as	opposed	to	what	everybody	thought	
was	happening.	

	

RS:	Yeah.	I	think	it	would	be	a	fun	show,	too.	Look	at	this	fprintf:	aha!	

Getting	on	the	data	side	as	contrasted	with	the	I/O	side,	you’ve	written	several	papers	about	
multidimensional	array	storage	and	access	within	scientific	computations.	 In	your	view,	are	
issues	with	 such	arrays	now	pretty	well	understood?	Or	are	we	 still	 in	 the	Wild	West	with	
respect	to	multidimensional	array	storage	and	access?	

MW:	Same	thing	as	above:	you	can	do	it	well,	or	you	can	do	it	horribly.	

	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 21	 ©2017	Association	for	Computing	Machinery	

RS:	Where	else	 in	 supercomputing	scientific	data	management	are	we	 in	 the	Wild	West,	 in	
your	experience,	if	any?	

MW:	In	some	parts	of	computer	science,	you	have	to	develop	a	certain	mindset	to	be	able	to	do	
the	work.	One	of	those	is	security.	You	have	to	be	able	to	think	like	an	attacker,	which	is	a	skill	
we	talked	about	before,	one	that	you	have	to	actually	acquire	because	it’s	not	natural	for	most	
system-builders.	As	an	engineer,	we	want	to	build	things	up.	We	don’t	want	to	figure	out	how	
to	pull	one	 little	pin	and	have	the	whole	thing	come	tumbling	down.	So	you	have	to	develop	
that	 attacker	mindset.	 And	 in	 parallel	 computing,	 you	 have	 to	 develop	 a	 parallel	 computing	
mindset,	which	really	is	very	different	from	sequential	computing.		

This	is	a	problem	because	if	you’ve	got	a	fantastic	sequential	code	and	you	want	to	run	it	on	an	
enormous	dataset	or	over	some	huge	span	of	simulated	time,	like	a	fine-grained	simulation	of	
the	entire	evolution	of	the	universe,	then	you	have	to	learn	quite	a	bit	about	parallel	computing	
to	 turn	 your	 sequential	 application	 into	 a	 parallel	 one.	 And	 it’s	 a	 little	 bit	 of	 a	 Wild	 West,	
because	you	can’t	 just	wave	a	wand	and	 figure	out	how	 to	make	 that	application	 run	 fast	 in	
parallel.		

That	means	it’s	not	like	the	database	world,	where	we	were	pretty	good	at	figuring	out	how	to	
make	 stuff	 run	 in	 parallel	when	we	needed	 to,	whether	 it	was	 parallel	 versions	 of	 relational	
databases	 or	map	 reduce.	 Parallel	 computing	 for	 scientific	 problems	 isn’t	 like	 that.	 It’s	 not	 a	
black	 art,	 but	 it’s	 an	 art	 form.	 So	 I	 wouldn’t	 exactly	 call	 it	 the	Wild	West,	 but	 it’s	 definitely	
untamed.		

	

RS:	 If	 scientific	 data	 management	 is	 challenging,	 and	 security	 and	 in	 particular	 trust	
management	 is	 challenging,	 and	 both	 of	 them	 require	 their	 own	mindsets,	 what	 happens	
when	you	bring	 them	 together?	 I’m	 thinking	 about	 your	paper	on	negotiating	 trust	 on	 the	
grid	you	wrote	back	in	2005.	Is	the	combination	even	harder?	

MW:	Not	 really,	 because	 security	 is	 fairly	 orthogonal	 to	 parallelism	 in	 scientific	 computing,	
thank	heavens.	They’re	at	different	granularities,	the	job	level	versus	what	happens	inside	the	
job.	So	when	you	combine	them,	the	problem	doesn’t	really	get	worse.	What	made	security	get	
harder	 was	 when	 we	 went	 to	 a	 distributed	 open	 system	 like	 the	 web,	 and	 started	 doing	
business	with	 individuals	we	 didn’t	 really	 know.	 But	making	 it	 parallel	 doesn’t	 really	make	 it	
harder.		

	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 22	 ©2017	Association	for	Computing	Machinery	

RS:	Okay.	So	that’s	more	a	security	problem	than	a	parallel	problem.	

MW:	They’re	orthogonal,	yeah.	

	

RS:	Well,	that’s	a	ray	of	hope	there	then.		

MW:	But	wait!	Supercomputers	have	always	been	very	attractive	targets	for	attack.	

	

RS:	Oh,	no…	

MW:	Always.	Maybe	 in	 the	olden	days,	 the	 goal	was	 to	brag	 that	 you	broke	 into	one	of	 the	
world’s	fastest	computers.	But	now,	they’re	attractive	for	a	different	reason.	The	attackers	run	
jobs	to	try	to	forge	bitcoins.		

	

RS:	 I	 thought	 the	 supercomputers	were	all	 behind	 these	big,	 locked	doors,	 and	you	had	 to	
have	a	special	physical	key	to	even	get	in	the	room.	

MW:	Nope.	 They’re	 shared	because	 they’re	 national	 or	 at	 least	 organization-wide	 resources.	
People	need	to	be	able	to	access	them	remotely	from	the	other	side	of	the	world	or,	at	least,	
the	 other	 side	 of	 the	 country.	 That	 means	 if	 I’m	 using	 a	 supercomputer	 in	 San	 Diego,	 and	
someone	compromises	my	account	back	in	Illinois,	then	they	may	be	able	to	log	in	as	me	and	
use	my	 time	allocation	on	 that	computer.	So	at	 supercomputing	sites,	 the	administrators	are	
always	watching	for	strange	activity.	Having	the	same	user	 logged	in	at	two	different	physical	
locations	is	a	great	example.	When	they	see	something	like	that,	the	administrators	call	you	up	
and	ask	you	what’s	going	on.		

	

RS:	Thank	you	so	much	for	your	time.		

MW:	It	was	my	pleasure.		

	

This	interview	has	been	condensed	and	edited	for	clarity.	

Ubiquity,	an	ACM	publication	
	 July	2017	
	 	
	

	 	
	

http://ubiquity.acm.org	 23	 ©2017	Association	for	Computing	Machinery	

	
Biographies	

Richard	 Snodgrass	 is	 a	 member	 of	 the	 Ubiquity	 Editorial	 Board.	 He	 is	 also	 a	 Professor	 of	
Computer	Science	at	 the	University	of	Arizona,	working	 in	 the	areas	of	ergalics	and	 temporal	
databases.	

	

Since	1987,	Marianne	Winslett	has	been	a	professor	in	the	Department	of	Computer	Science	at	
the	 University	 of	 Illinois	 at	 Urbana-Champaign,	 where	 she	 founded	 the	 DAIS	 (Data	 and	
Information	 Systems)	 research	 group.	 After	 four	 years	 as	 the	 director	 of	 Illinois's	 research	
center	in	Singapore,	the	Advanced	Digital	Sciences	Center,	she	returned	to	the	U.S.	in	2013.	She	
is	 an	 ACM	 Fellow	 and	 the	 recipient	 of	 an	 ACM	 SIGMOD	 Contributions	 Award,	 as	 well	 as	 a	
Presidential	Young	Investigator	Award	from	the	U.S.	National	Science	Foundation.	Her	research	
specialties	 include	 information	security	and	management	of	 scientific	data.	She	holds	a	Ph.D.	
from	Stanford	University.	Winslett	is	the	former	vice-chair	of	ACM	SIGMOD	and	the	co-editor-
in-chief	 of	 ACM	 Transactions	 on	 the	 Web,	 and	 has	 served	 on	 the	 editorial	 boards	 of	 ACM	
Transactions	 on	 Database	 Systems,	 IEEE	 Transactions	 on	 Knowledge	 and	 Data	 Engineering,	
ACM	Transactions	on	Information	and	Systems	Security,	the	Very	Large	Data	Bases	Journal,	and	
ACM	 Transactions	 on	 the	 Web.	 She	 has	 received	 two	 best	 paper	 awards	 for	 research	 on	
managing	 regulatory	 compliance	 data	 (VLDB,	 SSS),	 one	 best	 paper	 award	 for	 research	 on	
analyzing	browser	extensions	 to	detect	 security	vulnerabilities	 (USENIX	Security),	 and	one	 for	
keyword	search	(ICDE).		

	

DOI:	10.1145/3105917	

