Adding Temporal Constraints to XML Schema

Faiz A. Currim, Sabah A. Currim, Member, IEEE, Curtis E. Dyreson,
Richard T. Snodgrass, Senior Member, IEEE, Stephen W. Thomas, Member, IEEE, and Rui Zhang

Abstract—If past versions of XML documents are retained, what of the various integrity constraints defined in XML Schema on those
documents? This paper describes how to interpret such constraints as sequenced constraints, applicable at each point in time. We
also consider how to add new variants that apply across time, so-called non-sequenced constraints. Our approach supports temporal
documents that vary over both valid and transaction time, whose schema can vary over transaction time. We do this by replacing the
schema with a (possibly time-varying) temporal schema and replacing the document with a temporal document, both of which are
upward compatible with conventional XML and with conventional tools like XMLL INT, which we have extended to support the temporal
constraints introduced here.

Index Terms—cardinality constraint, key constraint, referential integrity, temporal data, XML validation, XML Schema constraint.

O

1 INTRODUCTION

s with prose documents, spreadsheets, presentations, and attributesl D and enmai | . An <order> is a sub-
data in a database, XML documents also are changelément of<suppl i er >. Note that the schema includes car-
over time. Also, as with these other kinds of documents aéhality constraints (e.g.s<m nCccur s>, <maxQccur s>),
as with data in a database, users often would like to retainuniqueness constrainkyni que>), and a referential in-
past versions of XML documents, for several reasons. Onegrity constraint, linking ar<or der > product number to a
those past versions may contain useful historical infoionat <pr oduct > element.

Secondly, various laws such as the Sarbanes-Oxley Act [llthe user creates an initial XML document conforming to the
require that for data that appear in financial reports drawighema (Listing 2) on 2010-01-01. Together, these doctsnent
from prior versions, that those versions be retained forfgim a conventional system which can be validated with
stated period of time. Third, retaining past versions ailowonyentional validation tools (e.g., XMUNT [3]).

prewo_usly written reports using that data to remain mt’ So far, the extensive infrastructure around XML applies Th
even if new versions are subsequently added. With XML . .

. o .~ "user has defined a schema and a document, and has validated
becoming more prevalent as both a transmission encoding

a document encoding format, it thus becomes important 0at document against the schema, and all is right in thedworl

retain prior versions of an XML document. And indeed, a On 2010-03-17, the user corrects #weai | attribute in the
rich literature on this subject has emerged [2]. conventional document to produce a new version stored in a

Given the existence of such prior versions, one then cBRW file (Listing 3). Subsequently, on 2010-10-01, a change i
ask, what of the various integrity constraints defined ort th@mail formats leads to another change in the email (Listing 4
document? How can such constraints be generalized to ap-ﬁﬁﬁ‘ user can validate these documents against the schema.
not just to the current version, but across the entire hisér In particular, it is reasonable to assume that the user disten
the XML document? And how can new, explicitly temporaihe constraints specified in the schema to apply at each point
constraints be defined? Finally, how can all this be manag#dtime, i.e.,data. xm , data. 2. xm , anddat a. 3. xm
effectively over schema changes, which are a fact of life fRust independently satisfy the stated integrity constsain
complex enterprises? We note a couple of difficulties that now arise. First, the

As a motivating example, consider a simple scenario irser must manually keep track of the relationships between t
which a user specifies a conventional schema (Listing 1). Thersions of the document. Nowhere does it say explicitly tha
root of this schema is theconpany> entity. Under that, data. 2. xnl is in any way related to documedat a. xni .
there are<enps>, <pr oduct s> and<suppl i ers>. The Second, we have to now rely on the underlying file system
<enp> element has the sub-elemertsane> and <SSN>, to keep track of the dates. If we comyata.xnml to a
new directory, that date will be lost. Third, while we can
e F A. Currim is with the Department of MIS, University of Anim, Tucson, - validate each version separately agagwmtrpany. xsd, there
éZ'ABE(‘ZZl: E-mailcurri m@mi | . ari zona. edu is no way in conventional XML Schema to express constraints

. A. Currim is with UITS, University of Arizona. . . .
C. E. Dyreson is with the Department of Computer Scienceh (@mte acrossmultiple versions. As one example we will return to
University. later, we cannot state that a product number should never be

R. T. Snodgrass and R. Zhang are with the Department of Cemputeseq |ater with a different product. Finally, if trsehema
Science, University of Arizona.) !

e S. W. Thomas is with the School of Computing, Queen’s Uityers iS also time-varying, that is, if there are multiple versiaof
Canada. conmpany. xsd, our job of maintaining the integrity of the

document becomes even more challenging.

Our design of an upward-compatible extension of XMlin Section 3. In short, a singléemporal documen{with
Schema,7XSchema [4] addresses the first two concerrisnestamps at various locations specified by the user) cepla
emphasized in the previous paragraptXSchemasupports an entire sequence of versions and a sirigtaporal schema
temporal documents that vary over both valid and transacticeplaces a sequence of versions of conventional schemas.
time [5], [6], [7], whose schema can vary over transactioBection 4 summarizes the syntax and semantics of those
time [8], and for which validation is a simple process (to theonstraints that can be defined within conventional XML
user) of checking a time-varying document over a schemdchema, while Section 5 provides the necessary background
which itself is a time-varying document [9], [10]. Relatedn to understanding their temporal extensions. Section 6Gigesv
has formalized language primitives required for managirige core contribution of this paper: a detailed examinatibn
schema versioning witkhXSchema [11]. how each kind of constraint in turn can be supported and

The challenge addressed by the present paper is howewended to apply to time-varying data. We then examine
accommodate both conventional XML integrity constraintshe implications of schema versioning (including changimg
including the identity, referential, cardinality, and a@fpe constraints themselves!) and the expressivenesX8thema.
constraints illustrated in Listing 1, as well as négmporal We end with implementation details and an evaluation of our
constraints, across such time-varying schema and data dagproach (Section 9).
uments. (This schema is very simple, but is sufficient
illustrating both how conventional constraints are applie

Q‘?xm version="1.0" encodi ng="UTF-8"?>
<conpany xm ns="http://txschema. coni>

1 H . <errps>
time-varying dqcuments and how new temporal constraims ca <enp 1D="1" email =" di ana@xschema. cont >
be usefully defined.) <name>Dana</ name>
</ enp>
<?xm version="1.0"?> </ enps>

<xs:schema xn ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" </ conpany>

target Nanmespace="http://txschema. cont
xm ns="http://txschema. cont el enent For nDef aul t="qual i fied">

<xs: el ement nane="conpany">
<xs: conpl exType>

Listing 2. dat a. xm

<?xm version="1.0" encodi ng="UTF-8"?>

<xs: sequence>
<xs: el enent ref="enps"/>
<xs: el enent ref="suppliers"/>
<xs:el ement ref="products"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >

<conpany xm ns="http://txschena. cont>
<enps>
<enp | D="1" email ="dana@ xschena. cont >
<nane>Dana</ nane>
</ enp>
</ enps>

</ conpany>

Listing 3. dat a. 2. xm

<xs: el enent name="enps">
<xs: conpl exType>
<xs: el ement nane="enp" naxOccurs="unbounded">
<xs: conpl exType>
<xs:sequence>
<xs:el ement nane="nane" type="xs:string"/>
<xs:el ement nane="SSN' type="xs:string" m nQccurs="0"/3

<?xm version="1.0" encodi ng="UTF-8"?>
<conpany xm ns="http://txschema. coni>

</ xs: sequence> <enps>
<xs:attribute name="1D' type="xs:string"/> <enmp | D="1" emuil ="ddoe@ xschemna. cont >
<xs:attribute name="emmil" type="xs:string" <name>Dana</ nanme>
use="optional "/ > </ enp>
</ xs: conpl exType> </ enps>

</ conpany>

Listing 4. dat a. 3. xm

</ xs: el enment >
</ xs: conpl exType>
<xs: key name="enpl oyeel DKey" >
<xs:sel ector xpath="enp"/>
</ xs: key>
<xXs:uni que nanme=' errpEnai | Uni que” >
<xs: sel ector xpath=' enp"/ > <xs:field xpath="@mil"/>
</ xs: uni que> .
</ xs: el ement >
<xs:el ement nane="
<xs: conpl exType>
<xs:sequence>
<xs:el ement nane="supplier" mnCccurs="1"
maxQccur s="unbounded" >
<xs: el enent name="URL" type="xs:anyURl"
m nQccurs="0" maxCOccurs="4"/>
<xs: el ement nane="order" nm nCccurs="0"
maxQccur s="unbounded" >
<xs: keyref nane="or der ProductRI "
<xs:sel ector xpath="order"/>
<xs:field xpath= "ordPr oduct No"/ >
</ xs: keyr ef >
</ xs: el enent >
</ xs: el ement >
</ xs: el enent >
</ xs: schema>

<xs:field xpath="@D'/ >

2 RELATED WORK

Capturing the time-varying nature of web-resident data has
been actively researched over the last few years. This area
of research has covered a wide range of issues that include
architectures to represent changes [12] and collect docume
versions [13], strategies for storing versions [14], arrdtst

gies to retrieve temporal data that is stored as XML [12]],[15
[16]. However, enforcing temporal constraints in XML hag no
been researched previously.

We focus on effectively validating a document while en-
forcing temporal constraints. Within a document, one may
specify a variety of constraints. At the schema level, wetwan
to specify which parts can vary with time and consider how

suppliers">

ref er="product Key" >

schema changes impact our ability to capture time and vtalida

the document. On the instance level, we want to constrain
After examining related work briefly, we give a quickhow the parts vary, which requires new variants of uniqugnes

overview of the goals of XSchema and outline its approachreferential integrity, cardinality and datatype consttsui

Listing 1. conpany. xsd

Most of the topics discussed in this paper have beer Support schema versioning. Different versions of a docu-
previously considered in the context of temporelational ment may conform to different versions of a schema, as both
databases [17], [18], [19]. For example, Chomicki has donea document and schema are modified over time. Support for
extensive work in formalizing temporal constraints usingtfi ~ schema versioning will ensure that the schema'’s history can
order logic and applying it to databases [17], [20], [21]. be kept and correctly utilized.

Schema versioning has also been r_esearcheq in the contexthe interaction between the temporal schema and its con-
of temporal databases [22], [23]. Unlike a relational dath stituent conventional schemas and related tools is depicte

schhema, an XML sc.hecrjna is a grammar specification so "VFig. 1. We note that although the architecture has many
tec NIquUES are required.) components, only those components shaded in the figure are
Prior work in conceptual modeling for temporal databaseqific to an individual time-varying document and needeto b

has considered extensions to identity [24] and cardin®®] g nhjied by a user. New time-varying schemas can be quickly
constraints. Also in the area of conceptual modeling grarama, 4 easily developed and deployed.

description logics have been proposed to represent andireas We now continue the motivating example given at the begin-
about a variety of temporal constraints [26]. While there ar

ning. We have shown how a conventional document recording

some parallels between conceptual modeling grammars (ei'rgformation about a company is edited over time, creating

(I:EoRncoer tllJJ l\a/:L) r:;dmérl\gLﬂ;ﬁ?aeﬁna];ogsgséﬁ"Zgr?;i':é'{:gnssuéﬂra Sequence of conventional documents. Each conventional
'cep 9 . Y : - cument is intended to conform to a conventional schema.
entity classesattributes and relationships Thus, a distinct

set of semantics and syntax is required to handle tempotrﬁlv\/]f.a start W'Ejh tﬁ con(;/entlonaltscthhema_(l__|st||ngl:1__ 1t" bo; 3in d
constraints for XML Schema. e figure) an ree documents, the original (Listing 2) an

Although various XML schema languages have been pr]tg:)No subsequent versions (Listings 3 and 4, identified in the

. . i ; gure as “Conventional XML Data”, box 7). These numerous
posed in the literature and in the commercial arena, norteeof . . . I . .
. . .. files give us a hint at the complexities that arise as the @essi
approaches provide a systematic approach to encoding time-
. ' mount and as the schema changes as well (note that there may
varying data in XML across schema changes nor to expressin .)
even be multiple versions of the base schema).

and enforcing integrity constraints over such data. This T1s) i _
To more easily manipulate these many versions, the user

where our research makes its contribution. _ 4)
would like to define a “Temporal Schema” (box 4) with the
base schema as a component. The two other components are
3 LANGUAGE DESIGN “Logical Annotations” (box 5) and “Physical Annotations”
(box 6). The logical annotations specify a variety of char-
acteristics such as whether an element or attribute vavies o
) valid time or transaction time, whether its lifetime is déised
— Conventional Documentn XML document that has no 45 5 continuous state or a single event, whether the item

temporal aspects. i in ti
_ Temporal Documeniin XML document that represents a|tself may appear at certain times (and not at others), and
.) . whether its content changes. Most relevant for our purposes
sequence of conventional documents (i.e., slices). Itimas { . . .
are temporal constraints, which can be inferred from the
root elemenkt enpor al Root >.

_ Conventional SchemaAn XML Schema document that Constraints in the base schema or which are explicitly $igelci

describes the structure of the conventional documentts. TS logical annotations. We'll get into the means of speogyi
root element is<schema>. such annotations in Section 6.

— Slice A version of a temporal document at a given point Physical annotations specify the timestamp representatio
in time. For example, if a temporal document is comprisashtions chosen by the user. These annotations define wieere th
of two conventional document$ andds, which occur at physical timestamps will be placed (versioning level). Tire
timest; andt,, respectively, then the slice at timgis d2. cation of the timestamps is independent of which components

In augmenting XML Schema to accommodate time-varyingary over time (as specified by the logical annotations). Two
data, we had several goals in mind. At a minimum, we desiré@cuments with the same logical information will look very
that our approach exhibit the following benefits. different if the location of the physical timestamp is cheadg

— Simplify the representation of time for the user. Since the logical and physical annotations are orthogonal
— Support a three-level architecture to provide data indepeand serve two separate goals, we choose to maintain them
dence, so that changes in the logical and physical level anedependently. A user can change where the timestamps are

We first summarize briefly the design eKSchema. We start
with some relevant terminology.

isolated. . . o located, independently of specifying the temporal charsst
— Retain full upward compatibly with existing standards angcs of that particular element. The physical annotatiolse a
not require any changes to these standards. rovide a user the means to specify temporal granularigy, th

— Augment existing tools such as validating parsers f
XML in such a way that those tools are also upwar

compatible. Ideally, any off-the-shelf validating pargfar an-lr_lg(taat:gnmspg:l?jl Srfhs?g?a(nbno(;(ta?ién“setso tZ;eicqigzelc?ugrf “
XML Schema) can be used for (partial) validation. phy 9 i

— Support both valid time and transaction time at a logic&Pntains sub-elements that associate a series of conmahtio
level; each dimension is treated orthogonally. schema with logical and physical annotations, along with th

— Support instance versioning. time span during which the association was in effect.

désolution level at which each timestamp is maintained.

gy E » Input/Output

- — 9% References

it < HE i L » Namespace

3. Conventional XML 1. TSSchema 2. ASchema
Schema
q J * H

=
P T et Fo--——-—-- F-==n
i 4. Temporal Schema |- == ==—=-=- ' : 1
v _: : v
v 5. Logical Annotations 6. Physical Annotations
: SCHEMA@ ¢
7. Conventional XML " 8. Temporal XML | N 9. Representational
Data Document Schema

Fig. 1. Overall Architecture of 7XSchema

The figure shows a tool called@®AsH that can render a [temporal XML
temporal document (box 8) consistent with the logical an| Document
physical annotations. Hence, the timestamps are spread
across the document, associated with versions of the etsmel

Temporal Representational

Schema Schema
This removes a great deal of redundancy found in the no Results
temporal data, which represents each slice as a sepat »
document. The versions of the temporal document are d Conventional
scribed with a “Representational Schema” (box 9), gendrat d Schema

automatically from the temporal schema by another tookdall é

SCHEMAMAPPER This schema, instead of being the only | Slice attime ¢ @
schema in an ad hoc approach, is merely an artifact in our
approach, with the conventional schema, logical annatafio)
and physical annotations being the crucial specificatiortset F19- 2. Using 7XMLL INT.

created by the designer.

Recall that the base schema (Listing 1) includes cardjnal®dequate)rXMLL INT is a tool we developed as the temporal
constraints, a uniqueness constraint, and a referentegrity counterpart to XMLUNT; see Fig. 2. XMLLUNT takes as
constraint. As noted in Section 1, these constraints applyi@put a conventional document (slice at tirereferencing
each point in time within the temporal document. a conventional schema and reports if it is valid. Analogpusl

Further, the user may wish to specify additional rerlXMLL INT takes as input a single temporal document refer-

strictions that guarantee uniqueness of an ensaitoss encing a temporal schemaXMLL INT validates the temporal
conventional documentgfor example, that the addressdocumentand reports either success or the errors encednter

dana@ xschema. comis not re-used by another employee The validation USing.TXML!_INT is related to that of
to avoid confusion or problems re-directing emails aftez tf*MLL INT as follows: if a slice of a temporal document

second change). Using XML Schema alone, we cannot specify ime ¢ is validated using XMLUNT and results in an
nor validate such constraints. erfror, then the validation of the temporal document using

Instead, the designer can utilizeXSchema to augment 7XMLL INT should also report an error at tine

. : . . . With this high-level overview ofrXSchema (details are

the conventional schema with additional logical annotetjo .
-) .~ available elsewhere [4], [8], [10]), we can now turn to the
as we will illustrate with examples shortly, thus forming a) ; " .
. o challenge at hand: supporting existing conventional angho
more expressive temporal schema. As we'll discuss further J) X . :
. . . temporal constraints concerning a time-varying documéfet.
Section 7, the schema may be a time-varying document as

) : I'St examine the constraints that XML Schema provides, and
well, and may even reference other time-varying schemas.
) - tlaen apply and extend them for temporal documents.

When we had one conventional schema (Listing 1) an
one conventional (non-time-varying) document (Listing 2)
we could use a tool such as XMUAT to validate this 4 XML SCHEMA CONSTRAINTS
document against its schema. We now have a similar, thoughlL Schema provides four types of constraints, namely
much more flexible situation: a single document and a singlatatype, cardinality, identity, and referential intégrcon-
schema (being upward compatible, Listing 1 is perfectlstraints. These are conventional constraints and restsgte-

cific XML document. In this paper we extend these constrainfsl Three Classes of Semantics
in turn with temporal semantics. . . .
. . An important concept is the distinction between three or-
Datatype constraintsestrict the content of the correspondiho onal classes of semantissquencedion-sequencednd
ing element or attribute. A datatype restriction by itsglpbes 9 mantiseq N €0 @
fully in the temporal context. For example, the fact that th urrent [27]. All combinations are appropriate and useful.
nane attribute is a strin (XML Schema t . string) ne could contemplate for example a sequenced cardinality
. . gt YPes- g .ﬁonstraint or a non-sequenced referential integrity cairst
applies equally in the static and temporal context (assgmi T , i
no schema versioning). The content of tieare attribute may A temporal constraint isequencedvith respect to a sim-

change, and we consider in Section 6.4 some restrictionsim conventional constraint in the schema document, if the
what kilildS of changes are permitted semantics of the temporal constraint can be expressed as

The cardinality of elements in XML documents is re—thet sgmgnncs of Fhe conventlo_nal cpnstramt appl!ed ah eac
stricted by the use ofii nQccur s and maxCccur s in the point in time. As discussed earlier, given a conventionallXM
XML Schema document. The default for bothi nOccur s Schema constraint, the co.rres_pondlng semanucs(ta_chema
for a temporal document implies sequencedonstraint. For
example, a conventional (cardinality) constraint, “Themeuld
be between 0 and 4 URLs for each supplier” (Listing 1), has

always at most a single value for each attribute (for examp% sequenced equivalent of: “There should be between 0 and 4

| D). Cardinality for attributes is therefore restricteduse to URLSs for each supplieat each point in timé
"optional " or"required". For convenience, we also allow the user to add a new

Identity constraintsrestrict uniqueness of elements andeduénced constraint in the logical annotations. Sucledbgi

attributes in a given document. As with the relational modetnnotations can include aapplicability bound B C T,
XML Schema allows users to define bdtey anduni que enabllng the user to resmct the consideration of thateaqeld_
constraints. The distinction between these two is thakée constraint from the lifetime _of the document to some d_eswed
constraint does not allow a null value in any of the componefi¢PSet they are interested in. For example, a constraint may
fields, while missing (null) values do not lead to a violatio@M!Y P€ valid between 1999-2005; it would not apply outside
of the uni que constraint. of that time period. o
Identity constraints are defined in the schema document® SPecial kind of sequenced constraint iscarrent con-
using a combination of &sel ect or> and one or more Straint. A current constraint is applicable (and evaluptsd
<fi el d> elements. These are sub-elements withickey> theé current point in time, onow [28]. We support current
or <uni que> container element. Botksel ect or > and constraints by allowing thg user to set the applicabilityrod
<fi el d> contain an XPath expression (the evaluation &f the sequenced constraint tow.
which in an XML document yields the value of the constrained A non-sequenced constraimg evaluated over some part
element or attribute). Thesel ect or > is used to define (or the whole) of the applicability bound rather than at each
a contextual node in the XML document (e.gcenp> in Point in time separately. For such constraints, we include a
Listing 1), relative to which the (combination off i el d> evaluation windoww, which is a time interval (e.g., a day,
values is unique (e.g@ D). An identity constraint may be Or @ Gregorian month) as well as slide size ss, and an
named, and this name can then be used when definingRplicability bound B [29]. The default length fors is a
referential integrity constraint. single granule interval. The default fds is the lifetime of
Note that the attributes of typleD (I DREF) are a special the temporal document. The following relationship musthol
case of theckey> (<keyr ef >) constraints in XML Schema. @mong the components of a non-sequenced constsaift:w.
In this paper we address the general case. Further disousdéhenduration(B) is the same size as, we term it a “fixed-
on the design choice of only addressing temporal semanti¢§idow” constraint (analogously, when both andw are a
for <key> (<keyr ef >) is available in prior work [4]. single granule of time, we have a sequenced constraint): Non
Referential integrity constraint&lefined usingckeyr ef >) sequenced constraints are included in the logical anootti
are similar to the corresponding constraints in the retaio For example, suppose the constraint requires “there are
model. Each referential integrity constraint refers to kidveey ~ between 0 and 4 supplier URLSs in the temporal document over
or unique constraint and ensures that the corresponding leperiod of any calendar month.” (This is a temporal variant
value exists in the document. For example, ¢keyr ef > in of the cardinality constraint osURL> in Listing 1.) Let's
Listing 1 ensures that only valid product numbers (i.e.sthosay this constraint is applicable from 2010-03-01 to 2030-0
that exist for a<pr oduct >) are entered for an order. 31. Here,w and B have the same duration. If instead the
applicability were 2010-03-01 to 2010-06-31, then we see a
case of a “sliding-window” constraint, as the evaluatioruldo
5 MOVING TOWARDS TIME take place duringachmonth from March through June. Here,
Before considering how to adapt the XML Schema constrainie see the the size of the slide is implicithcalendar month
we just summarized to be used in time-varying XML docuf instead the constraint evaluation window were a period of
ments, we first introduce an orthogonal classification oéé¢hr 30 days, then the user may wish to restrict how this evalnatio
flavors of temporal constraints and introduce the concejt ofvindow would slide. For example, one may choose to evaluate
time-varyingitem it from March 1-30, then from March 2—31, and so on. In such

andmexCQccur s is 1. In the example in Listing 1, while there
can be multiple<enp> sub-elements withirkenps>, there
can be a maximum of oneSSN> per <enp>, and there is

a case, the size of the slides] is a single day. has a lifespan equivalent to the union of the pair’s lifegpan
Coalescingis an important process in reducing the size of a
data collection (since the two tuples can be replaced bygesin
tuple) and in computing the maximal temporal extent of value
An XML document is usually modeled as a labeled tree. Feé‘quivalent tuples [30], [31]. In a similar manner, elements
additional modeling components are needed in a tempojglwwo slices of a temporal document can bEmporally-
XML model to capture time. A temporal XML documentassociated A temporal association between the elements is
can be modeled as a timestamped set of XML documentgssible when the element has the sat@e identifierin both
For simplicity, we discuss a data model with only one timgiices. We will sometimes refer to the process of assogjatin

dimension. a pair of elements agluing the elements. When two or more
Definition [Temporal XML Model] A temporal XML model glements are glued, an item is created.

is a tuple,(X,T, S, A), where

- X = {Xy,..., X} is a set ofXML data model in- Only elements of types that have temporal annotations
stances where an instanceX; = (V;, E;) has a set gre candidates for gluing. Determining which pairs should
of nodesV; (with each node being an element or ame glued depends on two factors: the type of the element,
attribute) and a set of edgds; (with each edge being and the item identifier for the element's type. The type of
between an element and an attribute or an element agil element is the element’s definition in the schema. Only
its child element), elements of the same type can be glued. An item identifier

— T is a set oftimes serves to semantically identify elements of a particulaety

- §: X — 27 is atimestamp functiothat maps an XML The identifier is defined using a list of XPath expressions
data model instance to a timestamp (a set of times) fghuch like a key in XML Schema) so we first define what

which it is current in the time dimenSion, and it means to evaluate an XPath expression_
- A : V — V is atemporal association relatiorthat

associates a node in some XML data model instancepgfinition [xPath evaluation] LeEval(n, E, X) denote the
to a node in some other XML data model instance (8git of evaluating an XPath expressidhfrom a context
described in Section 5.3). The relation captures a nod@§ge ,, in an XML data model instanc&’. Given a list of
identity over time across instances. B Xpath expressiond, = [Ey,..., Ey], thenEval(n, L, X) =
The slice function extracts a slice (an XML data m0de|[Evd(n,E1,X), ..., Eval(n, Ej, X)]. m
instance) from a temporal XML document.
Definition [Slice] Let D = (X, T, S, A) be an instance of
a temporal XML model. Then fot € T, slice(t,D) = X;
whereX; € X andt € S(X;). ™

Though this model is simple, it is sufficient for the purposes Definition [item identifier] An item identifier for a typeT,

of this paper and its simplicity makes clear that eX|s_t|n% a list of XPath expressiong, such that the evaluation d@f
XPath, XQuery, and XML Schema constructs can be natively
rtitions the set of typ&' elements in a (temporal) document.

evaluated for any XML data model instance in a tempor ch partition is an item -
XML data model. (Note that we are not proposing to store or P '
represent a temporal XML document using the model, rather

we use this model to formalize the semantics of temporal AN item identifier has a target and at least one of a field,
constraints, specifically, in thEval function to be introduced 2" temref, or a keyref. A target is an XPath expression that
shortly.) specifies an element’s location in the slices (relative ® th

item under which it is defined). A field, itemref, and a keyref
can each specify part of an item identifier. A field contains an
5.3 ltems XPath expression that specifies an element or attributeighat
In order to validate non-sequenced constraints, it is ingmar part of the item identifier. A keyref references a slice keg an
to identify which elements persist across various tramséer an itemref references an item identifier. This way an item may
tions of the document. This will allow us, for example in thé&e specified in terms of an existing item or schema key. An
case of a non-sequenced identity constraint, to verify dret itemref and keyref use the name of an item/key and are not
an email address is being repeated for the same employeeXBath expressions.
for a different one. (Items are not relevant for sequenced no
current constraints.) This section discusses how to find andA schema designer specifies the item identifiers for the time-
associate elements in different slices of a temporal doattmevarying elements. As an example, a designer might spedty th
When elements are temporally-associated,tam is cre- the time-varying elemertenp> has as its item identifier, the
ated. An item is a collection of XML elements that represemittribute@ D employee (syntax example in Listing 5). An item
the same real-world entity. An item is a logical entity thaidentifier is similar to a (temporal) key in that it is used for
evolves over time through various versions. identification. Unlike a key however, an item identifier istno
In a temporal relational database, a pair of value-equitalea constraint; rather it is a helpful tool in the complex psge
tuples can be coalesced, or replaced by a single tuple tbatomputing versions of an element over time [4].

5.2 Temporal Data Model

Since an XPath expression evaluates to a list of nodes,
Eval(n, L) evaluates to a list of lists.

Stemt - ; Jp— We then show how each kind of constraint can be extended
item target="conpany/ enps/ enp
<item dentifier name="itn dEnp" timeDi nensi on="bitenporal">| IN various ways to effect a non-sequenced semantics, that is

~ <field path="@D'/> ... evaluated over an item as a whole. Note that the evaluation
</itenp . . . i .

— — window and slide size can be specified for such constraints.
Listing 5. Item Identifier for <enp> These non-sequenced constraints are specified in the tampor

Over time, many elements in a temporal document m&¢hema as logical annotations.
belong to the same item as the item evolves. The association
of these elements in an item is defined below. 6.1 Identity Constraints

Definition [Temporal association] Let be an element of Recall from Section 4 that identity constraints restriciquie-

. ,th .
type T in the ¢ slice of a temporal documen. Let y ness of elements and attributes in a given document, through

i th o
b? an element of tpr’ n .the g slice of the document. <key> and <uni que> constraints. We formally define a
Finally let L be the item identifier for elements of type

T. Then z is temporally-associatedo y if and only if sequencedey constraint as follows.
' .) 4 Definition [S &key>] For el t type in th
Eval(x, L, slice(i, D)) = Eval(y, L, slice(j, D)) and it is not efinition [Sequencedtkey>] For element type in the

the case that there exists an elemeaf typeT in a slicek be conventional schema, lsti be thesel ect or (an XPath ex-
. " pression) of an identity constraint and It= [f1, f2, ..., fm
tween thei™ and ;" slices such thavalz, L, slice(k, D)) = -) Y 1, oy, fnl

Eval(z, L. slice(i, D). . be the field XPath expressions. Then for a temporal document

A temporal association relates elements that are adjanenf = .(X’ T.5, A.) the identity _con;traint isequenced ar_1d
. . . hly if for all timest € T, if ¢ is a node of typeE in
time and that belong to the same item. For instancesérgp> X, = slice(t, D)

element in Listing 2 is temporally associated with tenp> ’

element in Listing 3 but not theenp> element in Listing 4 Ve;,e; € Eval(c, sel, X;) :

(though the<enp> element in Listing 3 is temporally related Eval(e;, F, X,) = Fval(ej, F, X;) = i = j.

to the one in Listing 4). This proposition asserts that two elements can evaluateeto t

. . same key value only if they are in fact the same element.
5.4 Content and Existence Constraints The definition of a sequencethi que constraint is similar,
Over time, elements in a conventional document can changgt allows null values.
e.g., as edits are made. A schema deSigner may wish tCA non_sequenceduni que> or <key> constraint is spec-
control or constrain what kinds of changes are permitted. ified in the logical annotations through one of the fol-
this section we review two constraints, which we proposed inving elements:<nonSeqUni que>, <nonSegKey> or
previous research [8], to constrain the ways that an elemefifnj queNul | Restri ct ed> (all constraints, including
can vary over time in its existence or content. _ identity, are sub-elements within asi t en® annotation).
Let’s first consider the specification of an item’s existencgye adopt the usual distinction between key and unique
First an item could be “varying with gaps,” which means that tonstraints. The sub-elements and attributes of these non-
may be present in some slices and absent in others. A secafiquenced constraints are provided in Tables 1 (those at-
more restrictive form is “varying without gaps.” If such anriputes and subelement common to all temporal constraints
must exist through consecutive slices only. The third exisé <nonSeqKey> or <uni queNul | Rest ri ct ed>). Within

alternative is “constant.” Then the item is either alwayssent these tables, and subsequent ones, subelements are deyoted
(in every slice of the document) or never present. enclosing< >; the rest are attributes.

The content of an item may also be constrainted to beyf the conventi onal | denti fi er is included within
constant (no changes are allowed) or varying (the defaufiese constraints thesel ect or > and<f i el d> are drawn
changes allowed). A detailed explanation of the restmstio from the referenced (conventional) constraint; otherntisese
can be found elsewhere [4], [8]. two elements are required. The rest of the attributes and

The content and existence constraints are orthogonal. Eiments are as described, though we elaborate on a few, and
instance, an item can be constrained to have constant ¢onig@yide examples of most of the others, below.

.(i.e.,_ thg content does not change) and varying existeneg (i a non-sequenceduni que> (or <key>) constraint re-

it's lifetime may have gaps). quires that the field value combination of the constrained
element (or attribute) isunique betweerntems across time

6 TEMPORAL AUGMENTATIONS TO XML (not just at a point in time). For example, if an employee’s

SCHEMA CONSTRAINTS SSN were unique, i.e., no two employees had the same SSN

We now show how to augment, with support for time, XML'dn & single conventional document as well as the temporal
cardinality, identity, referential integrity, and datpgy con- document, we would use a non-sequenced constraint. We
straints, in turn. We discussed in Section 5.1 how to intgrprenvision non-sequenced constraints being used in thres.way
any particular XML constraint in a sequenced semantics, asl) Between- Consider the conventionalni que con-

well as how to revise that constraint to be interpreted in the straint defined in Listing 1. Suppose a non-sequenced
current semantics. In this section, we discuss the spedfics unigue constraint is placed on the email address of
the sequenced semantics for each type of constraint. an employee, with an evaluation window of a year

Term Definition Cardinality

name The name of the constraint optional
di nensi on val i dTi ne, transacti onTi ne, or bi t enpor al (default:val i dTi ne) optional
eval uati onW ndow Time window over which the constraint should be checkedauléf lifetime of document) optional
sl i deSi ze Size of the slide for successive evaluation windows (defayranularity of constrained data type); optional
only used in conjunction witleval uat i onW ndow
<applicability> When the constraint is applicable (default: lifetime of dioent) [0:1]
(begi n, end) While applicability bounds conceptually correspond to mperal element which can be represented optional

by a series of (begin, end) sub-elements, we use a simpliethstics in this paper denoted by|a
single (begin, end) attribute pair

<sel ect or > For the definition of a new constraint. It is similar to thesel ect or > sub-element in the [0:1]

<uni queConst r ai nt > definition. It must be a relative XPath expression.

<field> For the definition of a new constraint. It is similar to thefi el d> sub-element in the [0:U]

<uni queConst r ai nt > definition

TABLE 1
Common attributes and sub-elements for temporal constraints

Term Definition Cardinality

conventional I dentifier| The referenced conventional identifier of the conventic@istraint being annotated (if present, the optional

<sel ect or > and<fi el d> are omitted)

scope Eitherw t hi n or bet ween (which is the default) semantics can be specified optional

nul I Count M n The minimum number of null values allowable (used only witkuni queNul [Restri ct ed>) optional

nul I Count Max The maximum number of null values allowable (used only withuni queNul [Restri ct ed>) optional
TABLE 2

Attributes for temporal unique constraints <nonSeqUni que>, <nonSeqKey> and <uni queNul | Restri ct ed>

2)

(Listing 6). Then, no two employee items can havé&hese allow us to designate an element or attribute valge (e.
the same email addreskana@ xschema. com (for product No) as unique to an item across a temporal docu-
example) in any year, but the same employee (e.gent (with slices coalesced across the evaluation window).
Dana) can switch fromdana@ xschenma. com to A time-invariantrestriction specifies that the value of the
ddoe@ xschenma. comand back in a year. given conventionakuni que> or <key> constraint should
Within - To specify a uniqueness constraimthin each not change over time. Without this restriction, converdion
item, i.e., if we wished to say that an employee (e.gunique and key constraints simply say that the values must
Dana Doe) cannot switch frodana@ xschenma. com not have duplicates in any associated XML document. How-
to ddoe@ xschena. comand back in a single year, ever, this does not preclude the values from changing as
we would need to define a non-sequenwéttiin unique long as the new value does not appear elsewhere in the
constraint on an employee’s email address. An exammlenventional XML document. To designate a time-invariant
is given in Listing 7, where thescope="wi t hi n" key, in addition to specifying a conventional key consttain

enables within semantics.

we restrict the components of the key as time-invariant

3) Between and within To specify that each employee(cont ent =" const ant") in the logical annotation of an
email is unique and also that employees cannot re-uset enp.
an email, both constraints (Listing 6 and 7) are specified. We define a<nonSeqKey> betweerconstraint as follows.

<itemtarget="conpany/enps"> ...
<nonSeqUni que nane="enpl oyeeEnai | NSUni quel"
conventional | dentifier="enpEngil Uni que" scope="between"
eval uati onW ndow="year" slideSi ze="day"/>
</itemr

Listing 6. Non-seg. constraint “between” employees

<item target="conpany/ enps"> ..
<nonSeqUni que nane="enpl oyeeEnai | NSUni que2"
scope="wi t hin" eval uati onW ndow="year" slideSi ze="day">
<sel ector xpath="enp"/> <field xpath="@nail"/>
</ nonSeqUni que>
</itemr

Listing 7. Non-seg. constraint “within” each employee

Definition [<nonSeqKey>, Between Semantics] Let
be the item containing theenonSeqKey> definition, let
F be the list of XPath expression§i, fo, ..., fm] Where
fi is afield expression, letsel be thesel ect or, and
let D = (X,T,5,A) be a temporal document. Then for
each window (a time periody C T, defineU(c,w) =
U¢ew (Bval(c, sel,slice(t, D)) x t) to be the union of the
Cartesian product of the evaluation of the selector for each
slice in the window and the time of the slice. The union
yields the list of elements(¢i,t1),. .., (ex, tx)]. Finally, let
item(e;) be the itemp, that is the closest ancestordg i.e.,

e; is an element in some slice of Then the<nonSeqKey>

A conventional identity constraint does not imply nonconstraint is

sequenced uniqueness (it only implies that there are na-dup
cates in a slice). Thus, the sameoduct No (a conventional

key) can bere-usedfor another product or changed between
slices (for the same product, as long as it remains unigque). T

Ver, 1), e, 5) € Ule,w) < |
FEval(e;, F,slice(t;, D)) = Eval(ej, F,slice(t;, D)) =
item(e;) = item(e;)] .

place non-sequenced restrictions on elements or attspwie In other words, if two elements have the same value for their
usenon-sequenced uniquadnon-sequenced kepnstraints. key, then they are elements in the same item, though they may

be in different versions of that item. The effect of the slide Definition [Sequencedkeyr ef >] For each possible re-
size is to determine the start point for each successivem ferring elementsel,, let Eval(sel,, F,slice(t, D)) denote
A within constraint is similar. the result of evaluating the list,. of <keyref> XPath
Definition [<nonSeqgKey>, Within Semantics] To define fi el d expressions relative to theel ect or elementsel,
a<nonSegKey> within constraint, we replace the constrainin a slice of temporal documer® at time ¢. Similarly, let

given above with the following. Eval(sely, Fy, slice(t, D)) denote the result of evaluating the
) referenced key (or unique) constraint at tirheFinally, let
V(ez(’é;);l((z”??;ijicﬁ)al'([ej’F7 X;) A B be the applicability bound Thekeyr ef > constraint is

item(e;) = item(e;)) = satisfied when

—3(en, tr) € Ulc,w) = [t <t <tj A Vt € B (Jei, € Eval(sely, Fy,slice(t, D))(
FEuval(e;, F, X;) # Eval(ex, F, Xk) |) | Je, € Eval(sel,, F,,slice(t, D)) : e, = ex)). m
where X; = slice(t;, D), X; = slice(t;, D), and X = A non-sequenced referential integrity constraint is usefu

slice(t;, D). The extension adds the constraint that the sampecify a reference to some past state of the XML document.
field values must be in consecutive slices within any ita#n. Suppose we added<d ar gest Or der > sub-element within
We next discuss theuni queNul | Restri ct ed> con- suppliers to represent the “largest order” (in dollar térms
straint. Since the XML Schema definition of unique allowplaced with that supplier (with &keyr ef > to or der No).
a null value at each point in time, the default semawe represent a non-sequenced referential integrity cainstr
tics for <nonSeqUni que> allows for multiple null values using a<nonSeqKeyr ef > element in the logical annotations
across time (one in each conventional document). A noirthe example below. Table 3 provides the different attebu
sequenceduni queNul | Restri ct ed> constraint, in ad- and sub-elements for thenonSeqKeyr ef >, along with the
dition to specifying uniqueness, also restricts the age® components listed in Table 1.
of the number of null values by allowing the user to specify a 1) For each transaction-time slice, for each supplier, the
finite number (one or more) across time; the default number * 5,41 order referenced (througbr der NoKey) by the
being one. Setting the number of nulls allowed across time to | 5, gest O der No attribute of the supplier must exist

0 is equivalent to specifying a non-sequenced key constrain ¢ some valid time, perhaps different from the valid time
We defer a formal specification of the null counting semantic of that | ar gest Or der No attribute. The referential

to Section 6.3 as it is si_milar to that of a cardinality coastt. integrity constraint is applicable from 2008-2012, and
We now present an identity constraint example. no corresponding conventional constraint exists.

1) The combination of supplier name and city serves as a

L . <item target="conpany/suppliers"> ...
key. However, at a later point in time we may have a <nonSeqKeyr ef ng"m:Ysup_‘ﬁgrge_sm.. o
different supplier with a name and city combination that ref er="orderNoKey" di nensi on="val i dTi me">
. . . <appl i cabi lity begi n="2008-01-01" end="2012-12-31"/>
was seen previously. To avoid any problem, we require <sel ector xpat h="suppl i er"/ >
that reuse should not occur for at least one year after <field xpath="1argest OrderNo"/>
. . . </ nonSeqgKeyr ef >
discontinuation. Product numbers on the otherhand may | </itens

not be re-used at any later time. These constraints are

applicable between 2005 and 2010. 2) There exists a conventional referential integrity con-

<i tem target =" conpany/ suppl i ers"> ... straint or der Pr(_)duct Keyr ef (cf. L|st|.ng_ 1)., which

<nonSegKey name="i dSuppl i erNo" di nensi on="val i dTi ne" references a valid product number. This is interpreted
eval uati onW ndow="year" slideSi ze="day"> ; ; B _
<appli cabi lity begi n="2005-01-01" end="2010-12-31"/ > as a_sequenced constraint, in both valid and transac
<sel ector xpath="supplier"/> _ tion time, over the temporal document. A related non-

< honSaqragst suptamet> <field xpath=rsupaty™/> sequenced constraint: for each transaction-time slice,

</item for each order, the product referenced (specified by the

S tem target =" conpany/ product s*> .. . or der Product Rl constraint) must exist at some valid

<nonSegKey name="i dPartNo" di nensi on="val i dTi me" time, perhaps different from the valid time of that order.
eval uati onW ndow="Ilifetine"> ; ; iR i :
<appli cabi lity begi n="2005-01-01" end="2010-12-31"/ > T_he constraint applicability bounds span all valid time
<sel ector xpat h="product"/> (i.e., the default).
<field xpath="product No"/>

</ nonSeqgKey> <nonSegKeyr ef nanme="or der Product NSKeyr ef "

<litenm» convent i onal Constrai nt="or der Product Rl "

di mensi on="val i dTi me" >
</ nonSeqKeyr ef >

6.2 Referential Integrity Constraints

Each referential integrity<keyr ef >) constraint for a con- o)

ventional document leads to a sequenced counterpart in-a téys Cardinality Constraints

poral document. Thus, each conventior#leyr ef > obeys The cardinality of elements in conventional documents is

referential integrity. restricted bym nCccurs and maxQccur s, and that of
Formally, we can define the sequencekleyr ef > con- attributes by settingise to " opti onal " or"required".

straint as follows. These induce sequenced constraints in the temporal do¢umen

10

Term Definition Cardinality
conventi onal Constrai nt| The conventional referential integrity constraint beingeaded via this annotation (if present, the optional
<sel ector > and<fi el d> are omitted
refer The referenced identifier; the correspondiiignensi on attribute must be compatible. optional

TABLE 3
Attributes and sub-elements for nonSeqgKeyr ef

Term Definition Cardinality
newOnl y specifies whether only changes to “new” values should beidered (default’ f al se"); only for optional
<nonSeqCardi nal i ty>
m nCccur s default:" 0" optional
maxQccur s default: " unbounded" optional
<gr oup> The level at which grouping is performed relative to theel ect or > (default: sel f) optional
TABLE 4

Attributes and sub-elements for <seqCar di nal i t y>and <nonSeqCar di nal i t y>

Augmented sequenced cardinality constraints use a nsatisfactory for a conventional document, we may desire the
element,<seqCar di nal i t y>, whose syntax is summa-analogous non-sequenceilnCccur s="1" for a temporal
rized in Table 4 (along with the syntax in Table 1), excemtocument. For attributes, a similar requirement may be-spec
for newOnl y, which doesn’t apply to sequenced cardinalitified (i.e., a conventional opti onal " attribute, may be
constraints. Ther nOccur s andmaxCccur s attributes are "r equi r ed" over some evaluation window). The syntax for
analogous to those in XML Schema. <nonSeqCar di nal i t y> constraints is given in Table 4.

1) At every pointin time there should be a maximum of 25Qs: el enent nane="or der">

orders for the company. The constraint is to be enforded:-- <xs: el ement name="del i veredn" mi nQceur s="0"
maxQccur s="1" type="xs:date"/> ...

during 2010-11. </ xs: el enent >
<itemtarget="conpany"> ... Listing 8. Orders with an optional <del i ver edOn>
<seqCardinal ity nane="suppliersSeq"
maxQccur s="250" di nensi on="val i dTi ne" > . .
<sel ector xpath="."/ > 3) There should be del i ver edOn element at some time
<fiel d xpat h="suppliers/supplier/order"/> for each order.
<applicability begi n="2010-01-01" end="2011-12-31"/>
</ seqCardinality> <itemtarget="conpany"> .
</itemr <nonSeqCar di nal i ty nanme="del i ver edOnNonSeq"

eval uati onW ndow="nont h" >

It could be the case that a specKior der > may be placed <sel ector xpath="."/>
with several<suppl i er >s, in which case the repetitious </<L'O§'quz‘—:a‘f‘;"4drialdﬂ 'y‘)’ere"o“ I>
<or der > elements are considered as a singler der >. </item

To count the shared<or der >s distinctly, we allow the
user to refine the count bgrouping <suppl i er>s. The Another refinement that may be desired for a cardinality
conventional cardinality constraints are not designedatodie Constraint is to constrain the cardinality of a descendaat t
this. This is our motivation behind introducing th oup IS not a child, which is not possible in XML Schema. Consider
option for a cardinality constraint. the schema in Listing 1. This says that at any point in time,
&ach company has at least one supplier, for which there may or

2) At every point in time there should be a maximum o i
may not be an order. A non-sequenced cardinality constraint

250 orders for the company across suppliers (constrai

applicability is 2010-11 can be used to place a limit of less than or equal to 1500
<or der >s for the company in any calendar month. A third
<llemtarget=company’> refinement that may be desired is to distinguish “new” values
seqCardi nal ity name="suppl i ersSeq2 X R .
maxQccur s="250" di nensi on="val i dTi me" > which are values that have not previously been seen in the eva
sselector xpath=."/> - uation window. For example, suppose an ordeat us at-
group xpat h="suppliers/supplier"> X X . .
<field xpath="order"/> tribute can have one of the five following valuégl aced",
<7222'C'ar°3f"ng:f{y§—eLz 2010-01-01" end="2011-12-31"/>| »nder Revi ew', "bei ngProcessed", "shi pped",
</items and"r et ur ned" . Itis possible that changes to the order can

have it swap back and forth betwetnnder Revi ew' and
Non-sequenced cardinality constraints can be used "tbei ngProcessed". Over a period of a month, it might
restrict the cardinality over time. Consider the exampleave, say, seven total changes to the value of which only
of an <order> element in Listing 8. We see that thefour are distinct. To count each change, the user would set
<del i ver edOn> element may not be present in a specifichanges="newOnl y", otherwise all changes are counted.
document slice. Let us further say, that while it may be We represent a non-sequenced cardinality constraint in log
empty at the time the order was placed, we require it toal annotations using enonSeqCar di nal i t y> element;
appear at some point (say within a month of the order beilmag<seqCar di nal i t y> element is used for sequenced cardi-
placed). So, even though a sequeno@dchOccur s="0" is nality constraints. The syntax for both elements is sumnadri

11

in Table 4. In the following examples, each constraint is tew
specified within thescopeof some item. Relative to that scope, A x € Bval(c, S, slice(t, D))
the <sel ect or > locates items that are to be constrained. Ay € Eval(z, G)} .

(Hence, the scope, thear get of the enclosing item, is just .

a prefix for the selector.) Combinations ef i el d>s are Ale,w) is a set of tuples{(ty, 51,91, v1), {(t2, 52,92, v2),
.., (tg, Sk, gk, vk) }. From this set we can extract tuples that

counted for eackgr oup>, and the counts are summed over & Jresent a chanae as follows

group to determine the cardinality of each item located ey th P 9 ’

<sel ect or >. The computed cardinality must fall between Changes(A(c,w)) =

them n andmax to satisfy the constraint. {(t,s,9,v) | (t,8,9,v) € A(c,w)

4) No supplier should be given more than 100 orders in a A=Fklk=t—1 A (k,s,9,v) € Ac,w)]}
calendar month. Furthermore, across a_II of the supplierghije Changes(A(e,w)) extracts all changes, we are some-
at most 500 products could be ordered in total (@ produgimes interested in only changes to “new” values, hence we
that is in two different orders is counted as two differernt, iy the above definition to capture changes that reptesen
products, hence thegr oup>). only changes that have not previously occurred in the window

<item target="conpany/suppliers"> ...
<nonSeqCar di nal i ty name="supOrders"” NewChcmges(A(c, w)) =
max="100" di mensi on="val i dTi ne"
eval uati onW ndow="nont h" sl i deSi ze="nonth"> {(t’ 59 ’U) | (t’ 59 U) € A(C’ w)
<sel ector xpath="supplier"/> A—-Tk[k <t A (k,s,g,v) € Alc,w)]}
<field xpath="order/ordProduct No"/ > . .
</nonSeqCardi nal i ty> We are now in a position to count the changes. Let
.<;1.onSeqCardi nal ity name="supProducts" —
max="500" di mensi on="val i dTi me" Count(A(c’ w))
eval uat i onW ndow="nont h" sl i deSi ze="nont h" > {(s,card({(t,s,9,u)})) |
<sel ector xpat h="supplier"/>
<group xpat h="order"/> (t,5,9,u) € Changes(A(c, w))}
<field xpath="product No"/> :
</ nonSeqCar di nal i ty> count the number of changes for each itemlocated by the
</item <sel ect or >. To count the number of “new” changes, we
would use NewChanges in place of Changes in the above

5) A product could change names (heneeyOnl y) up to definition

three times a month, but can have at most four distinctA cardinality constraint for a context and a windoww
names in a year. This is in force from 2008—-2011. tests the following predicate

<item target="/conpany/ products"> ...

<nonSeqCar di nal i ty name="prodNanmeMont h" ﬂﬂs[ﬂx : (S,SC) € Count(A(c, w)) A (I < minV max< I)]
di nensi on="val i dTi ne" eval uati onW ndow="nont h"
newonl y="true" slideSize=" day A non-sequenced cardinality constraint differs from a se-
m nQCccurs="0" nmaxCccurs="3">))) . |)
<sel ector xpath="product"/> guenced cardinality constraint only in the size of the windo
<field xpath="@roduct Nane"/ > i H
<appli cabiiity begine" 2008.01- 01" end="2011- 12- 31"/ > for the f_ormer tht_e W|nd<_3w can be any size, but for a sequenced
</ nonSeqCar di nal i ty> constraint the window is a single instant. ™
“nonSeqCar di nal i ty name=" pr odNameYear” The fprmal Qeflmtlon of acuni queNul | Restri ct_eld_
di mensi on="val i dTi ne" eval uati onW ndow="year" constraint, which restricts the number of null values, msiksr
slidesize='day” mnGceurs="1" maxQecurs='4"> to that of a non-sequenced cardinality constraint, but glan
<sel ect or xpat h="product"/> . .
<field xpath="@r oduct Name"/ > resulting in null values are counted rather than all changes
<applicability begi n="2008-01-01" end="2011-12-31"/>
<{ nonSeqCar di nal i ty>
</item 6.4 Datatype Restrictions (Constraints)

The XML Schema<si npl eType> element is used to spec-

Definition [Cardinality Constraint] Formally, we define a .)
cardinality constraint as follows. Let ify a value range and induces a sequenced constraint that

D be a temporal document ensures conventional document values conform to this range
_ ¢ be the context item for the constraint (item being_We now consider non-sequenced augmentations of such

annotated), Ssimple types. A non-sequenced equivalent of this type of
— item(e) be the item,v, that is the closest ancestor ¢p constraint can be considered either at the schema level (i.e
i.e., e is an element in some version of evolution of thedatatypewithin schema evolution) or at the
— § be the<sel ect or > XPath expression relative 19 instance level (i.e., evolution of thaluewithin instances, that

— G be the<gr oup> expression relative t§' (by default it is, transition constraints). Schema-level constraindtrict the

is “. "), and - : :
_F'bé’a list of<f i el d> expressions. k|ndds of c?anges pohs3|bledt(; thteh(_ja:atypefof an |tetm._l-![0v,vever
Both S and G must locate items, that is, they must locaté'© H0 NOL S€€ Much need for this ype ot a constraint.

At the instance level (i.e., conforming to a particular type

elements that correspond to thar get expression for some e : ..
. ;~ specification), a non-sequenced constraint could resfig:t
item in the logical annotations. Then for each window (a tim :)
. .) ' Crete and continuous chang@sscrete changeare handled by
period),w, in the constraint define e " _
defining a set of value transitions for the data. For exaniple,

A(c,w) = {(t, item(z), item(y), Eval(y, F,slice(t,D))) | could be specified that while supplier ratings can change ove

12

Term Definition Cardinality
<val uePai r > Sub-element listing possible pairs for discrete changaly (6 <val ueEvol ut i on> not present) [0:U
<ol d>, <new> Sub-elements ofal uePai r 1:1
<val ueEvol uti on> Sub-element specifying direction of continuous changedy(d <val uePai r > not present) 0:1
(direction) can be one of! LT" (less than)," GT" (greater than); GE" (greater or equal); LE" (less or equal), required
"EQ' (equal) and' NE" (not equal)
TABLE 5

Attributes and sub-elements of <t r ansi ti onConst r ai nt >

time, the changes can only occur in single-step incrementsElsewhere [10] we delve into the specifics of how to accom-
(e.g., arating changing from vali@" to either" A" or" C'). modate schema versioning withirXSchema. Our approach

In this scheme, to allow for successive values being the saregploits the concept ofchema-constant period82]. It is

the <ol d> and <new> entries will have the same contentpossible, even with versioned schemas having themselves
Continuous changeare handled by defining a restriction orversioned schemas, to identify contiguous periods of time
the direction of the change. For a transition constraint tehen there are no schema changasywhere Now, during

be applicable, a corresponding datatype should be definedsath schema-constant periods the data may be (and probably
the conventional schema level. The details of these logidg) versioned, but at least one has a fixed base schema and fixed
annotations are given in Table 5, along with the componen¢gjical annotations, each of which has a fixed schema. And
listed in Table 1. since the physical annotations are fixed, the representaio

1) Supplier ratings can move up or down a single ste@lso fixed, it is possible to read and interpret the temporal
at a time in valid time; no restrictions are placed indocument during that schema-constant period, and even to

transaction time, since a data entry error might be mad¥alidate that portion of the document. So a general tempo-

This is applicable between 2008 and 2011. ral document can be viewed as a sequence of dat_a-vary_ing

— - - - documents, each over a single schema-constant perioce Sinc
<transi ti onConstrai nt name="supplierRating" . s . .

di mensi on="val i dTi ne" > one can validate within each schema-constant period, given
<sel ector xpath="supplier"/> the approaches elaborated on earlier, all that is necesstry

<field xpath="supplierRatingType"/> .
<val uePai r> <ol d>A</ ol d> <new>B</ new> </ val uePai r> validateacrossschema changes.

<val uePai r> <ol d>B</ ol d> <new>A</ new> </ val uePai r> As a concrete example, Listing 1 includes the key con-
<val uePai r> <ol d>B</ ol d> <new>C</ new> </val uePair> . .
<val uePai r> <ol d>0</ ol d> <newB</ new> </ val uePai r> straint for thel D attribute of<enp>. In the temporal doc-

<applicability begi n="2008-01-01" end="2011-12-31"/>| uyment, this is interpreted as a sequenced constraint. Sappo

</t i tionConstraint> . . .
ransitiontonstrain that employees at some point are divided into permanent

2) Employee salaries should not go down, but may increa88d contract, identified by the elementser manent > and
(i.e., each salary value is = the previous one) between<cont ract >, respectively. Each employee may end up in
2008 and 2010. However, a salary freeze is in place bgither of the two new elements; we wish to retain the unique

tween January and June 2010 due to economic factof@nstraint semantics. _ _
One approach would use object-oriented methodology to
<transi ti onConstrai nt nane="enpl oyeeSal ary1"

di nensi onz"val i dTi me" > “specialize” the class “emp” iqto “permgne_nt” and “contrac
<fs9l :e(cjtor xphat h:'l‘enp";> subclasses. Then the constraint specification on “emp” avoul
<fie xpat h="sal ary"/> ; ;
<val UeEvol ution directions" GE"/ > be inherited by both subcl_asses. XML Schema does not
<appl i cabi | i ty begi n="2008-01-01" end="2010-12-31"/> | however support such modeling. While XML Schema supports

</transitionConstraint> inheritance for type definitions (through extension andries

<transi tionConstraint name='enpl oyeeSal ary2" tion), type definitions do not have constraints (only elemen

di nensi on="val i dTi me" > L . I . .
<sel ector xpath="enp"/> definitions do). So in XML Schgma, constraint inheritance is
<fi Iel d xplat h:"saldary"/>) not supported. To specify th&D is unique across permanent
<val ueEvol ution direction="EQ'/> . .
<appl i cabi ity begin="2010-01-01" end="2010-06-30"/> | and contract elements a new constraint should be defined

</transitionConstraint> with a selector that selects both kinds of elements, e.g.,

<sel ector pat h="permanent | enpl oyee"/>.

With that background let us consider how this change
7 IMPLICATIONS OF SCHEMA VERSIONING would be modeled inrXSchema. When the schema evolves
Schemas designers often edit their schemas, refining audthat every (or only some) employee becomes a permanent
adding element and attribute types. One challenge withnsaheor contract employee, the designer would then also specify
versioning is that, in this potential quicksand, anythiram c key constraints within the two new elements to require that
change, and thus must be versioned: the conventional dpermanent and contract employees have unique IDs. The
uments, the base schema, the annotations, the schema ddata in the document from that point forward would have to
ments included by these documents, even the schemas of treggeespond to this new schema.
schema components. And, because the physical annotationEhe one remaining issue that concerns temporal constraints
can change, the concrete representation within a tempdslhow to checknon-sequenceaonstraints across schema
XML document can vary. Thus, it becomes even more difficuthanges. Note that schemas vary only over transaction time.
to even define validation in such a fluid environment. Hence, non-sequenced constraint validation is easierlid va

13

time, as schema changes cannot occur. And sequenced @nether explicit non-temporal integrity constraints, ilehal-
straints over transaction time are effectively checkedaahe lowing the user to specify additionally non-sequencedards.
point in transaction time. Finally, we note that our approach provides all the benefits

We considered two alternatives for the applicability of &isted in Section 3. We provide a more in-depth look in
non-sequenced constraint across schema changes: previous work [34].

1) The constraint is applicable only within the schema-

2) The constraint once defined becomes applicable to the i i
entire document. 7XSchema provides tools to construct and validate temporal

documents, including an extension of XMINT [3]. As

In the first approach, any violation of a constraint duringiscussed in Section 3, to validate a temporal document

previous schema-constant-periods is ignored, while in tDS(MLL INT first converts a temporal schema intorepre-

second, the constraint may be violated even when first deﬁnggntational schemawhich is a conventional XML Schema
We decided on a modified version of the_ﬁr_st altem"j‘t'v%"ocument that describes how the temporal information is
to apply a nqn-gequenceq ponstralnt (_)nly within the S‘Chemr%'presented in the temporal document. XMNI is then used
constant period in which it is defined, if there were a scheng validate the temporal document against the represensti
hema. Finally, the temporal document is validated ag#ias

change to any of the items involved in the constraint. Ths%
non-sequenced constraints are “restared" on any SUCIIImh‘?emporal schema by the temporal constraint validator. Eig.

change. In effect the schema change deletes all the old cqn- .
straints and then adds them back as new constraints. For%%pms this process.

ample, consider the first example in Section @t&re should

be no more than fifty active suppliers in any calendar yeé#.1 Where to Enforce Constraints?

If the schema changed on July 1 concernguppl i er>, Given the architecture in Fig. 2, there are two places where
this non-sequenced constraint would be checked twiceh®r temporal constraint functionality could be enforced.

first half of the year and for the second half. 1) Express the constraint within the representational

schema, and hence when the conventional validator vali-
8 EXPRESSIVE POWER dates the temporal document against the representational

As mentioned in Section 2, there has been very little done in Schema it also validates the temporal constraint.

the area of temporal constraints for XML. But for the work 2) Enforce the temporal constraint directly within the tem-

that has been done, we can evaluate the expressiveness of our Poral constraint validator code.

approach to these other approaches. The representational schema serves at least two important
Rizzolo and Vaisman's temporal extension to XML [33functions. First it ensures that every slice of the tempdoal

specifies (in Definition 3 on page 1184) six conditions for ament is syntactically valid with respect to the correspngd

valid temporal document in their model. While the first fofir oconventional schema. Second, the representational sclsema

these conditions are specific to their encoding (recall tht important in constructing, evaluating, and optimizing peral

approach supports multiple encodings, including that pseg queries. Can the representational schema also help in the

by Rizzolo and Vaisman), the last two of their conditions arealidation of non-sequenced constraints?

relevant to temporal constraints. At first glance, this seems attractive: we could use an exist-
The fifth condition states, “For any containment edgig conventional validator to validate our temporal docuise

ec(ni,nj, Te,), if n; is an attribute of type REF, such that therén a simple and straightforward manner. However, expressin

exists a reference edge(n;, ni, Te,), thenT,, = T, holds.” constraints in this way could result in a large and complex

As discussed in Section 5.1, in our model a non-temporal reépresentational schema, making the conventional vadidat

erential integrity constraint is mapped in a temporal doenm process inefficient. Further, some temporal constraintaag

to one that applies in each slice. Here we differ with Rizzolbe expressed in the representational schema at all [34].

and Vaisman, as what thegquire in their model is what in ~ Consider, for example, the (sequencedpl oyeel DKey

our design is anon-sequenced referential integrity constraintonstraint in Listing 1: arenp> element has ahD attribute

(also discussed in Section 5.1). Our design is more uniforend we require the attribute to be globally unique. As shown

in that we utilize a per-slice semantics fall non-temporal in the example in Fig. 3, this constraint is initially valid a

constraints when applied to a temporal document, permittitime ¢;, but is violated by the change &.

the user to specify additional non-sequenced variants di su The temporal document shown in Fig. 4 encodes the change

non-temporal constraints. As we argue there, a per-sliw (thistory of the documents, but no representational schema ca

is, sequenced) semantics is very natural to the user. be constructed to match the intention of the sequencediigent
The last of their conditions states, “Let(n;,n;,T.,) be a constraint. If, for instance, the representational scheraee

reference edge. Thefi,, C lifespar(n;) holds.” This states to place an identity constraint globally on th® attribute, the

that a reference edge applies in a subset of the slices irhwhaonventional validator would detect a conflict at thandy

the destination node exists, which is a quite specific kirelements at time$; and ts, but this is incorrect behavior

of non-sequenced referential-integrity constraint. Agave (Tandy should be allowed to have the saire at different

prefer a per-slice semantics for referential integrity,vath times). However, not having an identity constraint at all

14

t; i ts i tg carried out based on a quite smaller DOM tree, significantly
| | improving the performance of constraint checking.
. = = ! o For sequenced constraintsXMLL INT performs conven-
|name||name|||D|:|name||name|||D|i|name||name|||D| tional validation with the help of theal i dat 8() method

lemp| [emp|: [emp| [emp|: [emp] |emp]

Tandy 1 Dana 2 !Tandy 2 Dana 2 'Tandy 1 Dana 2 provided by theVal i dat or class in the Java Platform.
Specifically, ”XMLL INT invokes aslicing routine to extract
Fig. 3. Three <conpany> slices. each slice from the temporal document. For each slice (which
is represented as a DOM object), thal i dat e() method
is called to evaluate that slice against its conventionaést.

7XMLL INT indicates that the temporal document is valid only
if val i dat e() returns true for every slice.

For non-sequenced constraintSXMLL INT provides its
own validation algorithm for each of the type of constraint.
As described in Section 3, the logical annotations provide t
constraint definitionst XMLL INT extracts all the defined con-
straints from the annotation file and checks them indivigual

Although the validation of the constraint types vary, there
are several common steps. These include the evaluation win-
dow, slide size, and their interaction with applicabilityeé
Table 1). For identity constraints XMLL INT collects all the

F|g 4. The three <conpany> slices Squashed_ Unique values valid within the SpeCiﬁed appllcablllty wava
into a list and then iterates through this list to look forewitl-

would also cause incorrect behavior, because the conveatic"9 duplicates. For cardinality constraints (€.g., Exarlin

validator must be able to detect that the of Tandy and Dana S_ection 6.3), the validation is more _complicateaKMLL INT
are the same at times—t-. first collects for each target (designated by thar get

The problem we are seeing is not in the individual valu)épath expression) the items (designated byfthel d XPath

of any attribute, but rather in a complex interaction betweXPression) vyithin the ;tated applicqbility_ \(vindow, _anérth
values and times. Referential integrity constraints amglar: groups these items bydlff(_erentgroup identifiers @es@?‘“"y
the interaction between values and time cannot be modef3§ 9" OUP XPath expression). Each such collection will have
in XML Schema, and thus it is easy to conceive scenarigscardinality that must be checked. (If group is not specified
that are logically invalid but undetectable within XML Scha € f i €l d XPath expression is sufficient.) Finally, for data
and vice-versa. Considering cardinality constraintssieers of type constraints, the focus is instead on each individue da

elements can have arbitrary start and ending times, and thiPe, to ensure that it respects the requirements imposed by

is no way in XML Schema to determine how many versiontgIe constraint.

exist at any given slice of time. In contrast, datatype c@ansts

can be expressed in the representational schema sincegbyot3 Empirical Evaluation
definition of sequenced constraints, the type must be cons :
throughout all times and thus the complex interaction d’(bestr?ve now study the performance afXMLL INT, focusing

. . n how the validation time of a temporal document with
occur. The transformation from the conventional schemas . T . .
. N T7XMLL INT compares with validation time of multiple slices,
the representational schema is trivial in all cases.

. each a conventional XML document, with XMLLT. To do
We conclude that XML Schema lacks the expressive powér we use a benchmark dataset definec-Bench, which

to directly state some flavors of temporal constraints. suh

constraints must be enforced instead by procedural codharwit> 2 benchmarl_< fo_r tempo_ral data [35tBench is based
. i on XBench, which is a family of non-temporal benchmarks
the temporal constraint validatorXMLL INT.

with XML documents, XML Schemas, and associated XQuery
queries [36]. One of the benchmarks in XBench, called the
9.2 7XMLL INT Implementation document-centrisingle documenbenchmark, defines a book
We have implementeadXMLL INT in Java and DOM. Our store catalog with a series of books ¢ en®s), their authors
tool supports the entire constraint language presented, hend publishers, and related book$3ench runs a temporal
including sequenced and non-sequenced constraints anfl aBimulation that randomly changes t en> elements at each
the constructs summarized in Tables 1-5. In this section, weint in time, based on user-supplied parameters, suchvas ho
summarize our approach; the online Appendix provides theany elements to change and how often to change them.
detailed algorithms. We used Dataset 4 fromBench, which consists of a tem-
T7XMLL INT first reads the temporal document, creating poral document and the slices at each point in time. We varied
DOM tree. It then reads the temporal schema, including tliee number of slices from 50 to 800, to examine the scaling
logical and physical annotations. All the DOM nodes thatharacteristics of the tools. Since the temporal simufaiio
are irrelevant to the constraints are removed. The remavalrBench adds and deletes elements with equal frequency, the
performed only once and the consequent validation steps aize of each slice remains roughly constant over time, at

Incorrectly fails identity constraint

15

Cardinality Datatype Total Execution Constraint Validation
2504 1204

2004 == XMLLint 1004 -* Cardinality
‘A tXMLLint | A Referential
M- |dentity

Time (s)

—_
K100 60

£ 50 40

[. -A

g 204

o . . .

§2r0 Identlty Referential Integrlty 160 2(50 360 460 5(50 660 760 860 100 260 360 460 560 6(‘)0 760 860
Q7] :

X Number of Slices

u (a) (b)

I}

°

|_

Fig. 6. Execution time of non-sequenced constraints.

the given constraint (i.e., /0 is omitted). For such coaisis,
Fig. 6(a) suggests that the running time is dominated by 1/0O

T T T T T T T T T T T T T T T T
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800

Number of Slices for non-sequenced constraints as well. Fi¢h)Gemphasizes
that cardinality constraints require greater CPU time.sTiki
Fig. 5. Total execution time of sequenced constraints. due to the fact that for the other non-sequenced constraints

the evaluation window was set at all time, whereas for the

6.5MB, for a total size of 325MB (50 slices) to 5.2GB (80(5:‘3“0””"’lIity consiraint it_was .Set at one year. This implfet
slices). The temporal document ranged in size from 13M§_e number of evaluaho_n wmdows_mcreased fro_m L (for 50
(50 slices) to 31MB (800 slices). This document exhibite ices) to 16 (for 800 .SI'CeS)’ effecting a quadratic growth
primarily linear growth (though at a rate much less than {grms of number of slices.
conventional slices), with a small quadratic componersigi
from timestamps at different levels. The compression ratb0 CONCLUSION AND FUTURE WORK
increases from 25 for 50 slices to 167 for 800 slices. We have shown here how to smoothly include both conven-
We conducted two studies: a performance comparison hgnal XML integrity constraints as well as new temporal €on
tween 7XMLL INT and XMLLINT in validating sequenced straints to XML documents whose content varies across time
constraints, and a performance evaluation of validating-noand even whose schema varies across time. This is done by
sequenced constraints withXMLL INT. The second study replacing the schema with a (possibly time-varying) terapor
was to examine the behavior of non-sequenced checighema and replacing the document with a temporal document,
(TXMLL INT being the first such validator to implemenboth of which are upward compatible with conventional XML
constraints). We performed both studies on a machine rgnnisnd with conventional tools such as XMINT. Our approach
Ubuntu 9.10 with a 2.8GHz 16-core CPU and 64GB adccommodates all three kinds of temporal constraints, that
memory. We evaluated each type of constraint; the onlifg current, sequenced, and non-sequenced, and reirerpre
Appendix gives the actual constraint definitions used. existing non-temporal constraints as sequenced in thepces
In the study of the sequenced constraints, we measuisfdiime-varying data. We have developed an implementation
the total executiortime of the tools, which is the wall-clock that utilizes a separate temporal validator component &b- ev
time taken from process invocation to process terminatiomate most of the temporal constraints, those that cannot be
including I/O and constraint validation. Since XMINT can expressed in the representational schema; this impletienta
only operate on a single slice at a time, we iteratively a&upliis more efficient than evaluating the sequenced constraints
XMLL INT on every slice and report the aggregated totaldependently for each slice with XMUNT.
execution time. We appliedXMLL INT just to the temporal ~ One area of future work concerns optimization and effi-
documents and report the total execution time. ciency. It would be useful to consider the impact of timegtam
Fig. 5 shows that for all four types of sequenced constraingdacement (physical annotation) and impact of parameters
T7XMLL INT is more efficient (has a lower total executior{logical annotation) such as evaluation window size on effi-
time) than XMLLINT. Moreover, as the number of slicesciency (document size, 1/0 time, and CPU time for valida-
increases, the performance benefits of applyiXdMLL INT tion). New representations can be evaluated to improve the
becomes even more significant. This is primarily due to trspace-efficiency of temporal documents and the time taken
fact that the space requirement for storing all the slicesvgr to validate constraints. In particular, it is well known tha
faster than storing the single temporal document, thus/tbe IDOM-based implementations suffer from a memory bottleneck
overhead is inherently higher for XMUNT to operate. The for huge documents. We would like to explore SAX-based
CPU overhead is also reduced becauSdVILL INT removes temporal constraint validation techniques to avoid logdin
irrelevant DOM nodes prior to slicing. complete document history into memory. Any DOM applica-
To study the performance of checking non-sequenced cdion can be converted to a SAX implementation by having
straints, we appliedXMLL INT to the temporal documentsthe latter cache any information that is needed that is not
and report both the total execution time and twnstraint directly within the node currently being handled. So for
validation time, which is only the time required to validateexample a SAX implementation of our temporal constraint

checker;,,XMLL INT, could cache the list of nodes computegt1]
(incrementally) by theeval() function defined in Section 6.1.
We would also like to consider specific extensions tQ,
the temporal constraint annotations described in this pape
A more powerful version of the<nonSeqUni que> (or
<nonSeqKey>) constraint would permit the user to specﬁJla
exactly how many times any key (or unique) value other than
null can appear across time. The default is 1, in which caBél
it is identical to a non-sequenced unique or key constraint.
We term this constraint as ®alue cardinality constraint [15]
but leave it for future work as it has no XML Schema
equivalent. Similarly, we leave for later consideratioansi-
tion constraints on non-adjacent states [37], other vageif
cardinality constraints [25] with no XML Schema equivalent!7]
and incorporating temporal indeterminacy [38] into coaistr
representation and evaluation. [18]
In this paper we consider only the case where at most one
<i t enk annotates each element type definition. It would b['fgl
interesting to relax this restriction to permit sevesak ents
for an element type definition. Recall that an item represent
the gluing of elements across slices; it is a logical rathant
a physical construct, and logically, elements could bedjine
more than one way. The relaxation would potentially allow U8l
to combine “within” and “between” constraints into a single
kind of contraint. [22]
Finally, many optimizations could be applied to the valida-
tor. For example, checking constraints of the same typdy s &l
asnonSeqUni que can be scheduled together. Also, checkingsj
constraints with higher violation probability can be schied
earlier. The order of the violation likelihood of the comsiits -
can be inferred by the temporal document. For instance, the
transi ti onConstrai nt is more likely to be violated if
the temporal document contains many state change recordg’!

REFERENCES [27]

[1] “An act to protect investors by improving the accuracyd ameliability
of corporate disclosures made pursuant to the securitigs, land for
other purposes (brief title: Sarbanes-oxley act of 200R)/Y 2002.

F. Grandi, “Introducing an annotated bibliography omnt®ral and
evolution aspects in the world wid web3IGMOD Record vol. 33,
pp. 84-86, June 2004.

Libxml, “The XML C parser and toolkit of Gnome, version722,” 2008.
http://xmisoft.org/, Viewed February 5, 2009.

F. Currim, S. Currim, C. Dyreson, S. Joshi, R. T. SnodgyaS. W. [31]
Thomas, and E. Roederrsschema: Support for data- and schema-
versioned XML documents,TimeCenter 2009. TR-91.

C. Dyreson, R. T. Snodgrass, F. Currim, and S. Currim,h&xaa-
mediated exchange of temporal XML data,” #R 2006: Proc. of the
25th Intl. Conf. on Conceptual Modelind.ecture Notes in Computer
Science, Vol. 4215, pp. 212-227, Springer-Verlag, 2006.

C. Dyreson, R. T. Snodgrass, F. Currim, S. Currim, and &hi
“Weaving temporal and reliability aspects into a schemasgayp,” Data
and Knowledge Engineeringol. 63, no. 3, pp. 752-773, 2007.

R. T. Snodgrass and I. Ahn, “Temporal databaséEEE Computer
vol. 19, no. 9, pp. 35-42, 1986.

F. Currim, S. Currim, C. E. Dyreson, and R. T. Snodgragstdle of
two schemas: Creating a temporal XML schema from a snapshehsa
with 7xschema,” inSth Intl. Conf. on Extending Database Technology[36]
pp. 559-560, Springer Berlin/Heidelberg, 2004.

S. Joshi, rXSchema - support for data- and schema-versioned XML
documents,” Master’s thesis, Computer Science Deparinibiversity [37]
of Arizona, August 2007.

R. T. Snodgrass, C. Dyreson, F. Currim, S. Currim, andJ&hi,
“Validating quicksand: Temporal schema versioning-kschema, Data
Knowledge Engineeringvol. 65, no. 2, pp. 223-242, 2008.

[28]
[2] [29]

(3]
(4]

[30]

[5] [32]

(33]
(6]

[34]
[7]

[8] [35]

9]

[20]
(38]

16

Z. Brahmia, R. Bouaziz, F. Grandi, , and B. Oliboni, “®&afa versioning
in Txschema-based multitemporal XML repositories,” Tech. .RER-
93, TimeCenter, December 2010.

] S. S. Chawathe, S. Abiteboul, and J. Widom, “Managingtdrical

semistructured data,Theory and Practice of Object Systemml. 5,
pp. 143-162, August 1999.

C. E. Dyreson, H. Lin, and Y. Wang, “Managing versions wéb
documents in a transaction-time web server,”WWWW '04: Proc. of
the 13th Intl. Conf. on World Wide Wepp. 422-432, ACM, 2004.

S. Y. Chien, V. J. Tsotras, and C. Zaniolo, “Efficient entes for
managing multiversionXML documentsThe VLDB Journal vol. 11,
no. 4, pp. 332-353, 2002.

D. Gao and R. T. Snodgrass, “Syntax, semantics, andigiah in the
Txquery temporal XML query language,” Tech. Rep. TR-72, T@ae-
ter, 2003.

K. Ngrvag, “Algorithms for temporal query operatorsi iXML
databases,” ireDBT Workshopspp. 169-183, 2002.

J. Chomicki, “Efficient checking of temporal integrigonstraints using
bounded history encodingACM Trans. on Database Systemsl. 20,
no. 2, pp. 149-186, 1995.

E. Bertino, C. Bettini, E. Ferrari, and P. Samarati, “Aocess control
model supporting periodicity constraints and temporasoeing,” ACM
Trans. on Database Systenwl. 23, pp. 231-285, 1998.

A. U. Tansel, “Temporal data modeling and integrity swaints in
relational databases,” I8CIS 2004Lecture Notes in Computer Science,
pp. 459-469, Springer, 2004.

] J. Chomicki and D. Niwinski, “On the feasibility of chidag temporal

integrity constraints,Journal of Computer and System Scienees. 51,
no. 3, pp. 523-535, 1995.

J. Chomicki and D. Toman, “Implementing temporal intggconstraints
using an active dbmsJEEE Trans. on Knowledge and Data Engineer-
ing, vol. 7, no. 4, pp. 566-582, 1995.

J. F. Roddick, “Schema evolution in database systemsarmotated
bibliography,” SIGMOD Reg.vol. 21, no. 4, pp. 35-40, 1992.

C. A. Curino, H. J. Moon, and C. Zaniolo, “Graceful deab schema
evolution: the prism workbench,” iWery Large Data Base2008.

C. Combi, S. Degani, and C. S. Jensen, “Capturing teaipmmstraints
in temporal er models,” irER '08: Proc. of the 27th Intl. Conf. on
Conceptual Modelingpp. 397—-411, Springer-Verlag, 2008.

] F. Currim and S. Ram, “Modeling spatial and temporal-tseted

constraints during conceptual database desigmidrmation Systems
Researchforthcoming.

A. Artale, C. Parent, and S. Spaccapietra, “Evolvingeots in temporal
information systems,Annals of Mathematics and Artificial Intelligence
vol. 50, no. 1-2, pp. 5-38, 2007.

R. T. SnodgrassPeveloping time-oriented database applications in
SQL San Francisco, CA: Morgan Kaufmann Publishers Inc., 2000.
J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, &dl. Snodgrass,
“On the semantics of “now” in database#ACM Trans. on Database
Systemsvol. 22, no. 2, pp. 171-214, 1997.

F. Currim and S. Ram, “Conceptually modeling windowsl drounds
for space and time in database constrain@gmmun. ACMvol. 51,
no. 11, pp. 125-129, 2008.

R. Snodgrass, “The temporal query language TQUECM Trans. on
Database Systemsol. 12, no. 2, pp. 247-298, 1987.

M. H. Bohlen, R. T. Snodgrass, and M. D. Soo, “Coalegdmtemporal
databases,” inProc. of the Intl. Conf. on Very Large Data Bases
(Bombay, India), pp. 180-191, September 1996.

R. T. Snodgrass, S. Gomez, and E. McKenzie, “Aggregateshe
temporal query language tquelEEE Trans. on Knowledge and Data
Engineering vol. 5, no. 5, pp. 826-842, 1993.

F. Rizzolo and A. A. Vaisman, “Temporal XML: modelingadexing,
and query processing;The VLDB Journal vol. 17, no. 5, pp. 1179—
1212, 2008.

S. W. Thomas, “The implementation and evaluation of geral rep-
resentations in XML,” Master’s thesis, Computer Sciencgdament,
University of Arizona, March 2009.

S. W. Thomas, R. T. Snodgrass, and R. ZhangBénch: Extending
XBench with Time,” Tech. Rep. TR-93, TimeCenter, Decembat®

B. B. Yao, M. T. Ozsu, and J. Keenleyside, “XBench - A Fimi
of Benchmarks for XML DBMSs.” Technical Report CS-TR-2082;
School of Computer Science, University of Waterloo, Decenm2002.
E. Rose and A. Segev, “Toodm — a temporal object-orgmiata model
with temporal constraints,” id0th Intl. Conf. on the Entity-Relationship
Approach pp. 205-229, 1991.

C. E. Dyreson and R. T. Snodgrass, “Supporting valitktindetermi-
nacy,” ACM Trans. on Database Systemsl. 23, no. 1, pp. 1-57, 1998.

Faiz Currim is with the Department of Man-
agement Information Systems at the University
of Arizona. He received his PhD from the Uni-
versity of Arizona, and was a professor at the
University of lowa prior to returning to Arizona.
His research interests include applications in
the areas of database design and management,
conceptual data modeling, database constraints,
spatial and temporal data, and XML Schema
management.

Sabah Currim is a Senior Data Warehouse
Analyst in the Mosaic Project at the University
of Arizona. She received her PhD from the Uni-
versity of Arizona. Her research interests include
conceptual data modeling, learning, database
design and management, data warehouse, XML
Schema management and IT Governance.

Curtis Dyreson is an Assistant Professor in
the Department of Computer Science at Utah
State University. He serves as the ACM SIG-
MOD DiSC Editor, the ACM SIGMOD Anthol-
ogy Editor and the Information Director for ACM
Transactions on Database Systems. His inter-
ests include temporal databases, native XML
databases, data cubes, and providing support
for proscriptive metadata. Prior to coming to
Utah State University, Curtis was a professor at
Washington State University, James Cook Uni-
versity, Aalborg University, and Bond University.

17

Richard T. Snodgrass received the BA degree
in physics from Carleton College and the MS
and PhD degrees in computer science from
Carnegie Mellon University. He joined the Uni-
versity of Arizona in 1989, where he is a profes-
sor of computer science. He is an ACM fellow.
Dr. Snodgrass was editor-in-chief of the ACM
Transactions on Database Systems, was ACM
SIGMOD Chair from 1997 to 2001, and has
chaired the ACM Publications Board, the ACM
History Committee, and the ACM SIG Govern-
ing Board Portal Committee. He served on the editorial boards of
the International Journal on Very Large Databases and the IEEE
Transactions on Knowledge and Data Engineering. He chaired the
Americas program committee for the 2001 International Conference on
Very Large Databases and the program committee for the 1994 ACM
SIGMOD Conference. He received the 2004 Outstanding Contribution
to ACM Award and the 2002 ACM SIGMOD Contributions Award. He
currently is a member of the Advisory Board of ACM SIGMOD, and
the Outstanding Contribution to ACM Award Committee. He chaired
the TSQL2 Language Design Committee, edited the book, the TSQL2
Temporal Query Language (Kluwer Academic Press), and has worked
with the ISO SQL3 committee to add temporal support to that language.
He authored Developing Time-Oriented Database Applications in SQL
(Morgan Kaufmann), was a coauthor of Advanced Database Systems
(Morgan Kaufmann), and was a coeditor of Temporal Databases: The-
ory, Design, and Implementation (Benjamin/Cummings). He codirects
TimeCenter, an international center for the support of temporal database
applications on traditional and emerging DBMS technologies. His re-
search interests include ergalics (the science of computation), temporal
databases, query language design, query optimization and evaluation,
storage structures, and database design. He is a senior member of the
IEEE and the IEEE Computer Society.

Stephen W. Thomas received the BS degree
in computer science from New Mexico State
University in 2006 and the MS degree in com-
puter science from the University of Arizona in
2009. He is currently pursuing the PhD degree
in computer science from Queen’s University in
Canada. His research interests include temporal
databases, text mining, and empirical software
engineering.

Rui Zhang received the BEng degree in com-
puter science from the Nanjing University of
Technology in 2004, and the MSc degree in com-
puter science from the University of Nebraska
at Omaha in 2006. He is currently a PhD can-
didate in the Department of Computer Science
at the University of Arizona. His interests include
Database technologies and XML processing.

i S ‘(‘w“}\\‘

APPENDIX
| ALGORITHMS

In this appendix we provide the major algorithms for chegki
sequenced and non-sequenced constraints. This mateatal e
orates on the summary of theXMLL INT implementation

provided in the paper.

CheckSequencedConstrainigonstraints,
temporal_document):

foreach constraint in constraints do
temporal_document <

FilterTemporal Document(
constraint, temporal_document)
foreach t in ExtractTimePoints(
temporal_document) do
slice <— ExtractSlice(t, temporal_document)
if "Validate(slice) then
return false

end if
end

end
return true
Algorithm 1: Checking Sequenced Constraints

n

18

versions within a version node are assumed to be contiguous;

hence, only one child will ever be extractednif is returned
from the root, then there is a problem with the timestamps
:rdeXMLL INT will return false.

After the slices are extracted, the routinéulidate is
invoked to verify the sequenced constraints. In our current
implementation, we utilize the DOM based validation fagili
provided by Java.

The number oftime_periods (slices) and the size of each
slice dominate the overall complexity of checking sequdnce
constraints. Since th&xtractSlice routine traverses the
entire document tree, its complexity in the worst case (when
at_time is greater than all theegin_times) is Of), wheren
is the number of nodes in the document. Assuming the number
of time points in the temporal documentrig, the complexity
of Algorithm 1 is O - m).

CheckNonSequencedConstrain{gonstraints,
temporal_document):
foreach constraint in constraints do
evaluation_windows <+ GetEvaluationWindows(
constraint.evaluation_window_size,
constraint.slide_size, temporal_document)
foreach eval_window in evaluation_windows do
results < ExtractNodes(

Algorithm 1 first shrinks the inputemporal_document by
removing irrelevant nodes in th&ilterT emporal Document
routine, resulting in a small fraction of the original docu-
ment. The relevant nodes are determined by the constraints,
particularly the values of thesel ector andfield ele-
ments. The nodes in the document that are not referenced
by these elements will not be kept in the filtered document.
It then iterates through the time points, which are the times
when changes occur in the document, computed by routine

eval_window,
constraint.identi fier,
constraint.xpath,
temporal_document)
if "ValidateSpecificConstraint(
constraint, results) then

| return false
end

end

FEaxtractTimePoints.

ExtractSlice(at_time, node):
if IsVersionNode(node) then
foreach child in node.getC'hildNodes() do
if child.begin_time < at_time A
at_time < child.end_time then
| return ExtractSlice(at_time, child)
end
end

return nsil
else

slice < node
foreach child in node.getChildNodes() do
extract < ExtractSlice(at_time, child)
if extract # nill then
slice.addChild(extract)

end if
end
return slice

end
Algorithm 2: Slicing

end
return true
Algorithm 3: Checking Non-Sequenced Constraints

ExtractNodeq evaluation_window, identifier,
xpath_query, temporal_document):

result < new map
candidate_nodes < X Path.Evaluate(
identi fier, zpath_query, temporal_document)
candidate_nodes < Filter N odesby EvalW indow(
evaluation_window, candidate_nodes)

foreach can_node in candidate_nodes do
| result.add(can_node.identifier, can_node.value)
end

return result
Algorithm 4: Extracting Related Nodes for Non-Sequenced
Constraints

Algorithm 3 validates all the non-sequenced constraints.
For each constraint, its evaluation windows are first comghut
based on (i) the period of the temporal document, (ii) the

A recursive routine ExtractSlice, presented as Algo- evaluation window size (the length of each period in the

rithm 2, is then invoked to extract the corresponding slidee

temporal document during which this constraint appliesjl a

19

(iii) the slide size (the distance between the begin times &PPENDIX
successive evaluation windows). Il CONSTRAINTS USED IN EVALUATION

EaljtzaCtNOdeS e>r<]tracts onI)|/ the nodes from the te,n;]'During our evaluation, we used the following three non-
poral documents that are relevant to a constraint, wit g%quenced constraints. To produce fair execution timdtsesu

each evalua'ulor? wmdow.' We. discuss .t.h's routine Shorﬂ%hen we evaluated one of the constraints, we deactivated the
ValidateSpeci ficConstraint is then utilized to examine other two in the annotations document

whether the extracted nodes violate the constraint. This r, . .
. hich check Il t f d nEEai <!-- Non-sequenced Identify Constraint: -->
.tlne,W. ICh checks all four ypesp non-seque_nce co) All<i-. ItemIDs are uni que for books and may
is straightforward. For a cardinality constraint, the meat|<'-- not ever be :ne- used. -->
P < t t="it ' >
groups each distinct key and accumulates the count of octUzonseqkey namee booki Dkey” di mensi on="val i dTi "
rences of each key. Similarly, for a unique constraint,imist %on\/fndow:"/36500">
. . . , . < =" />
keys are grouped. But in this case, if a key’s count is more tha Sield xpather@d />
one, this constraint is considered to be violated. In chegki /s/ nonSeqKey>
. . . </t
a referential constraint, the routine evaluates the XPath &' °™
pression of the convgnnonal constraint that is referertwed ~\, "sequenced Referential Integrity: -->
the temporal constraint. The existence of the values of the- A related itemshould refer to a valid
nodes that are being checked is examined against the VAlH§§, tarere toms < oY AT tem i prine. e
returned from evaluating the conventional constraintalyn | <nonSeqkeyref nane="relateditenRl" refer="item D'>
. e . . <sel ector xpath="." />
in verifying a datatype constraint, each pair of CONSE€UV i q xpath="rel ated_items//related_iten/itemid />
values specified by the constraint are examined to determine/ nonSSquy; ef >)
. . <item dentifier nane="item.id"
whether the value transition rules are violated. _ ti reDi mensi on="t r ansacti onTi me" >
To provide the routiné’ alidate Speci ficConstraint with <field path="@d"/ >
the proper input, routin@ztract Nodes (Algorithm 4) evalu- | _, =/1tem dentifier>
ates XPath expressions specified by the constraints and fike
the document to produce thigems each identified by an|<'-- Non-sequenced Cardinality: -->
identifier, to be validated by the non-sequenced constraints,| &g |7 3 cal endar year, an itemmy have up
mentioned above, this algorithm performs XPath evaluat|entem target="itent >
and document content filtering, returning a mapping frgm <"eSedcardinality nane=rbookAut horsiSeq” mEXCoours="6
identifiers to the values associated with each identifier. By slidesize="365">
evaluating the XPath expressions from the constraintstalse S°©fGtor xpath=" /> author/ @ut hor i d* />
of candidate nodes is extracted from the temporal documgent/ nonseqcar di nal i ty> -
f item dentifier nane="item.id"
These nodes are then processed to retain only the nodes T e et oma ey ans et onTi e
the current evaluation window. For eachndidatenode the <field path="@d"/>
distinctidentifiersare grouped and stored in tresultvariable. | _, fﬁ 'eﬁnfm dentifier>
The complexity of Algorithm 4 is determined by the number
of candidate nodes in the document as well as the number Additionally, we used the following four sequenced con-
of time pointsm. The overall complexity is thus @(- m). Straints. Again, to produce fair execution time resultsewh
The complexity of Algorithm 3 is determined primarily byevaluating one of the constraints, we deactivated the other
the number of evaluation windowsas well as the complexity three in the schema.
of Algorithm 4, and is thus Q(n - m). <!-- Sequenced Cardinality: -->
P ; ; ; ; l-- An itemnust have between 1 and 4 authors. -->
This worst case be_hawor is consistent Wlth the_expe s ol onent ref="aut hor" m nQccurs="1" maxCecur s="4"/>
mental results given in Section 9.3. Concerning Figure'5—
for sequenced constraints, the number of nodgsafid the |<i-- sequenced Identify Constraint: -->
number of evaluation windows/)(are both fixed, with the|<':- !temISB\s are unique. -->
. . . . B <xs:uni que nane="| SBNUni que" >
number of slices 7)) varied on the x-axis, implying the <xs:selector xpath="_//itemattributes"/>
observed linear growth in total execution time. Concernipg<xs: i :Lg>m= I'SBN'/>
Figure 6, for non-sequenced constraints, the number ofsnode—
and number of evaluation windows are still fixed, excepi-. sequenced Referential Integrity: -->
for cardinality constraints, which has a smaller windowesiz jx'sjkg\yfﬁgﬁtef?i 't;;mDézou' drefer to avaliditem-->
resulting in an increasing number of evaluation windows |aS<s: sel ect or xpath=".//itent/>

the number of slices increases. Thus referential integuity | <xs:field xpath="@d"/>

=

o

. . . e s . . - </ xs: key>
identity constraints exhibit linear behavior, while cavality |<xs:keyref name="iten DRef" refer="item D'>
constraints exhibit quadratic behavior. <xs:selector xpath=".//itenlirelated_itens/related_itenl/>

. . <xs:field xpath="item.id"/>
The implementation of the XMLL INT tool can be down-| < xs: keyref >

loaded (from http://cgi.cs.arizona.edu/apps/tauXSaigm

<l-- Sequenced Datatype: -->
<l-- The nunber_of _pages nust be of type short. -->
<xs: el enent nanme="nunber _of _pages" type="xs:short"/>

