
ADAPTIVE FORWARDING IN NAMED DATA NETWORKING

by

Cheng Yi

BY:© =©

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2014

2

THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dis-
sertation prepared by Cheng Yi
entitled Adaptive Forwarding in Named Data Networking
and recommend that it be accepted as fulfilling the dissertation requirement for the
Degree of Doctor of Philosophy.

Date: 20 May 2014
Christopher Gniady

Date: 20 May 2014
John Hartman

Date: 20 May 2014
Richard Snodgrass

Date: 20 May 2014
Beichuan Zhang

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to the Graduate College.
I hereby certify that I have read this dissertation prepared under my direction and
recommend that it be accepted as fulfilling the dissertation requirement.

Date: 20 May 2014
Dissertation Director: Beichuan Zhang

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at the University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special per-
mission, provided that accurate acknowledgment of source is made. This
work is licensed under the Creative Commons Attribution-No Derivative
Works 3.0 United States License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd/3.0/us/ or send a letter to Cre-
ative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.

SIGNED: Cheng Yi

http://creativecommons.org/licenses/by-nd/3.0/us/
http://creativecommons.org/licenses/by-nd/3.0/us/

4

ACKNOWLEDGEMENTS

First, I would like to sincerely and wholeheartedly thank my advisor, Dr. Beichuan
Zhang, for providing invaluable guidance and support during my Ph.D. study. This
dissertation would not have been possible without his patience and persistent help.
His rigor and passion in research will have a profound impact on my future career.

Next gratitude goes to my dissertation committee members, Dr. Chris Gniady,
Dr. John Hartman, and Dr. Richard Snodgrass. Their constructive suggestions
and comments are very helpful for improving this dissertation. It is my honor and
privilege to have worked with every one of them.

I am deeply grateful to our collaborators from the NDN project team, especially
Dr. Alexander Afanasyev and Dr. Lixia Zhang from UCLA, and Dr. Lan Wang
from University of Memphis. I benefited tremendously from the stimulating and
insightful discussions with them.

I also want to thank my colleagues from the Network Research Lab: Yifeng
Li, Jerald Abraham, Junxiao Shi, Yi Huang and Varun Khare. Their support and
cooperation helped me immensely in the completion of this dissertation work. It is
a great pleasure to have worked with them.

Many thanks to the good friends I met at the University of Arizona: Mingsong
Bi, Rui Zhang, Lei Ye and Jinyan Guan. They made my Ph.D. experience enjoyable
and memorable. Thanks also to Tom Lowry for his patient assistance and Bridget
Radcliff for being a great academic advisor.

Finally, I owe my utmost gratitude to my family who have given me their uncon-
ditional love and support throughout my whole life. Their trust and understanding
helped me overcome many obstacles during the Ph.D. process. None of my accom-
plishments would have been possible without them.

5

DEDICATION

I dedicate this dissertation work to my dear family. A special feeling of gratitude

to my beloved wife Fengqiong Huang who is always encouraging and supportive,

my newborn angel Jayden Yi who gives me immense motivation and strength, and

my amazing parents Tongxiu Chen and Mengsheng Yi who love me more than

themselves.

6

TABLE OF CONTENTS

LIST OF FIGURES . 9

LIST OF TABLES . 11

LIST OF PSEUDO-CODES . 12

ABSTRACT . 13

CHAPTER 1 INTRODUCTION . 14

CHAPTER 2 BACKGROUND . 18
2.1 IP Architecture . 18
2.2 NDN Architecture . 20

2.2.1 Packets and Names . 20
2.2.2 Forwarding Process . 22
2.2.3 Datagram State . 25
2.2.4 Routing . 26

2.3 CCNx Overview . 27
2.3.1 CCNx Forwarding Algorithm 27
2.3.2 Limitations of CCNx . 28

CHAPTER 3 OVERVIEW OF APPROACH 31
3.1 Forwarding Plane Design . 31
3.2 Failure Handling . 32

3.2.1 Failure Handling with Adaptive Forwarding 33
3.2.2 Role of Routing in NDN . 34

3.3 Congestion Control . 34
3.3.1 Simple Interest Limiting . 35
3.3.2 Dynamic Interest Limiting . 35

3.4 Contributions . 36

CHAPTER 4 FORWARDING PLANE DESIGN 37
4.1 PIT Design . 37
4.2 FIB Design . 38

4.2.1 Routing Plane Information . 38
4.2.2 Forwarding Performance Information 39
4.2.3 Interface Ranking . 41

TABLE OF CONTENTS – Continued

7

4.3 BestRoute Forwarding Strategy . 43
4.4 Prefix Hijack: A Case Study . 44

4.4.1 A Simple Example . 45
4.4.2 Path Splicing . 47
4.4.3 Simulation Setup . 49
4.4.4 Simulation Results . 49

CHAPTER 5 FAILURE HANDLING . 53
5.1 Interest NACK . 53

5.1.1 NACK Design . 53
5.1.2 Updated Forwarding Plane Design 54

5.2 Failure Handling with Adaptive Forwarding 56
5.3 Role of Routing . 62

5.3.1 Routing in IP . 62
5.3.2 Routing in NDN . 64

5.4 Routing and Forwarding Coordination 65
5.4.1 Interface Ranking . 65
5.4.2 Probing . 67
5.4.3 Improving routing stability and scalability 69

5.5 Benefit for Routing . 70
5.5.1 Simulation Setup . 70
5.5.2 NDN without Routing . 71
5.5.3 Impact of Routing Convergence Time 73
5.5.4 Comparison with IPFRR . 76
5.5.5 Prefix Unreachable . 78
5.5.6 Probing Overhead . 79
5.5.7 Routing Overhead . 81

CHAPTER 6 CONGESTION CONTROL 85
6.1 A Simple Interest Limiting Mechanism 85

6.1.1 Evaluation . 86
6.2 Dynamic Interest Limiting . 90
6.3 DIL Design . 92

6.3.1 Dynamic Interest Limit Adjustment 92
6.3.2 Random Early NACK . 93
6.3.3 Link-layer Congestion Detection 95
6.3.4 Fair Interest Limiting . 96

6.4 Evaluation . 99
6.4.1 Simulation Setup . 100

TABLE OF CONTENTS – Continued

8

6.4.2 Efficiency of DIL in Native NDN Networks 101
6.4.3 Efficiency of DIL in NDN Overlay Networks 107
6.4.4 Fairness of DIL . 111
6.4.5 Multipath Congestion Control with DIL 115

CHAPTER 7 DISCUSSION AND FUTURE WORK 118
7.1 Forwarding State Overhead . 118
7.2 New Routing Schemes . 119
7.3 Congestion Control . 121

CHAPTER 8 RELATED WORK . 123
8.1 Forwarding Plane Design . 123
8.2 Fast Failure Recovery . 124
8.3 Congestion Control . 125

8.3.1 Congestion Control in IP . 125
8.3.2 Congestion Control in NDN 127

CHAPTER 9 CONCLUSIONS . 128

REFERENCES . 130

9

LIST OF FIGURES

1.1 IP and NDN Hourglass Architecture, reused from [36] 15

2.1 IPv4 Packet . 19
2.2 NDN Packets from [36] . 20
2.3 NDN Major Data Structures . 23
2.4 Interest and Data processing in NDN 24
2.5 CCNx Retransmission Timeout . 29

4.1 Forwarding State in PIT and FIB . 38
4.2 Interface Color Transition . 39
4.3 A Sample FIB Entry . 40
4.4 Sample PIT Entry for New and Subsequent Interests. 43
4.5 Prefix hijack: IP and NDN-BestRoute forwarding before the attack. . 45
4.6 Prefix hijack: IP forwarding during the attack. 46
4.7 Prefix hijack: NDN-BestRoute forwarding during the attack. 47
4.8 Reachability during prefix hijack . 50
4.9 Retransmissions needed during prefix hijack 52

5.1 Reachability after link failures . 57
5.2 Data retrieval time under different link failure probability 58
5.3 Path stretch under different link failure probability 60
5.4 A simple network example. 67
5.5 CDF of time to find working paths with and without routing. 72
5.6 Number of Interests sent at different time. 73
5.7 Packet delivery performance in IP. 74
5.8 Packet delivery performance in NDN-BestRoute. 75
5.9 CDF of packet loss rate under different routing protocols. 76
5.10 Comparison between NDN-BestRoute and IPFRR. 77
5.11 CDF of ratio of hop count of NDN-BestRoute over IP. 79
5.12 CDF of number of hops for probing Interests and Data. 80
5.13 Number of Interests forwarded by each node. 81
5.14 Routing overhead in AS1239 PoP-level topology. 82
5.15 Routing overhead in AS1239 router-level topology. 84

6.1 Link utilization under congestion . 87
6.2 Flow finish time under congestion . 90
6.3 Router Model for Dynamic Interest Limiting. 92

LIST OF FIGURES – Continued

10

6.4 Router Model for Random Early NACK. 94
6.5 An NDN overlay example. 95
6.6 Link-layer Congestion Detection. 96
6.7 A 4-Node Linear Topology. 99
6.8 A 6-Node Dumbbell Topology. 99
6.9 Throughput and finishing time for linear topology. 102
6.10 CDF of application delay for linear topology. 104
6.11 Average queue length for linear topology. 104
6.12 CDF of application delay with random Data size. 104
6.13 Throughput and finishing time with random Data size. 105
6.14 Throughput and finishing time with caching. 107
6.15 CDF of application delay with caching. 108
6.16 CDF of application delay under 2-way traffic. 108
6.17 CDF of application delay for overlay scenarios. 108
6.18 Throughput and finishing time under 2-way traffic. 109
6.19 Throughput and finishing time for overlay scenarios. 110
6.20 Throughput and finishing time for dumbbell topology. 112
6.21 Delay for dumbbell topology. 113
6.22 Throughput and finishing time with different Interest rate. 113
6.23 Throughput and finishing time with different RTT. 115
6.24 Throughput and finishing time with different starting time. 116
6.25 Finishing time for DIL and AIMD. 117
6.26 Finishing time for DIL and TCP. 117

11

LIST OF TABLES

5.1 Topologies used in the simulations. 70

6.1 Summary of notation used for DIL 91

12

LIST OF PSEUDO-CODES

1 CCNx Forwarding Strategy . 27

2 NDN-BestRoute Interest Processing 41

3 BestRoute Forwarding Strategy . 42

4 NDN-BestRoute Interest NACK Processing 55

5 ProbingDue Algorithm . 68

6 Probing Algorithm . 69

7 Availability of interface i for prefix n 97

13

ABSTRACT

Named Data Networking (NDN) is a recently proposed new Internet architecture.

By naming data instead of locations, it changes the very basic network service

abstraction from “delivering packets to given destinations” to “retrieving data of

given names.” This fundamental change creates an abundance of new opportunities

as well as many intellectual challenges in application development, network routing

and forwarding, communication security and privacy.

The focus of this dissertation is a unique feature introduced by NDN: its adaptive

forwarding plane. Communication in NDN is done by exchanges of Interest and Data

packets. Consumers send Interest packets to request desired Data, routers forward

them based on data names, and producers answer with Data packets, which take

the same path of Interests but in reverse direction. During this process, routers

maintain state information of pending Interests. This state information, coupled

with the symmetric exchange of Interest and Data, enables NDN routers to detect

loops, observe data retrieval performance, and explore multiple forwarding paths,

all at the forwarding plane. Since NDN is still in its early stage, however, none of

these powerful features has been systematically designed, evaluated, or explored.

In this dissertation, we present a concrete design of NDN’s forwarding plane

to make the network resilient and efficient. First, we design the basic adaptation

mechanism and evaluate its effectiveness in circumventing prefix hijack attacks. Sec-

ond, we propose a novel NACK mechanism for fast failure detection and evaluate

its benefits in handling network failures. We also show that a resilient forwarding

plane makes routing more stable and more scalable. Third, we design a congestion

control mechanism, Dynamic Interest Limiting, to adapt traffic rate in a hop-by-hop

and multipath fashion, which is effective even with a large number of flows in a large

network topology.

14

CHAPTER 1

INTRODUCTION

The hourglass architecture of today’s Internet (see Figure 1.1) has lead to a great

success by allowing both upper and lower layers of the middle thin waist to in-

novate independently. As the universal network layer at the thin waist, IP was

originally designed for communication between two endpoints. With the rapid and

continued growth of e-commerce, digital media, social networking and smartphone

applications, however, Internet communication is becoming increasingly dominated

by content distribution and retrieval. The Internet is getting exceedingly complex

in its attempt to address the distribution problem with a point-to-point communi-

cation protocol. Therefore, researchers have started to investigate new architectures

to accommodate this emerging communication pattern. As a result, different archi-

tecture designs (e.g., [6, 10, 11, 37, 39]) have been proposed under a general network

research approach called information-centric networking (ICN).

Named Data Networking (NDN) [36, 73] is the leading design of recently pro-

posed ICN architectures. It inherits the hourglass shape of the IP architecture, but

replaces the end-to-end data delivery model at the thin waist by a receiver-driven

data retrieval model (see Figure 1.1). As a result, NDN shifts the network ser-

vice semantics from “delivering packets to given addresses” to “retrieving data of

given names.” NDN packets carry data names rather than source and destination

addresses. Data consumers express Interests in the form of desired data names

without specifying where the data may be located. Routers satisfy the Interests

by retrieving the Data, which are bound to the names by cryptographic signatures,

from router caches, intermediate data repositories, or original data producers. The

NDN architecture offers a wide range of benefits, including built-in multicast data

delivery, in-network caching, as well as data-centric security (see Chapter 2). This

dissertation studies adaptive forwarding, a unique and powerful feature introduced

15

Figure 1.1: IP and NDN Hourglass Architecture, reused from [36]

by NDN.

A network’s architecture design determines the shape and form of its forward-

ing mechanism. A typical router today contains a routing plane and a forwarding

plane. The routing plane defines the part of the router architecture that constructs

the routing table, while the forwarding plane makes forwarding decisions for in-

coming packets. Today’s IP Internet accomplishes packet delivery in two phases.

At the routing plane, routers exchange routing updates and select the best routes

to construct the forwarding table (FIB); at the forwarding plane, routers forward

packets strictly following the FIB. Thus, IP routing is stateful and adaptive, while

IP forwarding is stateless and has no adaptability of its own. This smart routing,

dumb forwarding approach places the responsibility of robust data delivery solely

on the routing system. Consequently IP’s routing plane is also referred to as the

control plane, and its forwarding plane the data plane.

NDN has a smart and adaptive forwarding plane as opposed to IP. While routing

in an NDN network serves the same purpose as in an IP network, i.e., computing

routing tables, the forwarding plane in an NDN network is split into a two-step

process: consumers first send out Interest packets, then Data packets flow back

16

along the same path in the reverse direction. Routers keep state of pending In-

terests to guide Data packets back to requesting consumers. The pending Interest

state, together with the two-way Interest and Data exchange, enables NDN routers’

forwarding process to measure performance of different paths, quickly detect fail-

ures and retry alternative paths. This unique feature of NDN is called adaptive

forwarding.

NDN is the first network architecture that provides an adaptive forwarding plane.

With adaptive forwarding, NDN routers can detect and recover from network prob-

lems quickly without waiting for global routing convergence. For example, NDN

routers can estimate the round-trip time (RTT) for each name prefix by recording

pending Interests and observing Data packets coming back. Network problems can

be detected by setting up a timer based on the RTT estimate: if Data is not re-

ceived before the timer expires, there may be potential forwarding problems (e.g.,

link failures) in the network. Once problems are detected, NDN routers can start

exploring alternative paths immediately using local state information. Since Inter-

est forwarding is loop-free (see Section 2.2.2), routers can effectively utilize multiple

paths to recover from the problems.

The idea of adaptive forwarding appears promising. However, there has not been

any systematic design of NDN’s forwarding plane that capitalizes on this powerful

feature. The seminal paper by Jacobson et al. [36] only sketched out a blueprint

of the overall NDN architecture; the operations of its forwarding plane were not

fully explained and the design specifics remained to be filled in. CCNx1 [5] is

an open source prototype implementation of NDN. However, it only serves as a

proof of concept. Its forwarding algorithm is not well documented and has several

limitations (see Section 2.3). Additionally, the performance of adaptive forwarding

has not been extensively evaluated. In this dissertation, we address the limitations

of the CCNx implementation by providing a new forwarding plane design for NDN

that fully exploits adaptive forwarding. We also comprehensively evaluate NDN’s

packet forwarding performance under adverse conditions, and compare it against IP

1Version 0.8.1 as of when this dissertation was written.

17

and IP-based solutions.

The rest of this dissertation is organized as follows. Chapter 2 gives a brief

overview of the NDN architecture. Chapter 3 summarizes the approach of this dis-

sertation. Chapter 4 presents our own design of NDN’s forwarding plane. Chapter 5

studies failure handling and role of routing in NDN. Chapter 6 presents a novel con-

gestion control mechanism for NDN. Chapter 7 discusses the potential directions for

future research. Chapter 8 summarizes related work and Chapter 9 concludes this

dissertation.

18

CHAPTER 2

BACKGROUND

In this chapter, we first briefly review the IP architecture. Then we introduce the

overall NDN architecture as well as the benefits it provides compared to IP.

2.1 IP Architecture

Today’s IP Internet has a layered hourglass architecture (see Figure 1.1). Each

layer in the architecture provides a different functionality; lower-layer protocols

define interfaces to be used by upper-layer protocols. IP is the primary network-

layer protocol at the narrow waist of the hourglass. On top of IP are transport-

layer protocols (e.g., TCP), application-layer protocols (e.g., HTTP) and actual

applications (e.g., WWW), while link-layer protocols (e.g., Ethernet), physical-layer

protocols (e.g., CSMA) and actual transportation medium (e.g., optical fiber) reside

below IP. This architecture allows protocols at both upper and lower layers of IP to

innovate independently, leading to the continued success of the Internet.

As a network-layer protocol, IP is responsible for delivering packets across the

network. Since IP was designed for point-to-point communications, it names end

points by assigning them globally unique IP addresses. IP communication is sender-

driven: the sender constructs an IP packet, puts both the source and destination

addresses into the packet header (see Figure 2.11) and sends it to the network.

IP routers forward the packet based on the destination address following the FIB,

which is constructed by IP routing protocols. Routers announce IP prefixes (e.g.,

1The source and destination addresses in IPv4 packets are only 32 bits long, providing a maxi-

mum of 232 addresses. As a result, IPv4 faces the address exhaustion problem where the pool of

unallocated IPv4 address is depleted. IPv6 was introduced to address this problem, but it is out

of the scope of this dissertation and thus not described here.

19

Figure 2.1: IPv4 Packet

150.135.68.0/24) they serve to the routing protocol, which then distributes the prefix

as well as connectivity information to the rest of the network. When a router receives

routing information from its neighbors, it may re-compute the routing table and

update the FIB accordingly. IP FIB provides mapping from IP prefixes to the

best next hops (e.g., 150.135.68.0/24 → intf1). When an application receives an IP

packet, it can simply swap the source and destination addresses of the packet and

send responses back to the network.

With the emergence of new applications such as e-commerce, digital media, social

networking and smartphones, the Internet communication is becoming increasingly

content-centric. The Internet has many limitations and grows exceedingly complex

in the attempt to address the content distribution problem with a point-to-point

communication protocol. First, a Domain Name Service (DNS) system is required to

translate data names into IP addresses. Second, IP multicast is not widely deployed

due to its complexity, leading to tremendous waste of resources when multiple users

are accessing the same data. Third, in-network caching is not supported by IP. Large

content providers have to use Content Distribution Networks (CDN) to provide

temporary caching of content. Fourth, IP is not secure against malicious attacks.

Although many efforts have been devoted to securing the communication channels,

security breaches still keep increasing. As a result, Jacobson et al. proposed Named

20

Figure 2.2: NDN Packets from [36]

Data Networking to address the limitations and better accommodate the emerging

communication patterns.

2.2 NDN Architecture

NDN is a receiver-driven, network-layer communication protocol. This section gives

a concise overview of the NDN architecture. A more detailed description can be

found elsewhere [36, 73].

2.2.1 Packets and Names

NDN retains IP’s hourglass architecture, but at the thin waist it names content

instead of communication endpoints (see Figure 1.12). This fundamental change

leads to the shift of communication paradigm from location-centric to data-centric.

All communication in NDN is performed using two distinct types of packets: Interest

and Data (see Figure 2.2). Both types of packets carry a name, which uniquely

identifies a piece of data that can be carried in one Data packet. To retrieve Data,

a consumer puts the name of desired data into an Interest packet and sends it

2With NDN as the new network-layer protocol, old network-layer and transport-layer protocols

such as IP and UDP are pushed down as link-layer protocols in the new architecture. Applications

also need to be re-designed to work with the new network layer.

21

to the network. Routers use this name to forward the Interest towards the data

producer(s), and the Data packet whose name matches the name in the Interest is

returned to the consumer.

Each Interest packet also carries a selector field which provides more specific

descriptions of the desired Data, and a nonce field which is a random number gen-

erated by the consumer. A more detailed explanation of nonce can be found in

Section 2.2.2. A Data packet carries the actual data, descriptions about the data,

as well as a cryptographic signature that binds the data to the name. Data packets

are signed by the producers when they are created. The signature allows consumers

to verify the integrity of Data packets; thus trust in a Data packet is decoupled from

how it is obtained or where it is from. NDN’s built-in data-centric security is useful

in many aspects. For example, signatures on network routing and control messages

provide a solid basis for securing routing protocols against attacks such as spoofing

and tampering.

NDN names are opaque to the network, i.e., routers do not understand the mean-

ing of the names. This enables applications to define their own naming schemes inde-

pendent from the network. NDN names are hierarchically structured. For example,

this dissertation file can be named /edu/arizona/cs/chengyi/dissertation.pdf

in NDN3, where ’/’ is the delimiter between name components. This hierarchical

structure has two advantages. First, applications can put the context and relation-

ship among data elements into the names. For example, segment 1 of version 2 of this

dissertation can be named /edu/arizona/cs/chengyi/dissertation.pdf/2/1.

Second, it allows name aggregation which is essential in scaling the routing sys-

tem. For example, let University of Arizona be an autonomous system in NDN, it

could distribute the name prefix /edu/arizona/ through routing protocols in a way

similar to distributing IP prefixes in today’s Internet.

Similar to IP packet delivery, an NDN network performs best effort data retrieval.

An Interest or Data packet can be lost, and it is the end consumer’s responsibility

3Similarly, the file can be named http://www.cs.arizona.edu/chengyi/dissertation.pdf

in today’s Internet.

22

to retransmit the Interest if it does not receive the desired Data after expected

RTT and it still wants the Data4. However, unlike IP’s location-centric approach

to data delivery, NDN packets carry data names instead of addresses. This basic

difference in design leads to two profound differences in data delivery operations.

First, although the name in an Interest packet is used to guide its forwarding, in

a way similar to how a destination address is used to guide the forwarding of an

IP packet, the Interest may cross a copy of the requested Data at an intermediate

router or data repository and bring the Data back, while an IP packet is always

delivered to the destination (if not dropped along the way). Second, an Interest

packet carries neither address nor name to identify the requesting consumer that

can be used to return the requested Data packet. Instead NDN routers keep track

of incoming interfaces for each forwarded Interest (a pending Interest) and use this

information to bring matched Data packets back to consumers.

2.2.2 Forwarding Process

To implement the Interest and Data forwarding functions, each NDN router main-

tains three major data structures: a Forwarding Information Base (FIB), a Pending

Interest Table (PIT), and a Content Store (CS) (see Figure 2.3). An NDN router’s

FIB is roughly similar to the FIB in an IP router except that it contains name pre-

fixes instead of IP address prefixes, and it may show multiple interfaces for a given

name prefix (see Section 4.2). By its name, the PIT stores all Interest packets that

have been forwarded but not yet satisfied. Each PIT entry records the name and

incoming interface(s) of the Interest(s), as well as the outgoing interface(s) to which

the Interest(s) has been forwarded. The CS provides temporary in-network storage

of the received Data packets. Each NDN router is also equipped with a Forwarding

Strategy module, which determines whether, when and where to forward an Interest

packet based on the information stored in these data structures (see Section 4.3).

4In this dissertation the term retransmit is used exclusively for end consumers re-expressing

Interests; another term, retry, is used when intermediate routers explore alternative paths after

network problems are detected.

23

Pending Interest Table (PIT)

Name
Incoming
Interfaces

Outgoing
Interfaces

Nonces

/foo/bar/0/1 1,4 3
374152,

214950328

Forwarding Information Base (FIB)

Prefix Interfaces

/foo 3,2,4,1

Content Store (CS)

Name Data

/foo/bar/0/0 «

Figure 2.3: NDN Major Data Structures

Figure 2.4 illustrates the forwarding process in NDN. When a router receives an

Interest packet, it first checks whether there is a matching Data in its Content Store.

If a match is found, the Data is immediately sent back to the interface from which the

Interest is received. Otherwise the Interest is checked against the entries in the PIT

using its name. If the name already exists in the PIT, it can be either a duplicate

Interest that should be dropped, an Interest retransmitted by the consumer that

may need to be forwarded using a different outgoing interface, or an Interest from

another consumer asking for the same Data which requires the incoming interface

of this Interest to be added to the existing PIT entry. This effectively constructs a

24

CS

PIT

FIB
Interest

forward

Downstream Upstream

ulookup miss qlookup hit

Dataforward

cache

u
discard Data

q

qData

u qu

q

add incoming
interface

u

drop or
NACK

Figure 2.4: Interest and Data processing in NDN

multicast tree for consumers requesting for the same content at the same time. If

the name does not exist in the PIT, the Interest is added into the PIT and further

forwarded to the interface chosen by the forwarding strategy module. When a Data

packet is received, its name is used to look up the PIT. If a matching PIT entry is

found, the router sends the Data packet to the interface(s) from which the Interest

was received and removes the PIT entry. As a result, Data packets always take the

reverse paths of Interests. If no match is found, the Data packet is unsolicited and

discarded. Each Interest also has an associated lifetime set by the consumer; a PIT

entry is removed if the Interest not satisfied before its lifetime expires.

A router may choose to cache a Data packet it receives in the CS depending on its

caching policy. Since a Data packet carries a name and a signature, it is meaningful

independent of its source and destination. Therefore Data packets cached in the

CS can be used to satisfy future Interests. CS is analogous to buffer memory in

25

IP routers, but IP routers cannot reuse a packet after it is forwarded. In-network

caching is useful in many circumstances. For example, a Data packet may get

dropped by the network due to congestion after being cached by router A. When

the consumer retransmits the Interest, it can retrieve the Data directly from router

A without being further forwarded to the actual producer.

Forwarding in NDN is loop-free. Each Interest carries a nonce field which, to-

gether with the Interest name, uniquely identifies the Interest. A router records

the nonce of each Interest they receive in the PIT entry; hence it can tell whether

a newly arrived Interest carrying the same name as an existing pending Interest

is a previously forwarded Interest that looped back (in which case the Interest is

dropped). Therefore Interest packets cannot loop. Because Data packets follow the

reverse paths of the corresponding Interests, they do not loop either. This enables

routers to freely retry multiple alternative paths in Interest forwarding. Notice that

retry should be limited in scope and duration because (1) routers are not ultimately

responsible for getting the Data, and (2) if all routers along the path perform retry,

it may potentially lead to Interest explosion and significant overhead.

In the absence of packet loss, one Interest packet retrieves exactly one Data

packet on each interface, providing a flow balance. When transferring a large content

that does not fit into one Data packet, this flow balance can provide a fine-grained

feedback loop to every node on the forwarding path. This is essentially similar to

ACKs in TCP, except that ACKs only provide feedback to end hosts.

2.2.3 Datagram State

An NDN router maintains an entry in its PIT for every pending Interest packet,

thus we say the router contains “datagram state.” This state leads to a closed-

loop, two-way symmetric packet flow: over each link, every Interest packet pulls

back exactly one Data packet, maintaining one-on-one flow balance, except in (rare)

cases where packets get lost or matching data does not exist.

It is worth noting that NDN’s datagram state differs in fundamental ways from

the virtual circuit state for ATM or MPLS. First, a virtual circuit sets up a single

26

path between an ingress-egress router pair; when it breaks, the state has to be

reestablished for the entire path. Second, a virtual circuit pins down the path to be

used for packet forwarding; if any of the links along the path gets overloaded due to

traffic dynamics, packets on the same virtual circuit cannot be diverted to adapt to

the load changes. In contrast, NDN’s datagram state is per-Interest, per-hop. At

each hop, the router makes its own decision on where to forward an Interest. When

a router crashes or a link fails, the failure only affects the Interests at that specific

location; the previous hop routers can quickly detect the failure and get around the

problematic area.

2.2.4 Routing

NDN packets are routed and forwarded by names. Therefore, NDN does not have the

address-related issues as in the IP architecture. First, there is no address exhaustion

problem as in IP since the namespace in NDN is unbounded. Second, there is no

NAT traversal problem since neither public nor private addresses are needed in the

routing system. Finally, address assignment and management is no longer required

in local area networks.

Conventional routing algorithms such as link-state or path-vector can be used

in NDN. Instead of IP prefixes, NDN routers announce name prefixes that they are

willing to serve to the routing protocols, which then propagate these announcements

across the network. Other routers construct their own FIBs according to the routing

announcements. Multiple routers can announce the same name prefix, leading to

natural anycast routing. Traditional IP routing protocols such as OSPF can be

easily adapted to route on name prefixes [65]. By treating names as sequences of

opaque components, routers can perform component-wise longest prefix match of

Interest names against the FIB.

27

Pseudo-code 1 CCNx Forwarding Strategy

1: function Forward(Interest)

2: for each Intf in Sort(AvailableInterfaces) do

3: Transmit(Interest, Intf)

4: Wait(t)

5: if Satisfied(Interest) then

6: t ← t × (1 - 1

128
)

7: Return

8: end if

9: t ← t × (1 + 1

8
)

10: end for

11: end function

2.3 CCNx Overview

CCNx is an open-source implementation of the NDN protocol. It is currently de-

ployed on the NDN Testbed [8], where NDN applications such as lighting control [19],

chatting [74] and video production [40] are running. The successful deployment of

NDN Testbed proves that the NDN architecture works well in real-world commu-

nications. In this section, we present a high-level overview of CCNx’s forwarding

plane design and discuss its limitations.

2.3.1 CCNx Forwarding Algorithm

The forwarding plane design of CCNx has not been well documented. A high-

level abstraction of CCNx’s Interest forwarding algorithm5 is summarized in Pseudo-

code 1. The algorithm iterates through all interfaces except the one(s) where the

Interest is received. The interfaces are tried one-by-one in a sorted order: the best

interface (the one with the shortest RTT) is tried first, followed by the second best

interface; the rest of the interfaces are tried in the order of when they are added

5This pseudo-code is based on CCNx version 0.8.1. The actual implementation is much more

complex and scattered all over the code. Interested readers can refer to the code for more details.

28

to the FIB entry. The router will start a timer t after forwarding the Interest to

an interface. The algorithm returns if Data is received before the timer expires;

otherwise the router will continue to forward the Interest to the next interface. In

the worst case, the router will try all available interfaces before it gives up.

The setting of timer t is essential to the performance of the forwarding algorithm.

A large t may lead to long fault recovery time while a small t will cause extra

overhead. In CCNx, t is set to be the RTO (Retransmission Timeout) for the best

interface, and small random numbers in milliseconds for the rest of the interfaces.

The value of the RTO is computed as follows. It has an initial value of a few random

milliseconds. If Data is not received before the RTO expires, it will be increased by

1/8; otherwise it will be decreased by 1/128. Therefore the RTO value will slowly

increase until it exceeds the real RTT, after which it keeps oscillating around the

RTT. Suppose the initial RTO value is 10 ms and the real RTT is 100 ms, the RTO

value for each Interest is illustrated in Figure 2.5. An Interest will be forwarded to

two or more interfaces when the RTO value is smaller than the real RTT, which

occurs around once every 16 Interests in this scenario. As a result, CCNx routers

are able to recover from network faults within the RTT time scale, at the cost of

frequently sending extra probing Interests to the network. Consider that probing

is performed by every router for every name prefix, the actual number of extra

Interests in the network is not negligible.

2.3.2 Limitations of CCNx

The CCNx forwarding algorithm is simple and proven to work on the NDN Testbed.

However, it has many limitations as summarized below.

• The interface ranking method is restricted. Interface ranking determines the

order of how interfaces will be tried. Since a CCNx router only records the

two fastest interfaces for each name prefix, there is no way to rank interfaces

using metrics other than RTT, e.g., hop count. In addition, there is no way to

enforce routing policy. Routing protocols should be able to provide better and

29

 0

 20

 40

 60

 80

 100

 120

 20 40 60 80 100 120 140 160 180 200

T
im

e(
m

s)

Index of Interests

Real RTT
RTO Value

Figure 2.5: CCNx Retransmission Timeout

more flexible interface ranking, but CCNx is not designed to be able to take

advantage of routing. An improved interface ranking mechanism is presented

in Section 4.2.3.

• Periodical probing incurs extra overhead. As explained in Section 2.3.1, each

CCNx router will periodically send extra probing Interests to the network for

each name prefix. Since CCNx is designed to work without routing protocols,

probing is the only way for routers to learn about changes in the network.

However, it also leads to waste of network resources when there is no change

in the network. We present our own forwarding strategy design in Section 4.3

to address this issue.

• Fault detection is slow. A CCNx router can detect potential network problems

only after the RTO expires. In fact, if an upstream router cannot satisfy

an Interest for any reason, it should be able to send a notification to its

downstream router. Then the downstream router can start retrying other

30

interfaces immediately without waiting for the timer to expire. An Interest

NACK mechanism is proposed in Section 5.1.1 for this matter.

• CCNx does not exploit the full potential of adaptive forwarding. For example,

adaptive forwarding enables routers to perform effective hop-by-hop congestion

control. However, no congestion control mechanism is implemented on CCNx

routers. CCNx still relies on consumers to perform end-to-end congestion

control. We present an effective Interest limiting mechanism in Section 6.2 for

hop-by-hop multipath congestion control.

It is worth mentioning that these limitations only affect performance, not correct-

ness. In all adverse conditions except congestion, CCNx should be able to achieve

the same level of resilience as our design with higher overhead and/or longer reaction

time.

31

CHAPTER 3

OVERVIEW OF APPROACH

The previous chapter reviewed the overall NDN architecture as well as the CCNx

implementation, the existing prototype implementation of NDN. In this chapter, we

summarize the approach and contributions of this dissertation.

3.1 Forwarding Plane Design

We propose a concrete design of NDN’s forwarding plane which is able to perform

effective multipath forwarding. One of the design objectives is to provide specific

mechanisms for routers to track data delivery performance, which is vital for routers

in making forwarding decisions. We propose a color-code mechanism which indicates

the working status of each interface for each name prefix. We also present algorithms

and data structures for routers to measure and store the RTT for each name prefix.

In addition, we provide an efficient forwarding strategy named BestRoute, which

determines when and how routers forward Interests. There is a spectrum of strate-

gies between trying a single interface each time and flooding to all interfaces, with

different trade-off between the overhead and delay to retrieve data. It is essential

to provide a strategy that ensures efficient packet delivery without incurring ex-

cessive overhead, even under adverse conditions. We present an interface ranking

mechanism which ranks interfaces of a router taking both routing information and

forwarding performance into consideration. In the proposed forwarding strategy, In-

terests are always forwarded to the highest ranked interface that has not been tried

before. In the rest of this dissertation, we use NDN-BestRoute to refer to our own

design and implementation of NDN’s forwarding plane. Unless otherwise specified,

all experiments for NDN are conducted using the ndnSIM [12] simulator with the

NDN-BestRoute implementation.

32

We use prefix hijack as an example to demonstrate how NDN-BestRoute is able

to handle network problems effectively with adaptive forwarding. Prefix hijack oc-

curs when routers falsely announce prefixes that do not belong to them to the routing

protocols, either intentionally or by mistake. Prefix hijack is not rare in today’s In-

ternet. One famous example is the hijack of YouTube’s prefixes by Pakistan Telecom

in 2008. However, IP routers have no idea when prefix hijack occurs since there is

no way for them to distinguish hijackers’ routing announcements from normal ones.

End hosts may detect the problem since packets will stop getting delivered, but

there is no way for them to inform routers about the problem. Therefore prefix

hijack remains a significant issue in today’s Internet.

On the other hand, NDN-BestRoute is able to handle prefix hijack at the for-

warding plane. The forwarding strategy is designed to prefer current working paths.

If the routing protocol provides a new best path, a router will not switch to it im-

mediately. Instead, it will send a probing Interest to the new best path and only

switches if probing is successful, i.e., Data is received. Our simulation on the Sprint

PoP-level topology shows that for over 94% of the cases routers will not be affected

by prefix hijack. Routers will only be affected when the hijacker lies on the current

working path, in which case consumers will stop receiving Data. However, con-

sumers can retransmit the Interests so that routers will retry alternative paths in

order to resume packet delivery.

3.2 Failure Handling

Link failures are very common in computer networks. In an ideal packet-switched

network, each packet should be delivered to its destination in the presence of unex-

pected failures, as long as the destination is still reachable in the remaining topology.

This system robustness in face of component failures is referred to as “perfect switch-

ing” in Baran’s seminal work [16]. Today’s Internet is far from achieving perfect

switching, as IP relies on the routing plane to handle failures; packet delivery cannot

be guaranteed after failures since routing protocols need time to converge. Research

33

has been conducted on reducing routing convergence time [13, 29] in order to reduce

packet loss after failures. However, these methods have negative impact on the scal-

ability and stability of routing protocols. As a result, failure handling has drawn

significant attention from the networking research community.

3.2.1 Failure Handling with Adaptive Forwarding

NDN routers are able to handle link failures at the forwarding plane without routing

convergence. When a link failure is detected by either keep-alive messages of routing

protocols or link-level mechanisms, the attached routers will mark the interface

as unusable; all subsequent Interests will be forwarded to the next highest ranked

interface instead. Packets that have already been sent to the failed link may still get

lost, in which case consumers can retransmit the Interests to trigger path exploration

by routers in a similar fashion as in the prefix hijack scenario.

It may happen that a router does not have any usable interface to forward an In-

terest due to link failures. In such cases, the Interest will be dropped and consumers

need to retransmit the Interest after timeout in order to resume packet delivery,

which is slow and inefficient. We introduce an Interest Negative ACKnowledgement

(NACK) mechanism to address this issue. If a router has no way to satisfy an In-

terest, it will return a NACK to the downstream router, which can start retrying

alternative paths immediately without waiting for consumer retransmission.

We compare the performance of our forwarding plane design with that of IP

and Path Splicing [48], an IP-based multipath forwarding solution in link failure

scenarios. Simulation results show that NDN-BestRoute provides the best packet

delivery performance after link failures. NDN-BestRoute is able to approach perfect

switching while restricting the stretch of alternative paths to less than 1.2 for over

89% of the cases.

34

3.2.2 Role of Routing in NDN

Having an intelligent adaptive forwarding plane also raises new research questions.

Today’s IP networks put all intelligence into routing, which disseminates topology

and policy information, computes routes, detects and recovers from failures while

the forwarding plane merely forwards packets according to the FIB. When the for-

warding plane has its own adaptability, are routing protocols still needed? If so,

for what purpose and to what extent? If some of routing’s tasks can be offloaded

to forwarding, would that bring positive impact on routing protocols’ design and

operation, e.g., making routing more scalable and stable?

In this dissertation we investigate the role of routing in NDN networks. Through

analysis, design, and extensive simulation, we find that routing is important in boot-

strapping the forwarding plane for effective data retrieval, as well as for efficiently

probing new links or recovered links. However, NDN routing protocols do not need

to converge fast after the network changes; such changes can be handled by adaptive

forwarding more promptly. This enables one to significantly improve the scalability

and stability of the routing system using larger keep-alive timer values that ignore

short-term failures. Furthermore, routing algorithms that would not work well in

current networks may work fine in NDN due to its reduced role of bootstrapping

adaptive forwarding.

3.3 Congestion Control

In NDN, one Interest retrieves at most one Data packet. This one-to-one flow

balance coupled with NDN’s two-way symmetric traffic pattern enables routers to

perform congestion control through Interest limiting. Since Data packets carry

the actual content, their sizes should be much larger than Interests most of the

time. Therefore, congestion should be more likely caused by Data packets in NDN

networks. A downstream router can effectively limit the number of Data packets

coming from an upstream router by limiting the number of Interests forwarded to

the upstream. Thus by enforcing Interest limit on each interface, NDN routers are

35

able to perform hop-by-hop multipath congestion control.

3.3.1 Simple Interest Limiting

We first experiment with a simple Interest limiting mechanism which computes In-

terest limit for each interface using the link bandwidth and average Data packet

size. Simulation results shows that it outperforms TCP in 93% of the cases because

of NDN’s multipath forwarding capability. However, this mechanism has several

limitations. First, the sizes of Data packets in NDN networks are unpredictable

and may change rapidly. Second, the returning delay of Data packets is also un-

predictable due to caching and multipath forwarding. Third, the mechanism does

not consider the cases when NDN is deployed as an overlay on top of IP, where

the link bandwidth is also unknown. Fourth, routers cannot ensure fairness among

different flows. Therefore, this simple Interest limiting mechanism is not suitable

for practical usage.

3.3.2 Dynamic Interest Limiting

We propose a Dynamic Interest Limiting (DIL) mechanism to address the limita-

tions of simple Interest limiting. The design objectives of DIL are to provide high

throughput, short queuing delay, and fairness among concurrent flows. Keeping

queuing delay short is essential for applications that require consistently low latency

or jitter-free transmission. We dynamically adjust the Interest limit on each inter-

face using an Additive-Increase-Multiplicative-Decrease (AIMD) algorithm similar

to TCP. The Interest limit is increased when Data is received, and decreased when

congestion is detected.

We design two novel methods for congestion detection in NDN networks. Ran-

dom Early NACK (REN) is designed for native NDN networks. The upstream

router keeps monitoring the queue length of its output queue, and send NACKs to

the downstream router at certain probability. The NACK probability is computed

using an algorithm similar to Random Early Detection (RED) [28]. These NACKs

36

are regarded as signals of congestion by the downstream router, which will reduce

its Interest limit accordingly. In an NDN-over-IP setup, however, congestion may

happen in the underlying IP routers, which the NDN routers don’t have access to.

Therefore, REN may not work well in such scenarios. We introduce Link-layer Con-

gestion Detection (LCD) for NDN overlay networks. Each upstream router adds a

link-layer header containing a sequence number to each NDN packet it forwards;

downstream routers can detect congestion by observing gaps in the sequence num-

bers they receive. We also propose a Fair Interest Limiting (FIL) algorithm which

fairly divides the Interest limit to all active flows. Through extensive simulations

we show that DIL is able to achieve all the design goals and outperforms TCP in

all the cases.

3.4 Contributions

The contributions of this dissertation are summarized as follows:

• We presented NDN-BestRoute, a concrete forwarding plane design for NDN

to fully exploit the adaptive forwarding feature (Chapter 4). An effective

forwarding strategy is presented to provide high packet delivery performance

and resilience with low overhead. Prefix hijack is used as an example to

illustrate the strength of NDN adaptive forwarding.

• We investigated failure handling and role of routing in NDN (Chapter 5). An

Interest NACK mechanism is proposed to speed up network fault detection

and notification. With the forwarding plane being able to handle link failures

effectively, the role of NDN routing is reduced to bootstrapping the forwarding

process and handling link recovery.

• We studied hop-by-hop multipath congestion control in NDN (Chapter 6). An

effective dynamic Interest limiting mechanism is presented, including two novel

methods for NDN congestion detection and a fair Interest limiting algorithm

to provide fairness among multiple flows.

37

CHAPTER 4

FORWARDING PLANE DESIGN

In this chapter we present a concrete forwarding plane design which aims to address

the limitations of CCNx and fully exploit NDN’s adaptive forwarding feature. We

develop a detailed design for two key data structures of NDN: PIT and FIB, and

explain how forwarding performance is collected and stored by each router. Then we

present an improved interface ranking mechanism taking both routing information

and forwarding performance into consideration. Finally, we propose a new forward-

ing strategy named BestRoute based on the interface ranking. At the end of this

chapter, we use prefix hijack as an example to illustrate how our design is able to

handle network faults effectively through adaptive forwarding.

4.1 PIT Design

PIT maintains per-datagram forwarding state (Figure 4.1). A PIT entry is created

for each requested name. It contains a list of nonces that have been seen for that

name, a list of incoming interfaces from which Interests for that name have been

received, as well as a list of outgoing interfaces to which the Interest has been

forwarded. In a PIT entry, each incoming interface records the longest lifetime of

the Interests it received; when the lifetime expires the incoming interface is removed

from the PIT entry, and the entire PIT entry is removed when all its incoming

interfaces have been removed. Each outgoing interface records the time when the

Interest is forwarded via this interface, so that RTT can be computed when Data

packet returns. The RTT measurement is then used to update the RTT estimate

for the corresponding name prefix stored in the FIB (Section 4.2).

38

name Interface ID,
lifetime

Interface ID,
send-time

!!

List of incoming
interfaces

List of outgoing
interfaces PIT

name prefix

1 2 3 4 5 6

! ! ! ! !

!!

interface ID, routing preference, RTT, status, rate limit

Interfaces ranked by
forwarding policies FIB

.

.

.

.

.

.

nonce

List of
nonces

stale time

Figure 4.1: Forwarding State in PIT and FIB

4.2 FIB Design

NDN FIB differs from IP FIB in two fundamental ways. First, an IP FIB entry

usually contains a single best next-hop, while an NDN FIB entry contains a ranked

list of multiple interfaces. Second, an IP FIB entry contains nothing but the next-

hop information, while an NDN FIB entry records information from both routing

and forwarding planes to support adaptive forwarding decisions (see Figure 4.1)1.

4.2.1 Routing Plane Information

FIB entries are added for all name prefixes announced in routing. When a name

prefix disappears from routing, it is not immediately removed from the FIB, but

kept for a stale time period or longer, if Interests under that prefix continue to be

satisfied. This helps reduce unreachability caused by routing convergence, when

some reachable prefixes may undergo temporary withdrawals.

For each name prefix, its FIB entry lists all interfaces that are allowed by rout-

1Here we assume there is an NDN routing protocol that disseminates routing information and

computes the routing table for each router.

39

Yellow Green

Red

Initialize
Data received

Data timeout or
intf not used

Figure 4.2: Interface Color Transition

ing policy, together with their associated preferences. Routing preference reflects

routing policy as well as path cost, typically calculated using static link metrics; it

is one of the inputs that we use to rank the interfaces.

4.2.2 Forwarding Performance Information

A FIB entry records the working status of each interface with regard to data retrieval

(see Figure 4.1). Interface status is per-name-prefix-per-interface. To search for the

best way to represent this status, we start by experimenting with a simple coloring

scheme:

• Green: the interface can bring data back.

• Yellow: it is unknown whether the interface may bring data back.

• Red: the interface cannot bring data back.

The transition between different color is demonstrated in Figure 4.2. When a

new FIB entry is created or a new interface is added to a FIB entry, the interface’s

initial status is Yellow. It turns Green when Data flows back from that interface. A

40

Prefix Stale Time
Interfaces

ID Routing Preference RTT RTO Status

/foo 120s

3 50 45ms 50ms Green

2 70 60ms 80ms Yellow

4 100 N/A N/A Yellow

1 110 N/A N/A Yellow

Figure 4.3: A Sample FIB Entry

Green interface turns Yellow when a pending Interest times out (i.e., no Data comes

back within the expected time)2, or after Data ceases flowing for a certain amount

of time. An interface is marked Red when it goes down. Green interfaces are always

preferred over Yellow ones; Red interfaces should never be used to forward Interests.

A FIB entry also maintains a per-interface estimate of the RTT to retrieve data.

It is a moving average of RTT samples taken every time a Data packet is received

over the corresponding interface. This RTT estimate is used in setting up a retry-

timer, which serves two purposes: (1) before the timer expires, subsequent Interests

carrying a name that already exists in PIT will be suppressed because the router is

waiting for Data to be retrieved by the previously forwarded Interest; (2) after the

timer expires, the router will retry alternative interfaces upon receiving a consumer

retransmission.

Figure 4.3 shows a sample FIB entry for name prefix /foo. The routing preference

for each interface is computed by the routing protocol. There is no RTT information

recorded for interfaces 1 and 4 because they haven’t been used yet. The RTO is

computed based on the RTT history. Because only interface 3 is currently in use, it

is marked Green while others are marked Yellow.

2When there is a timeout on the interface, it indicates something may be wrong with the current

path. The interface is marked Yellow, even though the problem may or may not be due to the

local interface. If any other Green interface exists, it will be used. If no Green interface exists,

next incoming Interest will be still forwarded to the current interface if it is the best option.

41

Pseudo-code 2 NDN-BestRoute Interest Processing

1: function Process(Interest)

2: Name ← Interest.Name

3: if Data ← ContentStore.Find(Name) then

4: Return(Data)

5: else if PitEntry ← PIT.Find(Name) then

6: if Interest.Nonce ∈ PitEntry.NonceList then

7: Return

8: end if

9: Add Interest.Interface to PitEntry.Incoming

10: if PitEntry.RetryTimer is expired then

11: Forward(Interest, PitEntry)

12: Return

13: end if

14: else

15: PitEntry ← PIT.Create(Interest)

16: PitEntry.Incoming ← Interest.Interface

17: Forward(Interest, PitEntry)

18: end if

19: end function

4.2.3 Interface Ranking

Interfaces in a FIB entry are ranked in order to help forwarding strategy choose the

best interface(s) to use. When a router learns a new name prefix from routing, it

ranks the interfaces for this prefix based on routing preference, since no forwarding

performance has been observed yet. When information about forwarding perfor-

mance becomes available, forwarding policy adjusts the interface ranking by taking

into consideration both types of information.

A wide variety of forwarding policies can be supported in an NDN network. For

example, if the policy is simply “follow routing”, the interface ranking will be solely

42

Pseudo-code 3 BestRoute Forwarding Strategy

1: function Forward(Interest, PitEntry)

2: if FibEntry ← FIB.Find(Interest.Name) then

3: for each interface in FibEntry by rank do

4: if interface 6∈ PitEntry.Outgoing and

5: interface 6∈ PitEntry.Incoming then

6: Set PitEntry.RetryTimer

7: Transmit(interface, Interest)

8: Add interface to PitEntry.Outgoing

9: Return

10: end if

11: end for

12: GiveUp(Interest)

13: else

14: GiveUp(Interest)

15: end if

16: end function

determined by routing preference; if the policy is “the sooner the better”, an inter-

face with smaller RTT will be ranked higher. Yet another example is to give higher

preference to the current working path, which helps ensuring performance stabil-

ity experienced by applications. Note that forwarding policies are different from

routing policies [1]. Routing policies determine which routes to be made available

to the forwarding plane. In the case of BGP [55], routing policies are reflected in

routing announcements, which propagate from data producers to consumers. For-

warding policies, on the other hand, determine which routes actually get used and in

which order. They are reflected in Interest forwarding, which go from the consumers

towards producers3.

3It is conceivable that forwarding policies could also decide whether the outgoing interfaces

for a given name prefix should be, or should not be, limited to those learned from the routing

protocols.

43

Name Nonces In
Receive

Time
Out Send Time

Retry
Timeout

/foo/bar/0/0 246234 1
05/20/2014
13:21:43.02

3
05/20/2014
13:21:43.02

05/20/2014
13:21:43.07

(a) New Interest

Name Nonces In
Receive

Time
Out Send Time

Retry
Timeout

/foo/bar/0/0
246234,
1532689

1
05/20/2014
13:21:43.02

3
05/20/2014
13:21:43.02

05/20/2014
13:21:43.07

4
05/20/2014
13:21:43.04

(b) Suppressed Subsequent Interest

Name Nonces In
Receive

Time
Out Send Time

Retry
Timeout

/foo/bar/0/0
246234,
1532689

1
05/20/2014
13:21:43.02

3
05/20/2014
13:21:43.02

05/20/2014
13:21:43.07

4
05/20/2014
13:21:44.01

2
05/20/2014
13:21:44.01

05/20/2014
13:21:44.09

(c) Forwarded Subsequent Interest

Figure 4.4: Sample PIT Entry for New and Subsequent Interests.

4.3 BestRoute Forwarding Strategy

Given the information stored in PIT and FIB, a router’s strategy module deter-

mines when and which interface to use to forward an Interest, making forwarding

decisions adaptive to network conditions. Our design includes the handling of new

and subsequent Interests. The overall Interest processing mechanism is illustrated

by Pseudo-code 2; Figure 4.4 shows a sample PIT entry based on the sample FIB

entry in Figure 4.3.

New Interest: When a newly arrived Interest does not find a match in either

Content Store or PIT, a new PIT entry will be created (see Figure 4.4(a)). The

new Interest is then forwarded to the highest-ranked available Green interface if

one exists, otherwise the highest-ranked available Yellow interface will be used (see

44

Pseudo-code 3). When the router forwards the Interest, it starts a retry-timer,

which is set to a small value at the time scale of RTT plus variance.

Subsequent Interest: If an Interest matches an existing PIT entry, and its

nonce does not exist in the nonce list, this Interest is considered a subsequent In-

terest. A subsequent Interest can be a retransmission from the same consumer, or

originated from a different consumer requesting the same piece of Data. When a

subsequent Interest is received before the retry-timer expires (see Figure ??), it will

not be forwarded because the router is still waiting for Data to be brought back by

a previously forwarded Interest. Otherwise, this subsequent Interest will trigger the

router to retry the Interest and start the retry-timer (see Figure 4.4(c)).

In the above situations, if a router needs to forward an Interest but it has no

Green or Yellow interface left that has not been tried, it will give up and delete the

PIT entry. Routers perform best effort to get around forwarding problems through

local retries, however consumers are ultimately responsible for re-expressing the

Interest if they still want the data.

Probing Interest: When there is no fault in the network, a router will keep

using the highest ranked interface for all traffic under each name prefix. Thus all

other interfaces will be marked Yellow because they are not in use. If a router wishes

to switch traffic under certain prefix from a Green interface to a Yellow interface

(e.g., due to routing changes), it will not do so immediately since the working status

of Yellow interfaces is unknown. Instead, it will send a probing Interest to the

Yellow interface to test whether it is able to bring Data back. If the test succeeds,

the interface will be marked Green and traffic switch will then take place.

4.4 Prefix Hijack: A Case Study

In this section we use simulations to evaluate how well NDN’s adaptive forward-

ing plane works and whether it achieves robust packet delivery under prefix hijack

scenario. We contrast with the behavior of IP to illustrate the difference between

NDN’s stateful forwarding plane and the traditional IP’s stateless forwarding plane.

45

R1

P

R3

R2 R5

R4

Figure 4.5: Prefix hijack: IP and NDN-BestRoute forwarding before the attack.

We also include the comparison with Path Splicing [48], an adaptive multipath en-

hancement to IP, to observe the differences in the performance between NDN and

Path Splicing and to understand the underlying causes of these differences. We

implemented our forwarding plane design in ndnSIM [12], an NS-3 [9] based NDN

simulator. We also implemented Path Splicing in NS-3 according to [48]. In the

rest of this section, we first present a brief description of Path Splicing, then the

simulation setup, followed by our simulation results.

4.4.1 A Simple Example

We use a simple example shown in Figures 4.5, 4.6 and 4.7 to explain how IP

and NDN-BestRoute behave in blackhole hijack attacks. In these figures, A is the

attacker, P is the producer, and other nodes are good routers. Figure 4.5 shows the

forwarding paths before the attack. Since there is no attacker, NDN-BestRoute and

IP nodes have the same forwarding paths.

Figure 4.6 shows the forwarding paths for IP during the attack. In this figure,

46

R1

PA

R3

R2

R4

Figure 4.6: Prefix hijack: IP forwarding during the attack.

R5 becomes the hijacker and starts announcing P ’s prefixes through the routing

protocol. All R1, R2 and R3 switch their forwarding paths toward A because they

are closer to A than P ; thus their packets are successfully hijacked. R4 is not

affected by the hijack because it is closer to P than A.

The forwarding paths for NDN-BestRoute during the attack is shown in Fig-

ure 4.7. Similar to the IP case, R1’s packets will be hijacked because A is its only

neighbor, and R4 will not be affected by the attack, so we focus on the other cases.

We first consider the routers who do not have the attacker on their original short-

est path to reach the producer, e.g., R3. When A announces P ’s name prefix, the

routing system would rank the attacker path (R3-A) higher than the producer path

(R3-R4-P). With NDN’s intelligent forwarding plane, since the existing interface

(R3-R4) to the producer has been bringing data back, it is colored Green. A’s false

routing announcement makes the interface to the attacker (R3-A) ranked higher by

routing, but when R3 tries its out by sending an Interest to it now and then, it does

not return a Data packet, thus it remains Yellow. Unlike IP routers, NDN routers

47

R1

PA

R3

R2

R4

Figure 4.7: Prefix hijack: NDN-BestRoute forwarding during the attack.

do not direct traffic to a higher ranked path until it is observed to perform well.

Let us now consider the routers who have the attacker on their shortest path to

the producer, e.g., R2. R2’s Interest packets will be blackholed by the attacker, thus

R2’s retry-timer expires without getting data packets back, and interface (R2-A) will

be marked Yellow; R2 does not automatically retry alternative interfaces because

there is not any feedback. End consumers will timeout and retransmit the Interests.

Upon receiving a retransmitted Interest, if R2’s retry-timer has expired, R2 will

retry a different interface than the previously failed one. When the retransmitted

Interest, following a different path, arrives at the producer and brings back the

requested Data packet, R2 will mark the working interface (R2-R3) Green and keep

using the working interface.

4.4.2 Path Splicing

Path Splicing enables source hosts to utilize multiple paths in IP packet delivery. In

Path Splicing, each router maintains multiple routing tables, called slices. All the

48

routers in a network are pre-configured with the same number of slices. A router

computes its first routing table (the original slice) by using the standard routing

protocol metrics, it then computes the rest of the slices by using the same topology

and the same shortest-path algorithm but different sets of link weights, which are

generated by randomly perturbing the original set of link weights learned from the

routing protocol.

When a host sends a packet, it adds an ordered list of tags to the packet header.

Each tag is an index to the slice to be used at each hop, and routers forward the

packets according to the tags. A tag is removed from the list after it is used; when

a packet’s tag list becomes empty, routers will use the original slice to forward the

packet. End-hosts can choose a different path for a packet by tagging it differently,

although the hosts do not know the exact path the packet may take.

When a host detects a network fault, e.g. a packet loss, it retransmits the packet

by using a different tag list. The recommended operation is for the end-host to

examine the current list of tags and change each tag with a probability of 0.5. If a

tag is to be changed, the new tag will be randomly chosen from the available slice

numbers. For a client/server application to successfully retrieve a data packet, the

tags on request and reply packets must both identify a working path. In simulating

Path Splicing, unless otherwise specified, we use 10 slices by default and allow up

to 20 retransmissions.

On the surface, Path Splicing seems similar to NDN forwarding in that, once

hosts detect network delivery problems, they attempt to get around the problems

by trying different paths. The additional state, i.e., multiple slices installed at

each Path Splicing routers, enables the path adjustments by end hosts. However,

there exist two fundamental differences between the two. First, the adaptability

in Path Splicing can only be done by end-hosts, as opposed to by any nodes in

an NDN network. Second, given the end hosts know neither the network topology

nor the problem location, they adjust the path by random selections, as opposed

to the informed decision by NDN nodes based on their observed performance and

feedbacks. These functional differences lead to significant performance differences

49

in the simulation results, as we present below.

4.4.3 Simulation Setup

We examine the packet delivery performance of NDN-BestRoute, IP and Path Splic-

ing under the prefix hijack scenario, in which an attacker announces the victim’s

prefix and silently drops the traffic. Since we focus our evaluation on the effective-

ness of stateful adaptive forwarding, we disabled NDN’s in-network caching in the

simulation. The simulations are done using the Sprint PoP-level topology [61], the

same topology used in [48] to show the improvement of Path Splicing over native

IP. This topology contains 52 nodes and 84 links, including 19 single-homed nodes.

In all simulations we assume that each IP (NDN) router announces one IP (name)

prefix, and we precompute the best paths and install them in each router’s FIB. For

IP, a single shortest path is installed for each IP prefix at a router. For Path Splicing,

a number (default is 10) of slices are installed per IP prefix. For NDN, each router

maintains a list of all outgoing interfaces ranked by the routing path length for each

name prefix in the FIB. In each simulation run, we create a prefix hijack scenario

shortly after the simulation starts and observe the behavior of each scheme. Since

NDN clients retrieve data by sending an Interest packet first, for fair comparison

we use the same traffic pattern in IP and Path Splicing simulations, i.e., we run

client/server applications where a client first sends a request to the server, which

then sends a reply data packet back to the client. These request/reply packets have

the same sizes as Interest/Data packets in NDN.

4.4.4 Simulation Results

In prefix hijack simulations, an attacker announces the victim’s prefix and silently

drops all data traffic it receives, creating a “blackhole” of victim’s traffic. This

is exactly what happened during the well publicized incident of YouTube’s prefix

hijack 4.

4In an NDN network, a hijacker may return bogus Data instead of silently dropping Interest

packets. How to handle bogus data attacks is beyond the scope of this dissertation. Interested

50

 0

 20

 40

 60

 80

 100

NDN-
BestRoute

Path
Splicing

IP

P
er

ce
nt

 o
f T

up
le

s
(%

)

Unaffected
Recoverable
Unreachable

Figure 4.8: Reachability during prefix hijack

End-hosts can detect the problem when they do not receive the content they

are requesting. Traffic is said to be affected if it is forwarded towards the attacker,

or unaffected if it is still forwarded to the true destination. If affected end-hosts

have means to try other paths, they may find an alternative path to reach the true

destination [69], in which case we say they have recovered from the hijack.

To simulate “blackhole” hijacks, in each simulation run we choose one node as

the producer, one as the attacker, and the rest of the nodes as data consumers. The

attacker announces to the routing system the IP prefix (for IP and Path Splicing)

or the name prefix (for NDN) of the producer. We exhaust all combinations of

(consumer, producer, attacker) tuples in the topology. We run NDN-BestRoute, IP,

and Path Splicing to see whether the traffic will be affected and whether affected

traffic can recover. The results are summarized in Figure 4.8.

Let us consider the result for running IP simulation first as it is easier to under-

readers can refer to [30] for more details.

51

stand. In an IP network, traffic will be affected if (1) the attacker is on the best path

from the source to the destination, or (2) the attacker is closer to the source than the

true destination. For the given topology, in less than 6% of the cases, the attacker is

on the best path from the consumer to the producer and simply drops all requests,

thus no consumer gets data back. In another 44% of the cases the attacker is closer

to the consumer than the producer, thus traffic is affected as well. Note that in total

50% of all the cases traffic is affected and in the other 50% it is not. This is because

the traffic that is affected under one producer/attacker pair will become unaffected

when the producer and attacker switch roles. Since IP routers strictly follow the

paths given by routing protocols, none of the affected traffic is recoverable. The

end-hosts, although being able to detect the problem, cannot change the paths their

packets take. For NDN-BestRoute, in the less than 6% of cases where the attacker is

on the original best path from the consumer to the producer, all traffic is recoverable

except the cases where the consumer or producer is single-homed to the attacker.

For the remaining over 94% of the cases, consumer-producer communications are

not affected by the hijack.

In simulating Path Splicing under the same hijack attacks, the results show the

same 50% of affected traffic as in the IP case. Different from IP, however, when a

client sends out a request packet and times out after RTT, it will retransmit the

request with a different tag list, thus the packet will be routed along a different path.

If the data packet comes back, the client knows the previous tags have worked and

will keep using the same tags. Thus, Path Splicing enables end-hosts to influence

path selection in an attempt to escape routing hijack. This capability, however,

is rather limited because the available options are bounded by the number of pre-

computed slices, and hosts perform random selections of tags because they have no

knowledge about the network internals. Thus the recovered traffic is only 6% out

of 50% of affected cases, and the random trials can take substantially long time.

Figure 4.9 shows the number of retransmissions needed to find a working path with

each router keeping 10 slices. In most cases consumers in Path Splicing need many

retransmissions, while NDN consumers only need a few.

52

 0

 0.5

 1

 1.5

 2

 2.5

5 10 15 20

P
er

ce
nt

 o
f T

up
le

s
(%

)

Number of Retransmissions

NDN-BestRoute
PathSplicing

Figure 4.9: Retransmissions needed during prefix hijack

NDN-BestRoute is both faster and more effective in finding working paths be-

cause every NDN router is able to make its own informed decisions on which alter-

native paths to try. These decisions are based on the observation from previously

forwarded Interest packets, which is made available by maintaining per-datagram

state at each router. In addition, the ability to retry alternative paths by every

router whenever a problem is noticed speeds up recovery and does not require any

precomputed tables.

53

CHAPTER 5

FAILURE HANDLING

In this chapter, we first present an Interest NACK mechanism for fast fault detec-

tion and notification. Then we evaluate the packet delivery performance of NDN-

BestRoute in link failure scenarios, and compare it against IP and Path Splicing.

Our results show that NDN-BestRoute can effectively handle link failures at the

forwarding plane without global routing convergence. This is a significant advance

over today’s IP networks, which mainly rely on routing to handle network failures.

Hence we also investigate the role of routing in NDN in this chapter.

5.1 Interest NACK

In the original sketch of NDN [36], routers discover failures by timeout only. More

specifically, when a router N forwards an Interest, it starts a timer based on the

estimated RTT to the data producer. If the corresponding Data packet comes back

before the timer expires, the RTT is updated; otherwise N will try alternative path

if one exists, or otherwise give up. However, this timer-based fault detection can be

relatively slow. Furthermore, when router N has exhausted its options and gives

up, the unsatisfied Interest (which we call the dangling state) is left on the PIT of

those routers between the consumer and N that the Interest has traveled through,

until the Interest’s lifetime expires. Such dangling state can potentially block other

consumers from getting the same data, since the intermediate routers believe that

they have already forwarded the Interest and just wait for the Data to return.

5.1.1 NACK Design

We address these issues by introducing Interest NACK. When an upstream NDN

node Nu can neither satisfy nor further forward an Interest, it sends an Interest

54

NACK back to the downstream node Nd. If Nd has exhausted all its own forward-

ing options, it will send a NACK further downstream. Note that Interest packets

flow from downstream node to upstream node, Data packets flow from upstream

node to downstream node, and Interest NACKs are always sent from upstream to

downstream.

An Interest NACK carries the same name and nonce as the original Interest,

plus a NACK code explaining why the Interest cannot be satisfied or forwarded so

that proper actions can be taken accordingly. Below are the NACK codes in our

current design; additional codes may be added as the need arises.

• Duplicate: A pending Interest with identical name and nonce has been received

earlier by the upstream node. This occurs if the Interest is looped back to the

upstream node, or if some node forwarded multiple copies of the same Interest

that happen to meet at the upstream node.

• Give Up: The upstream node has exhausted its forwarding options and cannot

further forward the Interest.

• No Data: The upstream node (which can be either a router or the producer)

does not have the requested data and has no path to forward the Interest.

In the absence of packet losses, every pending Interest is consumed by either

a returned Data packet or a NACK. Returning NACKs brings two benefits to the

system: it cleans up the pending Interest state much faster than waiting for the

lifetime to expire, and it allows the downstream nodes to learn the specific cause of

a NACK, so that they can take informed recovery actions. Note that an Interest

NACK is different from an ICMP message; the former goes to the previous hop

while the latter is sent to the source host, hence their effects are entirely different.

5.1.2 Updated Forwarding Plane Design

We make necessary changes to the forwarding plane design presented in Chapter 4

to accommodate this new packet type. First, interface status needs be updated

55

Pseudo-code 4 NDN-BestRoute Interest NACK Processing

1: function Process(NACK)

2: PitEntry ← PIT.Find(NACK.Name)

3: if PitEntry ≡ ∅ or

4: PitEntry.RetryTimer expired or

5: NACK.Nonce 6∈ PitEntry.NonceList

6: then

7: Return

8: end if

9: Forward(NACK.Interest, PitEntry)

10: end function

upon receipt of NACKs. When a NACK with code “Duplicate”, “Give Up” or “No

Data” is received on an interface, the interface should be marked Yellow. Second,

the forwarding strategy also needs to be updated. Before Line 7 of Pseudo-code 2,

a NACK with code “Duplicate” should be returned before it stops processing. Sim-

ilarly, NACKs with code “Give Up” and “No Data” should be returned before

Lines 12 and 14, respectively of Pseudo-code 3. Third, Interest NACK will trigger

path exploration. In Section 4.3, we let routers retry alternative paths only upon

consumer retransmission after the retry-timer expires. The recovery process can be

accelerated by start retrying immediately upon receipt of Interest NACK.

Pseudo-code 4 illustrates how Interest NACK is processed by NDN routers.

When an Interest for data name M is returned in the form of a NACK, if the

retry-timer is still running, a router will send an Interest with the same name and

nonce to the next highest-ranked available interface. Ideally, we want routers to try

a few alternatives but not for too long (the application may have moved on without

the Data) nor consume too much network resource. After the retry-timer expires,

therefore, a router should stop trying alternative interfaces upon NACKs to limit

the overhead caused by local retry. However, the PIT entry for M is kept until

the Interest’s life time expires, during which time retry can still be triggered by a

56

subsequent Interest of the same name.

5.2 Failure Handling with Adaptive Forwarding

Robust packet delivery in the presence of link failures is the classic measure used

in Baran’s early work to evaluate the resilience of packet switched networks [16].

In this section, we run simulations for NDN-BestRoute, IP and Path Splicing using

the Sprint PoP-level topology and the same setup as described in Section 4.4.3.

We measure packet delivery performance before the routing protocol adapts to the

failure, as is done in [48]. Our goal is to measure how well, or poorly, the forwarding

plane can perform before routing converges.

We simulate link failures as follows. After the initial simulation warm-up period

for NDN routers to obtain forwarding plane performance, we associate each link with

a uniform failure probability and fail links randomly according to this probability,

producing one failure scenario. All packets sent over a failed link are dropped. If

the original best path from A to B contains at least one failed link, the traffic flow

between A and B is considered affected; if the network is able to switch packets

from A to B to an alternative working path without routing convergence, we say

this traffic flow can recover from the failure. We run NDN-BestRoute, IP, and

Path Splicing respectively to see how many flows (i.e., consumer-producer pairs)

can recover from given failures. We run each experiment 1000 times (i.e. running

each of NDN-BestRoute, IP, and Path Splicing over 1000 randomly generated failure

scenarios for each link failure probability) and our results are presented below.

Figure 5.1 shows the percentage of host pairs that cannot recover, averaged over

1000 failure scenarios for each link failure probability. The “best possible” curve is

the percentage of host pairs that are physically disconnected by the failed links, thus

no solution can achieve disconnection ratio below this curve. For Path Splicing, s and

r stand for numbers of slices and allowed retransmissions, respectively. The NDN-

BestRoute curve overlaps with the best possible one, meaning that a consumer is

able to retrieve data from a producer as long as any working path exists in between.

57

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10

F
ra

ct
io

n
of

 D
is

co
nn

ec
te

d
P

ai
rs

 (
%

)

Probability of Link Failure (%)

IP
Path Splicing (s=5, r=5)

Path Splicing (s=5, r=20)
Path Splicing (s=10, r=20)

NDN-BestRoute
Best Possible

Figure 5.1: Reachability after link failures

Not only can NDN-BestRoute recover from link failures, it also finds alternative

paths quickly.

Figure 5.2 shows the Cumulative Distribution Function (CDF) of data retrieval

time from 1000 failure scenarios1, which is from the first transmission of a re-

quest/Interest by the consumer to the arrival of the requested Data. It includes

the time of possible retransmissions by the consumer in Path Splicing and NDN-

BestRoute, and router retries in NDN-BestRoute. With 1% link failure probability,

the median data retrieval time in NDN-BestRoute is 85 ms, and the 90th-percentile

198 ms; when the link failure probability is 10%, the median is not changed while

the 90th-percentile increases slightly to 203 ms. The alternative paths that NDN-

1In Figure 5.2 and 5.3 we only consider packet exchanges that are affected by failures but

recoverable (i.e., the failed link is on the original best path, but at least one alternative working

path exists after the failure). These figures do not consider IP because although end hosts in an

IP network may also retransmit, the packet will still be forwarded along the failed path, thus all

affected pairs fail.

58

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000

P
er

ce
nt

 o
f F

lo
w

s
(%

)

Data Retrieval Time (ms)

NDN-BestRoute
Path Splicing

(a) 1% Link Failure Probability

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000

P
er

ce
nt

 o
f F

lo
w

s
(%

)

Data Retrieval Time (ms)

NDN-BestRoute
Path Splicing

(b) 10% Link Failure Probability

Figure 5.2: Data retrieval time under different link failure probability

59

BestRoute finds are also of good quality. Figure 5.3 shows the CDF of path stretch,

which is the path length ratio of the selected path over the shortest path after fail-

ures. Under either 1% or 10% link failures, about 60% of paths in the NDN network

have stretch of 1, which means that the adaptive forwarding plane found the short-

est paths; the 90-percentile of path stretch increases marginally from 1.21 to 1.22

when failure probability increases from 1% to 10%.

NDN-BestRoute’s resiliency to failures is due to its fast local recovery. When

a link fails, the NDN router will mark this interface Red and try other interfaces

following its forwarding strategy. If the router has tried and failed all possible

interfaces, it returns a NACK to downstream node, which will then explore its

own alternatives. When the Interest brings back Data via a working interface, this

interface will be labelled Green and used to forward future Interests. Therefore,

network retry starts from where the failure happens and pushes back towards the

consumer until a working path is found, if one exists. Since a FIB entry’s outgoing

interfaces are ordered not only based on routing preference but also observed working

status, a router tries most promising interfaces first, which leads to finding working

paths sooner and finding good working paths.

In contrast, since IP’s forwarding plane has no adaptability of its own, its per-

centage of disconnected pairs in Figure 5.1 reflects the number of host pairs whose

shortest paths contain at least one failed link. An IP network relies on routing

protocols to handle link failures. Once a policy-compliant working path is found,

routing will converge and packets will be delivered along the new path. However the

convergence process, which includes failure detection, route propagation, route com-

putation, and FIB update, can take time to complete. Measurements have shown

that routing convergence may take tens of seconds to minutes, during which appli-

cations suffer from packet losses and long delays. Therefore, many efforts, including

Path Splicing, have gone to improving packet delivery during the transient period

after failures. The essence of these IP-based solutions is to find a loop-free path,

either precomputed or computed on-the-fly, without relying on routing.

60

 0

 20

 40

 60

 80

 100

 1 1.5 2 2.5 3 3.5 4

P
er

ce
nt

 o
f F

lo
w

s
(%

)

Path Stretch

NDN-BestRoute
Path Splicing

(a) 1% Link Failure Probability

 0

 20

 40

 60

 80

 100

 1 1.5 2 2.5 3 3.5 4

P
er

ce
nt

 o
f F

lo
w

s
(%

)

Path Stretch

NDN-BestRoute
Path Splicing

(b) 10% Link Failure Probability

Figure 5.3: Path stretch under different link failure probability

61

Path Splicing improves packet delivery under link failures over IP2. When links

fail and packets are dropped, the consumer host will time out the request after RTT

and retransmit using different tags. Figure 5.2 and 5.3 show data retrieval time and

path stretch of Path Splicing under different link failure probability. Among all the

affected but recoverable host pairs, 66% and 49% of them succeed in data retrieval

when the link failure probability is 1% and 10%, respectively3.

The performance of Path Splicing depends on the number of slices and the num-

ber of retransmissions allowed. The former represents the number of choices for alter-

native paths, the latter represents how many attempts are allowed to find a working

path among the choices. We experimented with different settings to understand the

impacts of these two tuning knobs. If the maximum number of retransmissions al-

lowed is increased from 5 to 20 while the number of slices is kept at 5, the number of

disconnected pairs of Path Splicing reduces significantly as shown in Figure 5.1. But

increasing the number of slices from 5 to 10 only makes a small improvement. This

observation suggests that, for the specific topology used in this simulation, a small

number of slices can provide adequate path diversity to get around the link failures,

however end-hosts may do many random trials before they succeed. Figures 5.2 &

5.3 show that for those flows which succeed in recovery by Path Splicing, they takes

much longer time to retrieve data than NDN-BestRoute and in general the found

paths are longer. This is because end-hosts randomly pick different tags, without

knowing where the failures are to make an informed selection. Furthermore, such

recovery attempts are initiated by end hosts after timeout, which necessarily takes

2The result in Figure 5.1 appears to be worse than that in Figure 6 of [48], because the result

in [48] is for one-way traffic, and our result here is for two-way traffic, which requires working tags

for paths in both directions. When we run simulations for one-way traffic only, the result is similar

to that in [48].
3Figure 5.1 shows that, with link failure probability of 10%, 31% of all host pairs are affected

(i.e. the failure percentage of IP traffic), 9.2% are unrecoverable, hence 21.8% of host pairs are

affected but recoverable. NDN-BestRoute can recover all the 21.8%, while Path Splicing can only

recover 10.6% of them. Hence only about 49% of recoverable pairs succeed in Path Splicing as

shown in Figure 5.2(b) and Figure 5.3(b).

62

much longer time compared to NDN routers performing local recovery.

5.3 Role of Routing

Simulation results in the previous section shows that NDN routers are able to handle

network failures locally without relying on global routing convergence. This funda-

mental change prompts us to rethink the role of routing in NDN networks: does it

still need a routing protocol? If so, what impact may an intelligent forwarding plane

have on the design and operation of NDN routing protocols? In the remainder of

this chapter we seek answers to these questions and investigate the role of routing

in NDN.

Since NDN’s forwarding model is a strict superset of the IP model, any routing

scheme that works well for IP should also work well for NDN [36]. However, today’s

IP routing protocols suffer from issues such as slow convergence or poor scalability.

In addition, NDN has a smart and powerful forwarding plane, which is able to take

over part of routing’s responsibility in IP. In this subsection, we first review IP

routing, and then rethink the role of routing in NDN.

5.3.1 Routing in IP

IP’s routing plane is intelligent and adaptive, but its forwarding plane is stateless

and strictly follows routing. Therefore the routing plane is also regarded as the

control plane. Routing is responsible for building the routing table and maintaining

it in face of network changes, including both long-term topology and policy changes

as well as short-term churns. When there is a change in the network, routers need to

exchange routing updates with each other in order to reach new global consistency.

The time period after a change happens and before all routers agree on the new

routing state is called the routing convergence period. IP routing protocols need to

converge fast in order to reduce packet loss and resume packet delivery after network

changes.

However, fast routing convergence is challenging in large operational networks.

63

The fundamental reason is that it conflicts with other design goals for routing pro-

tocols, i.e., routing stability and scalability. Routing stability ensures stable routing

paths within the network. It is important for applications that suffer from RTT

fluctuation; it also helps routers achieve traffic engineering goals. Routing scalabil-

ity is essential for supporting a large number of nodes, links and prefixes4 in the

network. For link-state routing, each router knows the entire topology. These pro-

tocols can converge fast, but at the cost of poor stability and limited scalability. For

distance/path-vector routing, routers do not have a full knowledge of the topology.

They are able to achieve better scalability, but the convergence time may be as long

as tens of minutes. Below we use link-state routing as an example to explain the

issues with today’s routing protocols.

The routing convergence period can be divided into four phases: failure detec-

tion, update propagation, route computation and FIB update. In link-state rout-

ing, routers periodically exchange HELLO messages to maintain connection: if no

HELLO message is received within the DEAD interval, the link is considered down.

Previous research ([13, 29]) recommended setting the HELLO interval to be on the

order of milliseconds in order to detect failures quickly. However, this not only

increases overhead but also affects routing stability, since a temporarily congested

link may be mistakenly considered fluctuating down and up. After a link failure is

detected, attached routers need to generate routing updates and propagate them to

the rest of the network; when a router receives a routing update, it needs to recom-

pute the routing table. To achieve fast routing convergence, all these steps should

be done as quickly as possible. However, if the network is unstable (e.g., there is a

flapping link), generating routing updates and recomputing routing table frequently

will increase bandwidth and computation overhead as well as harm routing stability.

At the same time, shortest path first (SPF) computation time increases with the size

of the network; FIB update time depends on the number of prefixes. To achieve fast

convergence, both the network size and the number of prefixes need to be limited,

4Supporting large number of prefixes is particularly important in NDN since the number of name

prefixes will be orders of magnitude larger than the number of IP prefixes in today’s Internet.

64

leading to poor scalability.

There are mechanisms to improve link-state routing stability and scalability.

Dynamic timers improve routing stability by limiting the rate of update generation

and SPF computation. However, these timers are increased exponentially each time,

potentially increasing convergence time significantly when the network is unstable.

Therefore, short initial timers have been suggested [29]. Area was introduced to

improve routing scalability [49]. However, it leads to sub-optimal paths between

areas and increases the complexity of configuration. Although inter-area routing

can utilize distance-vector or path-vector routing algorithms that may scale better,

they converge much slower.

In summary, it is hard to achieve fast convergence, stability and scalability si-

multaneously in a routing protocol. If there are other mechanisms to handle failures

without global convergence, the requirement on fast convergence can be relaxed,

making it possible to achieve routing stability and scalability.

5.3.2 Routing in NDN

In NDN, the forwarding plane is the actual control plane since the forwarding

strategy module makes forwarding decisions on its own. This fundamental change

prompts us to rethink the role of routing. The first question is whether NDN still

needs routing protocols. Conventionally, routing protocols are responsible for dis-

seminating topology and policy information, computing routes and handling short-

term network changes. For NDN to work without routing, routers need to be able

to do the following things efficiently: 1) retrieve Data when the network is stable;

2) handle link failures; and 3) handle link recovery. Can NDN achieve these solely

with the forwarding plane?

Another question that arises is if NDN does need routing protocols, how will

they be different from today’s existing routing protocols? With the intelligent and

adaptive forwarding plane, can some of the routing plane’s functionality be offloaded

to the forwarding plane, and which? In addition, how will the design and operation

of routing protocols benefit from this shift of functionality? In the next subsection

65

we try to give answers to these questions.

5.4 Routing and Forwarding Coordination

In this subsection, we seek answers to the questions raised above. Section 5.2 shows

that NDN routers are able to detect and recover from link failures effectively without

routing. In this subsection we focus on the other questions: whether NDN routers

can efficiently retrieve Data and handle link recovery without routing. We show

that NDN does need routing protocols to help bootstrap the forwarding process and

handle link recovery. In addition, we specify how the routing plane coordinates with

the forwarding plane, and present a simple method to improve routing stability and

scalability in NDN.

5.4.1 Interface Ranking

The forwarding plane design presented in Chapter 4 assumes interfaces are ranked by

routing preference. Can NDN routers retrieve Data efficiently without such interface

ranking? The answer is, no, they cannot. In the extreme case, we can implement

a forwarding strategy that floods every Interest to all available interfaces. This

way we can always retrieve Data quickly through the best paths. However, it will

also incur substantially large overhead. We can also implement a strategy that

randomly explore the interfaces one-by-one in a round-robin fashion. Given enough

time, routers should be able to find working paths since all possible paths will

be explored. One big issue with this method is that path exploration may take

extremely long time as shown in Section 5.5.

Consequently, NDN routers need good interface ranking to help bootstrap the

forwarding process. The responsibility of providing interface ranking lies in the

routing protocols. Existing routing algorithms such as link-state or distance/path-

vector routing can be used to rank the interfaces5. The details are explained as

5The case of path-vector routing, i.e., BGP is more complex because it also takes routing policy

into consideration. How to accommodate routing policy in interface ranking is out of the scope of

66

follows.

Link-State Routing: Link-state routing protocols store the entire network topol-

ogy in the link-state database (LSDB), making it possible to compute optimal in-

terface ranking. Suppose a node N has n interfaces I1 .. In. For Data provided

by node M , we rank these interfaces using CM
N,k, which is the cost of the best path

from N to M through interface Ik. One simple method to compute CN,k for all

destinations is to remove all interfaces except Ik from N ’s LSDB, and run Dijkstra’s

algorithm to compute the shortest paths. This may not be the best method since it

will end up calling Dijkstra’s algorithm once for every interface. It is just used to

illustrate how interface ranking can be done in link-state routing. Optimization of

the algorithm is possible but out of the scope of this dissertation.

Distance/Path-Vector Routing: In distance-vector or path-vector routing,

routers announce the hop count or complete routing path towards each destina-

tion to their neighbors. When router N receives a routing announcement for Data

provided by M from interface Ik, it simply records the hop count HM
N,k

6. The inter-

faces are then ranked by the hop count.

Notice that a router may not receive routing announcement from all interfaces,

since these routing protocols often incorporate split-horizon route announcement to

prevent routing loops. If router N learns a route towards M through interface Ik,

it will not advertise its route to M over Ik. Interfaces that do not receive routing

announcement are assigned infinite hop count to ensure they stay at the end of the

ranked interface list. They will only be used as the last resort if all higher-ranked

interfaces fail to retrieve Data.

These interfaces are useful in many situations. For example, in BGP if a provider

P uses a customer C as the next hop, it will not make routing announcement to C.

If C’s best path fails, it will not have an alternative path until routing converges,

in which case P will announce its alternative path to C. RBGP [41] is proposed to

address this issue by allowing P to announce its alternative path to C even without

this dissertation.
6Hop count can be easily extracted from the path in path-vector routing.

67

Figure 5.4: A simple network example.

failures. NDN, on the other hand, is able to achieve the same effect without changing

the protocol.

5.4.2 Probing

Section 5.2 showed that NDN routers can handle link failures locally at the forward-

ing plane. In this subsection we answer the question of whether the same applies

to link recovery. Routers can detect link failures quickly by observing Interest-Data

exchanges or Interest NACK. However, there is no explicit signal for link recovery

from the forwarding plane. Let us take Figure 5.4 as an example. The cost of the

links are marked in the figure; routers rank the interfaces as in link-state routing. If

interface B-D fails, A will use interface A-C as its major next hop for content pro-

vided by D. After interface B-D recovers from the failure, interface A-B becomes

the new best interface. However, A will continue using interface A-C because the

forwarding strategy prefers Green interfaces over Yellow ones. In this case, A needs

to probe interface A-B by sending a copy of an Interest to it. If the probing Interest

successfully brings Data back, interface A-B will be marked Green and be used to

forward subsequent Interests to D.

There is a research question of when to perform probing. An Interest copy is

used for probing so that regular Data retrieval will not be affected if probing is

unsuccessful. However, this causes extra Interest and Data in the network. There is

a trade-off between how fast a link recovery is detected and the amount of overhead

68

Pseudo-code 5 ProbingDue Algorithm

1: function ProbingDue(FibEntry, ForwardedIntf)

2: if ForwardedIntf 6= FibEntry.RoutingPreferredIntf then

3: if FibEntry.LastProbingTime + M ≤ Now() or

4: FibEntry.PacketsSinceLastProbing ≥ N then

5: Return True

6: end if

7: end if

8: Return False

9: end function

caused by probing. In CCNx [5], routers probe alternative interfaces periodically

in order to detect better paths. This enables routers to detect link recovery at the

forwarding plane. Fast recovery detection is achievable through aggressive probing.

However, it will incur significant overhead as we show in Section 5.5.

In fact, routing is able to help with this dilemma. If there is a routing protocol,

it will be able to detect link recovery and converge to it. We can take advantage of

routing by only probing a Yellow interface if its ranking is higher than the Green

interface(s). This way we can keep the probing overhead low, and switch back to

the optimal paths as soon as routing converges. Routing convergence time is not

critical because the alternative paths found by the forwarding plane are of good

quality (Section 5.2). Notice that probing is also useful in failure handling if the

alternative paths found by the forwarding plane are not optimal.

We propose a probing algorithm as presented in Pseudo-code 5 and 6. After

forwarding each Interest (before Line 9 of Pseudo-code 3), the strategy module calls

ProbingDue to check whether probing is needed. Two thresholds are introduced

to further limit the probing overhead. For each FIB entry, M is the minimum

time interval, and N is the minimum number of packets forwarded between two

consecutive probings. The algorithm returns true only if at least M time has elapsed

or at least N packets have been forwarded since last probing. Actual numbers of M

69

Pseudo-code 6 Probing Algorithm

1: function Probe(Interest, FibEntry, PitEntry)

2: interface ← FibEntry.RoutingPreferredIntf

3: if interface 6∈ PitEntry.Outgoing and

4: interface 6∈ PitEntry.Incoming then

5: Interest.Nonce ← GenerateNonce()

6: Transmit(interface, Interest)

7: Add interface to PitEntry.Outgoing

8: FibEntry.LastProbingTime ← Now()

9: FibEntry.PacketsSinceLastProbing ← 0

10: end if

11: end function

and N depends on the traffic load as well as the probing overhead network operators

are willing tolerate. Pseudo-code 6 describes the probing algorithm. It sends a copy

of the Interest to the routing preferred interface using a different nonce. The nonce

is changed so that routers can distinguish between probing Interests and Interests

that looped back.

5.4.3 Improving routing stability and scalability

Link-state routing protocols exhibit poor stability and scalability in IP due to the

fast routing convergence requirement. However, there is a simple method to address

these issues in NDN. Since NDN routers can handle network failures at the forward-

ing plane, we can actually mask the short-lived failures from the routing protocols.

Research shows that the duration of network failures follows a long-tail distribution,

and over 50% of failures last less than one minute ([47, 64]). Therefore, the number

of routing events can be significantly reduced if routing protocols do not need to re-

act to the short-lived failures. As a result, the bandwidth and CPU cycles consumed

by routing updates can be reduced, and there will be less routing fluctuation. In

addition, since there is no fast routing convergence requirement, larger networks and

70

Table 5.1: Topologies used in the simulations.

Topology
Before Processing After Processing
Node # Link # Node # Link #

Abilene 12 30 11 28
AS1239-PoP 52 168 32 128
AS701-PoP 83 438 47 366

AS1239-Router 284 1882 N/A N/A

more name prefixes become affordable. Therefore, routing overhead can be greatly

reduced, both routing stability and scalability can be significantly improved.

For link-state routing, we can implement the idea by increasing the HELLO and

DEAD interval. For example, if we set the DEAD interval to be one minute, over

50% of the link failures will not be detected by the routing protocol. Alternatively,

we can increase the routing update generation and SPF computation timers to

achieve the same effect. Although this idea looks simple, it can be applied to any

existing IP routing protocol to improve its stability and scalability. We will evaluate

the effectiveness of this method in the next subsection.

5.5 Benefit for Routing

In this subsection we use extensive simulations to evaluate how NDN’s routing and

forwarding plane benefit from each other. Results show that by masking short-lived

failures from routing, its stability and scalability can be significantly improved.

5.5.1 Simulation Setup

We simulate both NDN-BestRoute and IP in the QualNet simulator [2]7, which

provides complete implementations of OSPF and RIP. We implemented basic NDN

operations and the BestRoute forwarding strategy presented in Chapter 4. We also

make necessary changes to the routing protocols as described in 5.4.1 to support

NDN-BestRoute. Different from Section 5.2, all experiments in this subsection are

run with dynamic routing protocols, i.e., routing will converge after failures.

7We did not use ndnSIM since NS-3 does not have dynamic routing protocols.

71

We use the Abilene topology [3] and selected Rocketfuel topologies [62] in the

evaluation. A summary of the topologies is presented in Table 5.1. We process

the first three topologies to remove all single-homed nodes. This is because if links

of single-homed nodes fail, these nodes will be disconnected from the network and

therefore cannot provide any useful result. For OSPF, we use propagation delay

as the cost of the links. Unless otherwise specified, we report results from the

AS1239-PoP topology. Results for other topologies are similar and lead to the same

conclusions. The AS1239-Router topology is only used to show the improvement of

routing scalability.

For each topology, we generate random link failures as follows. We use a shifted

Pareto distribution to generate time-to-failure and time-to-recover distributions for

each link independently [44]. We use 120 seconds as the mean-time-to-recover, and

1000 seconds as the mean-time-to-fail. We also tune the parameters so that 50% of

the failures last less than one minute [47]. When a link fails, both directions of the

link stop working. With this model, multiple network events (failures and recovery)

can happen concurrently.

5.5.2 NDN without Routing

In this experiment we show how NDN forwarding works without routing. Since

routers have no idea how to rank the interfaces without input from routing, we

implement a forwarding strategy that prefers Green interfaces over Yellow ones, but

randomly picks a Yellow interface if no Green interface exists. If Data is brought

back from an interface, the interface will be marked Green and used to forward

subsequent Interests.

In each run of the experiment we pick one node as the consumer and another as

the content provider. Assuming the consumer keeps retransmitting Interests until

Data is received, we measure how long it takes. We enumerate all combinations of

consumers and providers and draw the CDF in Figure 5.5. In 89% of the cases, the

consumer retrieves Data within one second. However, it can take up to 40 seconds

to find a working path in some rare cases. The situation can get worse as the

72

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

P
er

ce
nt

 o
f f

lo
w

s

Time (s)

NDN with OSPF
NDN without routing

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Figure 5.5: CDF of time to find working paths with and without routing.

network becomes larger. In contrast, Data retrieval always follows the best paths

when routing protocol can provide interface ranking. Therefore, although NDN’s

forwarding plane can find working paths on its own, it benefits from a routing

protocol to provide interface ranking to make the local search more effective.

CCNx is another example that works without routing. Different from the random

strategy, CCNx floods the first few Interests in order to get proper RTT estimate.

After that, it will keep using the interface with the shortest RTT while probing other

interfaces periodically. We run CCNx version 0.8.1 in the simple topology shown

in Figure 5.4 using Mini-CCNx [7] network emulator. Node A sends 10 ccnping [4]

Interests towards node D every second. The number of Interests sent by node A at

different time is shown in Figure 5.6. In the first second, node A sends 30 Interests

as it floods all Interests to all its interfaces. After 3 seconds, A only sends 10-12

Interests every second. The extra Interests are due to periodic probing. In contrast,

NDN always sends 10 Interests per second when the network is stable.

73

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10

N
um

be
r

of
 In

te
re

st
s

Time (s)

CCNx
NDN-BestRoute

Figure 5.6: Number of Interests sent at different time.

5.5.3 Impact of Routing Convergence Time

In this experiment, we study the impact of routing convergence time on packet

delivery performance in NDN-BestRoute and IP. For OSPF, we vary the HELLO and

DEAD intervals to create different routing convergence time. We inject random link

failures into the network as described in simulation setup. In order to measure packet

delivery performance in NDN-BestRoute and IP, we run simple applications among

all pairs of nodes in the network. For NDN, each node announces a distinct name

prefix and provides content under this prefix. Each node also acts as a consumer

requesting data from all other nodes. A consumer sends one Interest towards each

name prefix every second. If Data is not received, a consumer will retransmit the

Interest every second up to twice. Different consumers request different pieces of

Data from the same name prefix so that they do not affect each other. Caching is

also disabled so that we can focus on routing and forwarding behaviors8. For IP,

8If consumers request the same content and caching is enabled, NDN would perform even better.

74

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

P
er

ce
nt

 o
f P

ac
ke

ts
 R

ec
ei

ve
d

(%
)

Flow Index

IP, 1S hello interval
IP, 10S hello interval
IP, 60S hello interval

NDN-BestRoute, 60S hello interval

Figure 5.7: Packet delivery performance in IP.

each node acts as both client and server. Each client sends one UDP request to each

server every second9. The server responds with UDP packet carrying the content.

Similar to NDN consumers, these clients also retransmit requests if replies are not

received. The sizes of the UDP packets are the same as those in NDN.

Figure 5.7 and 5.8 present the packet delivery rate for each node pair in IP and

NDN-BestRoute under different HELLO interval settings. Figure 5.7 shows that

HELLO interval has a huge impact on the packet delivery performance in IP. The

shorter HELLO interval, the faster packet delivery can be resumed. The median

packet delivery rate of IP is 99%, 91% and 72% when the HELLO interval is 1S, 10S

and 60S respectively. Figure 5.7 also shows that NDN-BestRoute with 60S HELLO

interval even works slightly better than IP with 1S HELLO interval.

Figure 5.8 shows the impact of HELLO interval on the packet delivery rate of

9The packet rate is much lower than real Internet traffic due to performance limitation of the

simulator. In fact, the IP packet delivery performance will be worse if the packet rate is higher.

75

 88

 90

 92

 94

 96

 98

 100

 0 100 200 300 400 500 600 700 800 900

P
er

ce
nt

 o
f P

ac
ke

ts
 R

ec
ei

ve
d

(%
)

Flow Index

NDN-BestRoute, 1S hello interval
NDN-BestRoute, 10S hello interval
NDN-BestRoute, 60S hello interval

Figure 5.8: Packet delivery performance in NDN-BestRoute.

NDN-BestRoute. When the HELLO interval increases from 1S to 10S, the perfor-

mance degradation is negligible. When the HELLO interval increases from 10S to

60S, the packet delivery rate decreases slightly. This is because only two consumer

retransmissions are allowed. The packet delivery performance can be further im-

proved by allowing more consumer retransmissions. Overall, the HELLO interval

has little impact on the packet delivery performance of NDN-BestRoute.

We also evaluate the packet delivery performance under different routing pro-

tocols. Figure 5.9 shows the CDF of packet loss rate of NDN-BestRoute and IP

when OSPF and RIP are used. Although RIP is generally considered to have poor

routing convergence properties, it performs quite well with NDN-BestRoute. NDN-

BestRoute with RIP performs much better than IP with OSPF or RIP. The perfor-

mance difference between OSPF and RIP in NDN-BestRoute is due to the difference

in interface ranking. Recall that RIP may not provide hop count for all interfaces,

thus OSPF is able to provide better interface ranking.

76

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
er

ce
nt

 o
f F

lo
w

s
(%

)

Percent of Packet Loss (%)

IP with RIP, AS1239
IP with OSPF, AS1239

NDN-BestRoute with RIP, AS1239
NDN-BestRoute with OSPF, AS1239

Figure 5.9: CDF of packet loss rate under different routing protocols.

5.5.4 Comparison with IPFRR

In the previous experiment we evaluate the packet deliver performance of plain

IP, which totally relies on routing to handle network failures. However, today’s

ISP networks often adopt solutions that handle network failures without routing

convergence, e.g., IPFRR. In this experiment, we compare NDN-BestRoute against

Loop-Free Alternate (LFA) [15], the only commercially available IPFRR solution.

We implement LFA in a custom simulator, and repeat the link failure experiment in

Section 5.2. In each run of the experiment, we associate each link with a probability

of failure, and randomly generate link failures. We run each experiment 1000 times

and report the average result.

Figure 5.10(a) shows the fraction of disconnected pairs under different failure

probability. It shows that NDN-BestRoute is always able to recover much more

failure scenarios than LFA. Figure 5.10(b) shows the CDF of stretch of alterna-

tive paths found by NDN-BestRoute and LFA. The 98-percentile of path stretch

77

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

F
ra

ct
io

n
of

 D
is

co
nn

ec
te

d
P

ai
rs

 (
%

)

Probability of Link Failure (%)

NDN-BestRoute
LFA

(a) Fraction of disconnected pairs.

 92

 93

 94

 95

 96

 97

 98

 99

 100

 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

 o
f P

oi
nt

s

Path Stretch

NDN-BestRoute
LFA

(b) CDF of path stretch.

Figure 5.10: Comparison between NDN-BestRoute and IPFRR.

78

for NDN-BestRoute and LFA is 1.06 and 1.13 respectively. In conclusion, NDN-

BestRoute is able to cover more failure scenarios and find better alternative paths

than LFA.

5.5.5 Prefix Unreachable

Previous experiments show that NDN-BestRoute performs well in handling link

failures. When a node fails, however, the name prefix served by the node may

become unreachable. In such cases, path exploration may lead to extra Interests

all over the network. In this experiment we evaluate NDN-BestRoute’s exploration

overhead when a name prefix becomes unreachable. In each run of the experiment

we fail one node and let all other nodes request content from this node before

routing convergence10. Both NDN-BestRoute and IP applications will retransmit

the same request twice. For each flow, we count the number of hops that each packet

traverses in both NDN-BestRoute and IP, and compute the ratio of hop count of

NDN-BestRoute over IP. We run the experiment for every node failure scenario and

present the CDF of the ratio in Figure 5.11.

In IP, retransmitted requests will be sent to the same paths, whereas in NDN-

BestRoute, retransmitted Interests may trigger path exploration, leading to large

overhead. Surprisingly, NDN-BestRoute incurs less overhead than IP in 26% of the

cases. This is because retransmitted Interests do not always trigger path exploration

in NDN-BestRoute. If a node has already explored all its interfaces, a further

retransmission will only get a NACK back to the application without being further

forwarded. In contrast, IP routers will always forward the packets before routing

convergence. The ratio is smaller than 5 in 93% of the cases. Only in some rare

cases does NDN-BestRoute cause excessively high exploration overhead.

The exploration overhead becomes significant when popular content becomes

unreachable, as many consumers will be requesting the content and their Interests

will trigger many attempts by routers to find working paths. But on the other

hand, popular content is usually hosted and served by multiple servers placed at

10After routing converges, routers will learn about the failure and stop forwarding the requests.

79

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

P
er

ce
nt

 o
f P

oi
nt

s

Ratio of Hop Count of NDN-BestRoute over IP

NDN-BestRoute

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

Figure 5.11: CDF of ratio of hop count of NDN-BestRoute over IP.

different locations. In addition, popular content is more likely to be cached by

routers. Thus its chance of becoming unreachable is slim. The overall impact in

large scale networks needs further investigation.

5.5.6 Probing Overhead

We evaluate probing overhead in this experiment. In each run of the experiment, we

fail one link and run applications to let routers find working paths. Then we bring

the link back up again, and run applications after routing convergence to measure

the number of hops that probing Interests and Data traverse. Interest NACKs are

counted as probing Interests. Applications are only run between node pairs whose

traffic is affected by the failure. We run the experiment on all link failure scenarios

and report the CDF in Figure 5.12. In 36% of the cases, probing Interests and Data

only traverse 2 hops; they traverse no more than 6 hops in 94% of the cases. Probing

Interests traverse more hops than Data in some rare cases, because a probing Interest

80

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14

P
er

ce
nt

 o
f F

lo
w

s
(%

)

Number of Hops

Interest
Data

Figure 5.12: CDF of number of hops for probing Interests and Data.

does not necessarily bring Data back, and some of them may loop back to previously

visited nodes and trigger NACKs. This experiment shows that by taking advantage

of routing, probing only incurs very small overhead.

CCNx does not rely on routing to handle link recovery. Instead, it periodically

sends probing Interests to alternative interfaces. We run CCNx and NDN-BestRoute

in Abilene topology to show the probing overhead introduced by CCNx. We run

applications between each pair of nodes for 20 minutes; the Interest rate is one per

second. The first 2 minutes are not counted to exclude the initial flooding Interests

in CCNx. The total number of Interests forwarded by each node is presented in

Figure 5.13. On average, every node sends 58% more Interests in CCNx than in

NDN-BestRoute. This is because each node in CCNx periodically performs probing

for every name prefix. The situation will only get worse as the topology grows larger

or number of name prefixes increases.

81

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

5 10

N
um

be
r

of
 In

te
re

st
s

Node Index

CCNx
NDN-BestRoute

Figure 5.13: Number of Interests forwarded by each node.

5.5.7 Routing Overhead

In this experiment, we evaluate the routing overhead of OSPF under different

HELLO and DEAD interval settings. Specifically, we measure the number of

HELLO messages, link-state (LS) updates and SPF computations for each node.

HELLO and LS update messages constitute the majority of routing messages trig-

gered by failures and recovery. We set the HELLO interval to be 1S, 10S and 60S;

the DEAD interval is always four times the HELLO interval. Random link failures

are injected into the network as described in simulation setup, and each experiment

is run for 3000 seconds. Only LS updates and SPF computations triggered by fail-

ures and recovery are counted11. The numbers obtained in this experiment are the

same for both NDN-BestRoute and IP.

11Notice that OSPF also floods refresh link-state announcements periodically even in the absence

of network event. These refresh updates are not counted since they are not affected by routing

convergence behaviors.

82

 0

 10000

 20000

 30000

 40000

 50000

5 10 15 20 25 30

N
um

be
r

of
 H

E
LL

O
 M

es
sa

ge
s

Node Index

1S hello interval
10S hello interval
60S hello interval

(a) Number of HELLO messages.

 0

 1000

 2000

 3000

 4000

 5000

5 10 15 20 25 30

N
um

be
r

of
 T

rig
ge

re
d

LS
 U

pd
at

es

Node Index

1S hello interval
10S hello interval
60S hello interval

(b) Number of triggered LS updates.

 0

 100

 200

 300

 400

 500

 600

5 10 15 20 25 30

N
um

be
r

of
 T

rig
ge

re
d

S
P

F
 C

om
pu

ta
tio

ns

Node Index

1S hello interval
10S hello interval
60S hello interval

(c) Number of triggered SPF Calculations.

Figure 5.14: Routing overhead in AS1239 PoP-level topology.

83

Figure 5.14(a) shows the number of HELLO messages sent by each node under

different HELLO interval settings in AS1239-PoP topology. As the HELLO interval

increases from 1 second to 60 seconds, the number of HELLO messages sent by each

node is decreased by 98% as one would expect. Figure 5.14(b) and 5.14(c) present

the number of triggered LS updates and SPF computations for each node. As the

HELLO intervals increase, less failure events will be detected by OSPF. No routing

update will be generated and propagated for the undetected failures, and thus no

SPF computation will be performed. If we increase the HELLO interval from 1

second to 60 seconds, the number of LS updates is decreased by 52% to 80%, and

the number of SPF computations is decreased by 77% to 82%. Therefore, we can

effectively reduce the overhead caused by HELLO messages, LS updates and SPF

computation by increasing the HELLO interval.

We ran the same experiments in AS1239 router-level topology to illustrate how

the method works in large ISP networks. The CDF of number of triggered LS

updates and SPF computations are presented in Figure 5.15. The median numbers

of LS updates and SPF computations are decreased by 87% and 90% when HELLO

interval increases from 1 second to 60 seconds. In conclusion, routing overhead can

be significantly reduced by masking short-lived failures from the routing protocol.

Since less LS updates are generated and propagated and less SPF computations are

performed, routing becomes more stable and scalable.

84

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000

P
er

ce
nt

 o
f P

oi
nt

s

Number of Triggered LS Updates

1S hello interval
10S hello interval
60S hello interval

(a) CDF of number of triggered LS updates.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

P
er

ce
nt

 o
f P

oi
nt

s

Number of Triggered SPF Computations

1S hello interval
10S hello interval
60S hello interval

(b) CDF of number of triggered SPF computations.

Figure 5.15: Routing overhead in AS1239 router-level topology.

85

CHAPTER 6

CONGESTION CONTROL

This chapter studies congestion control in NDN with adaptive forwarding. The

one-to-one flow balance and symmetric forwarding paths between Interest and Data

packets give NDN an effective way to prevent congestion inside the network. By

pacing Interests sent to the upstream direction (towards the producer) of a link, one

can effectively prevent congestion (caused by Data) on its downstream direction.

Specifically, we propose to enforce an Interest Limit on each interface which spec-

ifies the maximum number of pending Interests allowed on this interface. We first

present a simple Interest limiting (SIL) mechanism which, combined with adaptive

forwarding, is able to achieve hop-by-hop multipath congestion control. Then we de-

sign a more practical Dynamic Interest Limiting (DIL) mechanism and extensively

evaluate its performance under different congestion scenarios.

6.1 A Simple Interest Limiting Mechanism

We set a limit on how fast Interest packets can be forwarded over an interface and

experiment with a simple calculation of the Interest limit: Li = α × Ci/S̄i, where

Li is the Interest limit of interface i, Ci is the upstream link capacity of i, S̄i is

an estimate of the size of the Data packets that have been received over i, and α

is a configurable parameter. The ratio Ci/S̄i is the maximum Data rate that is

allowed from upstream measured in packets per second (pps), which should be the

same as the maximum Interest rate going upstream1. The coefficient α is used to

compensate for errors in the calculations (e.g., imprecise Data size estimate, link

and network layer overheads). When Li is not reached, interface i is said to be

1A slightly more complicated formula can be obtained if we take the sizes of both Interest and

Data packets into consideration, as is done in [66].

86

available for forwarding Interests, otherwise unavailable.

Let us assume there are three nodes, N1–N2–N3, and Interests flow from N1 to

N3. N1 computes Li and sends Interests to N2 no faster than Li, which prevents

the link between the two nodes from being congested. N2 will also respect a similar

Interest limit when it forwards Interests to N3. We introduce a new NACK code

“Congestion” to indicate congestion in the network. An interface is not marked

Yellow upon “Congestion” NACK since congestion is considered temporary. If link

N2-N3 has less capacity than link N1-N2, it is possible that N1 sends more Interests

than N2 can forward. In this case, N2 will send extra Interests to alternative paths,

or send NACKs with code “Congestion” back to N1 if none exists. When N1 re-

ceives the NACK, it will try its own alternative paths or return the NACK further

downstream. Pseudo-code 3 can be easily adjusted to reflect this change.

6.1.1 Evaluation

Today’s Internet routing does not react to congestion due to concerns of routing

oscillation and frequent routing updates. When a link is congested, the routing

plane at each of the two incident routers either does not see the problem at all if

routing protocols have their keep-alive messages pass through, or considers the link

failed if enough keep-alive messages are lost. The responsibility of congestion control

is solely on end-hosts, which run TCP to detect congestion and adjust sending rate

reactively. In NDN, on the other hand, the forwarding state enables routers in the

network to prevent, detect, and react to congestion by utilizing multiple paths when

needed, resulting in effective and efficient congestion control. In this subsection we

experiment with SIL using ndnSIM [12].

Let us first use a simple 6-node topology to shed the light on the basic differences

between NDN and TCP NewReno in their reactions to congestion (Figure 6.1). The

server and client each has a 10 Mbps link connecting to a router. Each router has

buffer size of 20 packets and all the links between routers have 1 Mbps bandwidth.

The lower path has an RTT of 130 ms, while the upper path’s is 134 ms. Data

packet size in both NDN and TCP is 1040 bytes, and both Interest size in NDN and

87

Time

0.0

0.5

1.0

1.5

2.0

10 20 30 40

Time

0.0

0.5

1.0

1.5

2.0

10 20 30 40

Client
Server

R2

R1

R3

R4
Time, seconds

L
in

k
 u

ti
liz

a
ti
o
n
,

M
b
p
s

0.0

0.5

1.0

1.5

2.0

10 20 30 40

NDN

TCP

Figure 6.1: Link utilization under congestion

TCP ACK size is 40 bytes. For NDN, the client adjusts its sending window using an

AIMD mechanism similar to TCP. The client downloads content from the server and

the figures show the link utilization achieved by NDN and TCP respectively. We can

make two observations from the results. First, while TCP/IP uses the shorter path

only and saturates the bottleneck link, NDN is able to use both paths. In NDN,

R1 first uses only the lower path because it is the most preferred, but when the

rate-limit of the lower path is reached, R1 starts using the upper path too. Second,

over each path, NDN is able to grab available bandwidth more quickly than TCP,

which takes longer time to settle at a stable rate. Consequently TCP takes more

than twice as long to download the same amount of data.

NDN has a number of means to prevent, control, and alleviate congestion. First,

a downstream node controls the rate of Interest forwarding based on its estimate of

the bandwidth needed to carry the returning Data traffic. This prevents excessive

Data from being pulled into the network, and is enabled by the symmetric two-

way flow of Interest/Data packets. In TCP/IP, on the other hand, because data is

pushed from the sender to the receiver, when a data packet arrives at a link where

it cannot be forwarded further, the router simply drops it, after the the packet has

88

already consumed considerable bandwidth along the way from the sender to the

congested link. While TCP congestion control also aims to achieve flow balance

as an NDN network does, it sends data packets to probe the network’s available

bandwidth and takes much longer time to detect congestion (end-to-end vs hop-

by-hop); meanwhile additional excessive packets may have been pumped into the

network, which eventually get dropped.

Second, Interest NACKs allow NDN routers to adapt to congestion hop-by-hop.

A “Congestion” NACK is generated if the Interest cannot be forwarded upstream

due to congestion. The downstream node will try its other interfaces for this Interest.

This hop-by-hop retry inside the network reacts much faster than the end-to-end

solutions for stateless IP networks, leading to quick local workaround as we have

seen in the case of link failure recovery. When the network cannot satisfy the

demand, Interest NACKs will eventually be pushed back to inform the consumer to

adjust its Interest sending rate properly. This is in contrast to TCP, which can only

guess whether congestion occurred in the network, and can only use AIMD window

adjustment to tune towards the right sending rate.

Third, NDN can use multiple paths simultaneously to retrieve data whenever

needed. As illustrated in the cases of hijack and link failure, NDN can find loop-free

alternative paths quickly. When traffic is below the rate limit of a single upstream

link, all will be forwarded along the best path. When traffic is over a single path’s

capacity, NDN can divert excess Interests to one or more alternative working paths.

This capability of on-demand multipath forwarding enables efficient use of all avail-

able network resources.

Fourth, even though we did not simulate caching in this study, in a real NDN

network, caching can further help speed up recovery from faults including congestion.

When a Data packet arrives at a congested or failed link, it cannot be forwarded

further but can be cached along the way. When downstream routers send another

Interest, in response to either a NACK or end-host retransmission, via a different

interface, this subsequent Interest will bring the requested data back as soon as

it hits a cached copy of the data. With caching, recovery from packet losses can

89

be much faster and more efficient in network resource usage than the end-to-end

retransmission in IP-based solutions.

We ran a larger-scale simulation using the Sprint topology as described in Sec-

tion 4.4.3 and generate a number of flows that lead to cross traffic at multiple

locations in the network. Each link has a 20-packet queue, and all links are assigned

1 Mbps bandwidth but different propagation delay according to the topology file. In

each run, 20 client/server pairs are randomly selected and each client downloads the

same amount of data from its server 2. The clients start in a random order with 1

second apart. Packet size is the same as in the previous simulation. Figure 6.2 shows

the results from 100 runs, where each dot represents the finish time of the flow that

finishes last. As the figure shows, NDN finishes sooner than TCP in all but 7 runs

(including one run in which they finish almost the same time), demonstrating that

NDN can utilize network resources more efficiently and handle congestion better.

We can explain the six cases where NDN took slightly longer time than TCP

to finish as follows. In NDN, because all consumers try to retrieve data as fast

as possible, and all routers explore multiple paths to satisfy consumers demand,

consequently those pairs of nodes that have multiple parallel paths in between can

capture more bandwidth and finish fast. However a number of flows in the simulation

have only one single path between client Ci and server Si, i.e. they must go through

at least one specific link LB to reach each other. If LB is not shared with other

traffic, Ci can finish data retrieval from Si as soon as possible. But if LB is shared

by other traffic flows, which is more likely to be the case in NDN than in TCP/IP,

Ci will take longer to finish.

The above observation suggests that multipath forwarding deployment should be

accompanied by support for fair share of network resources. This fair share support

can be added into the decision process when a node needs to return “Congestion”

NACKs. The node has the discretion on which Interest to send a “Congestion”

NACK back. Through the decision criteria one can achieve fair share goals, enforce

2We place clients/servers randomly and run the experiment multiple times in order to evaluate

NDN and TCP in general situations.

90

Finishing time of TCP flows, seconds

F
in

is
hi

ng
 ti

m
e

of
 N

D
N

 fl
ow

s,
 s

ec
on

ds

40

50

60

70

80

90

100

110

40 50 60 70 80 90 100 110

Figure 6.2: Flow finish time under congestion

bandwidth limit to downstream, maintain QoS targets, and even push back excessive

Interests in the case of DDoS.

6.2 Dynamic Interest Limiting

The above simple Interest limiting mechanism shows the strength of hop-by-hop

multipath congestion control. However, it also has many limitations. First, it

cannot properly handle the dynamics in returning Data traffic. After forwarding an

Interest, a router has no idea when the corresponding Data will be returned since

it can be returned from either content providers, intermediate repositories or router

caches. Nor does a router know how big the Data will be. Therefore Data traffic

can be bursty and cause congestion even if strict Interest limit is enforced. Second,

it cannot effectively address the bufferbloat issue. One option is to apply AQM

mechanisms on the upstream router of the bottleneck link, but then Data packets

will be dropped silently without notification. While consumers can still retransmit

the corresponding Interests in order to retrieve the Data, it does not fully utilize the

91

Table 6.1: Summary of notation used for DIL
Li Total Interest limit on Interface i.
Li,n Interest limit for prefix n on i.
Pi Pending Interests number on i.
Pi,n Pending Interests number for prefix n on i.
α Interest limit increasing factor.
β Interest limit decreasing factor.
MinL Min Interest limit for the interfaces.
MaxL Max Interest limit for the interfaces.
MinTh Min threshold for REN.
MaxTh Max threshold for REN.

power of adaptive forwarding. Third, it does not provide fairness among concurrent

flows. Therefore, it cannot fairly allocate network resources in face of ill-behaved

consumers.

We present Dynamic Interest Limiting (DIL) to address these limitations. DIL

dynamically adjusts the Interest limit on each interface based on the usage of the

corresponding link. The Interest limit is increased when valid Data is received on

the interface, and decreased when congestion is detected. We present two congestion

detection methods which do not rely on the RTT estimate. Random Early NACK

(REN) is proposed for native NDN networks, where the upstream router monitors

the queue length and proactively sends NACKs to the downstream router when

the queue keeps growing. Link-layer Congestion Detection (LCD) is introduced for

NDN-over-IP scenarios, in which every NDN router adds a link-layer header con-

taining a sequence number to every NDN packet it forwards, and the router on the

other end of the link detects packet losses (i.e., congestion) by observing gaps in the

sequence numbers it received. The above design ensures that link bandwidth is effi-

ciently utilized by the aggregate traffic without considering the usage of individual

flows. For bandwidth sharing among multiple flows, we propose a Fair Interest Lim-

iting (FIL) mechanism which fairly divides the total Interest limit on one interface

among all active flows. This way we are able to decouple utilization control from

fairness control in DIL as advocated in XCP [38].

92

Strategy Module

Upstream

DIL Module

Availability

Interest

X�����

Y��}vP���]}v

Figure 6.3: Router Model for Dynamic Interest Limiting.

We implement DIL in the ndnSIM [12] simulator and extensively evaluate its

performance under different congestion scenarios. Results show that DIL is able to

effectively utilize the network bandwidth while keeping application delay and jitter

low in both native NDN and overlay scenarios. We also show that DIL provides

fairness among multiple flows. DIL combined with adaptive forwarding is able to

utilize the network resources more efficiently than SIL proposed in 6.1.

6.3 DIL Design

This subsection explains in detail the design of every component of DIL and how

they work as a whole. We assume the forwarding plane design of NDN-BestRoute

described in Chapter 4 is deployed on all routers. The notation used in this section

is summarized in Table 6.1.

6.3.1 Dynamic Interest Limit Adjustment

Each interface i is assigned a total Interest limit Li. The initial value of Li can

be calculated using the formula provided in Section 6.1; afterwards it will be dy-

namically adjusted based on the load of the link. Figure 6.3 illustrates the router

93

model for DIL. The forwarding strategy module consults with the DIL module on

the availability of interfaces when making forwarding decisions. This can be easily

added to the forwarding strategy after Line 5 of Pseudo-code 3. We use an AIMD

algorithm to dynamically adjust the Interest limit similar to TCP. When a valid

Data packet is received, Li is updated as follows.

Li = min(MaxL, Li + α/Li)

We enforce an upper boundMaxL on Li to prevent it from increasing unlimitedly

when there is no congestion in the network. Similarly, a lower bound MinL is also

placed on Li. When congestion is detected from the upstream on interface i, Li is

updated as follows.

Li = max(MinL, Li − β)

With DIL, routers can adapt their Interest limit on each interface without prior

knowledge of returning delay or sizes of the Data packets. Although DIL uses AIMD

to adjust the Interest limit, it is essentially different from TCP in that it works in a

hop-by-hop, receiver-driven fashion whereas TCP is end-to-end and sender-driven.

Below we introduce two novel methods for congestion detection on local links.

6.3.2 Random Early NACK

For DIL to work properly, a router needs to decrease its Interest rate towards an

upstream router if the link in-between is congested in the ingress direction. However,

there has not been good ways to detect congestion from the upstream in NDN. The

traditional method of setting up timers based on RTT estimate is not only slow but

also inaccurate in NDN.

We propose a new method called Random Early NACK (REN) for congestion

detection in native NDN networks. The router model for REN is shown in Figure 6.4.

When a router receives an Interest, it first consults the REN module on whether

to accept it or not. The REN module makes the acceptance decision based on the

current average length of the output queue of the interface from which the Interest

94

Figure 6.4: Router Model for Random Early NACK.

was received. If the REN module decides to accept the Interest, it will be handed

to the forwarding strategy module for further processing; otherwise the router will

return a NACK with code “Congestion” to the downstream router. The rationale

behind this design is that if the output queue is piling up, it means the router has

received more Interests than the link could handle. Therefore the router will return

“Congestion” NACKs to its downstream as congestion signals. Upon receiving the

NACKs, the downstream router will slow down its Interest rate accordingly. By

always keeping the output queue of the upstream router short, we not only prevent

congestion but also address the bufferbloat issue.

The idea of REN is derived from RED [28]. The REN module rejects incoming

Interests at certain probability computed based on the average queue length. If

the average queue length is less than MinTh, no Interest will be rejected; if it

is larger than MaxTh, all Interests will be rejected; otherwise the probability of

rejecting an incoming Interest is computed using the same algorithm as presented

in RED [28]. However, REN is different from RED in two fundamental ways. First,

RED randomly drops packets coming from the upstream, whereas REN does not

drop any packet. REN only rejects Interests from the downstream by sending back

NACKs. Second, unlike RED, REN does not change the behavior of the queues. A

drop-tail queue with the capability of collecting average queue length will suffice.

95

A B

A B

E F

C D

NDN

IP

Figure 6.5: An NDN overlay example.

It is worth mentioning that there is another type of NACK that the upstream

may send to the downstream due to congestion. If none of the interfaces of the

upstream router is available for an Interest, i.e., the upstream router has reached

the Interest limits on all its interfaces, it will also return a NACK to the downstream

router. This type of NACK is already covered by the BestRoute forwarding strategy

described in Section 5.1.

6.3.3 Link-layer Congestion Detection

REN works well on native NDN networks. However, the situation becomes more

complex when NDN is deployed as an overlay network on top of IP, as in the NDN

Testbed [8]. Take the NDN overlay scenario shown in Figure 6.5 as an example, the

NDN link A–B is actually comprised of three IP links, A–E, E–F and F–B, all of

which are shared by the underlying IP traffic. The overlay link A–B will become

congested if any of the three underlying link is congested. Therefore, the output

queues of A and B cannot be used to determine the congestion condition of the

overlay link. If the underlying link E–F is congested due to traffic from C to D, A

and B will not be able to detect the congestion by monitoring their output queues.

Thus, REN will not work effectively in overlay scenarios.

We propose a simple link-layer protocol for NDN to detect congestion without

monitoring the queue (Figure 6.6). The link-layer protocol adds a sequence number

96

NDN Packet Seq

DIL Module Strategy Module

4, 5, .., 28, 29, 31, 32, 33, 35, 34, .., 40

Gap Reordering

Valid Window Link Delay

LCD Module

Gap Size NDN Packet

Figure 6.6: Link-layer Congestion Detection.

to each NDN packet forwarded on one link. The router on the other end of the link

maintains a window of sequence numbers it recently received. Gaps in the sequence

numbers indicate potential packet losses, which are regarded as signals of congestion

on the underlying path. We pick the end point of the window carefully such that

packet reordering will not be treated as packet losses. Specifically, sequence numbers

received during the past link delay are not considered when counting the gaps.

6.3.4 Fair Interest Limiting

In NDN, there is no concept of end-to-end connection as in IP, therefore NDN

cannot inherit the definition of fairness from IP. Since NDN routers have no idea of

the sources and destinations of the packets, fairness can only be defined based on

the names carried by the packets. However, consensus has not been reached on the

granularity of fairness. One extreme is per-FIB-entry fairness3, where the bandwidth

is fairly shared by all FIB entries that have active traffic. The other extreme is per-

file fairness4, where the bandwidth is fairly shared by all file transfers. The proper

3Assuming FIB entries do not overlap.
4Assuming file names all follow the naming convention of /FileName/SegNo.

97

Pseudo-code 7 Availability of interface i for prefix n

1: function InterfaceAvailable(i, n)

2: if Pi < Li then

3: Increase(Li,n)

4: else

5: m ← LargestPrefix(i)

6: if Pi = Li then

7: if Li,n < Li,m - 1 then

8: Decrease(Li,m)

9: Increase(Li,n)

10: end if

11: else

12: Decrease(Li,m)

13: if Li,n < Li,m then

14: Increase(Li,n)

15: end if

16: end if

17: end if

18: AdjustPrefixList(i, n, m)

19: Return (Pi,n < Li,n)

20: end function

granularity of fairness for NDN is still subject to further research and investigation.

In this dissertation we adopt per-FIB-entry fairness just to show the effectiveness of

FIL. It can be easily adjusted to work with other fairness granularity.

Pseudo-code 7 is used to determine whether interface i is available for forwarding

an Interest under name prefix n. The prefix Interest limit Li,n for all active prefixes

are stored in i.PrefixList, a data structure with two indices: a hash index on name

prefixes and a doubly linked list sorted by Li,n. If the number of pending Interests

Pi is less than Li, it means the total Interest limit has not been reached yet; thus we

98

can safely increase Li,n and forward the Interest to i. If Pi is equal to Li, it means

the total Interest limit on i has been used up. In this case we need to decrease the

Interest limit of the largest prefix 5 and give it to n. If Pi is larger than Li, it is

because the total Interest limit is reduced due to upstream congestion. In this case,

we should always reduce the Interest limit of the largest prefix. The Interest will

only be forwarded to i if n is not currently the largest prefix and will not become

the largest prefix after the Interest is forwarded.

Pi and Pi,n are increased by 1 when an Interest under name prefix n is forwarded

to i, and decreased by 1 when an Interest is satisfied or given up. It may happen

that Pi or Pi,n be temporarily larger than Li or Li,n respectively due to adjustment

of the total Interest limit. This will only last until the next one or few Interests

are satisfied or given up, before which further Interests under name prefix n will be

rejected. i.PrefixList needs to be adjusted by calling AdjustPrefixList after Li,n

and/or Li,m are changed to keep the list in sorted order. Adjusting i.PrefixList

is very efficient since it is a sorted list, and Li,n or Li.m will only be increased or

decreased by 1 each time. In most situations, we only need to compare Li,n with

its previous or next neighbor in the list and swap them if necessary; therefore the

time complexity is O(1). In the worst case where all name prefixes have the same

Interest limit, the time complexity for AdjustPrefixList is O(N) where N is the

number of active prefixes in i.PrefixList.

Pseudo-code 7 achieves max-min fairness by definition since it always tries to

make small flows as large as possible. FIL is, in essence, similar to fair queuing.

The fundamental difference is that FIL maintains fairness in the number of pend-

ing Interests instead of the number of packets queued for each flow because of the

receiver-driven nature of NDN. With FIL, flows with shorter RTT from the bottle-

neck link may get advantage in throughput. This is similar to today’s TCP and can

be justified since flows with shorter RTT will consume less network resources [27].

5By largest prefix we mean the prefix with the largest Interest limit.

99

A D B C

Figure 6.7: A 4-Node Linear Topology.

A E

C D

B F

Figure 6.8: A 6-Node Dumbbell Topology.

6.4 Evaluation

In this subsection, we conduct comprehensive simulations to evaluate the perfor-

mance of DIL under different congestion scenarios. The main metrics used in the

evaluation are throughput, application delay and fairness. There is a trade-off be-

tween throughput and application delay. For routers to maintain high and stable

throughput, there should always be packets in the queue waiting to be forwarded.

However, application delay will suffer if the queue becomes too long. Therefore, it is

essential to keep the queue non-empty but short. For throughput we are interested

in the application finishing time as well as stable bandwidth utilization. We also

evaluate the application delay and jitter for each scheme. Additionally, we study

whether and how fast each scheme can achieve fairness. Our results show that DIL

is able to achieve efficient and fair bandwidth utilization while maintaining low ap-

plication delay when the network is congested. Results also show that DIL combined

with adaptive forwarding provides more effective multipath congestion control than

SIL presented in Section 6.1.

100

6.4.1 Simulation Setup

We implement DIL in the ndnSIM [12] simulator. The BestRoute forwarding strat-

egy presented in Chapter 4 is used in all NDN simulations. Caching is disabled

unless otherwise specified. Three different topologies are used in the simulations. A

4-node linear topology as shown in Figure 6.7 is used to show the efficiency of DIL; a

6-node dumbbell topology as shown in Figure 6.8 is used to show how DIL provides

fairness among multiple flows; the Sprint PoP-level topology from Rocketfuel [62] is

used to demonstrate the performance of DIL in multipath congestion control.

Four different congestion control schemes are considered in the evaluation. 1)

DIL with Constant Interest Rate (CIR) consumers which keep expressing Interests

at constant rates; 2) AIMD consumers6 with no hop-by-hop congestion control;

3) Hop-by-hop Interest Shaper (HIS) as proposed in [66] with AIMD consumers;

4) TCP NewReno. The schemes are referred to as DIL, AIMD, HIS and TCP

respectively in the rest of this section. The first three are for NDN while the last

one is for IP. HIS is similar to SIL presented in Section 6.1. The major differences

are that HIS takes two-way traffic into consideration when computing the Interest

limit; it also introduces an Interest queue to hold extra Interests when the limit is

reached instead of returning NACKs immediately. We use CIR consumers together

with DIL since DIL provides effective queue management as well as fairness control7;

CIR consumers do not work well with HIS or without hop-by-hop congestion control.

Therefore we use AIMD consumers together with HIS as is done in [66].

For DIL, we set the initial values of Li to be 50; MinL and MaxL are set to be

30 and 70 respectively. We set α and β to be 0.4 and 0.8. For REN, MinTh and

MaxTh are set to be 1 and 4. Unless otherwise specified, we set the Interest queue

size to be 20 packets for HIS8; drop-tail queues with size 100 packets are used for

6The consumers increase their Interest rate on Data and decrease the rate on NACK or timeout

similar to TCP.
7We are not suggesting that CIR is a good option for practical usage, it is only used in the

simulations to show the strength of DIL.
8We experimented with different values for the Interest queue size and chose the one that works

the best in the given scenarios.

101

all links. In the cases where RED queues are used, MinTh and MaxTh are set to be

5 and 15 respectively.

6.4.2 Efficiency of DIL in Native NDN Networks

In this set of experiments, a linear topology (see Figure 6.7) is used to show the

efficiency of DIL under different congestion scenarios. All links are native NDN

links. Unless otherwise specified, all links have delay of 50 ms; link bandwidth is 1

Mbps for B-C and 10 Mbps for the others. Thus link B-C is the bottleneck. For

DIL, the Interest rate of the consumers is set to be 200 per second. We evaluate the

performance of different schemes under different scenarios, including varying Data

packet size, varying RTT as well as two-way traffic.

Base Case:

In this experiment, A is the consumer and D is the provider for NDN. A requests

10000 pieces of Data from D, each of which is 1040 bytes. Each Interest name

contains a sequence number, and Interests are expressed in the order of the sequence

number. An Interest will be retransmitted when NACK is received or timeout is

triggered. For TCP, a client and a server are installed on D and A respectively; D

sends the same amount of data towards A.

Figure 6.9 presents the throughput and finishing time for different schemes.

Among all schemes, DIL (Figure 6.9(a)) achieves the most stable throughput and

shortest finishing time. All schemes except DIL experience a slow-start period dur-

ing which the throughput increases slowly from 0. DIL does not need slow start

since the initial Interest limit is a pre-computed value instead of 0. The through-

put for AIMD (Figure 6.9(b)) keeps fluctuating, leading to a longer finishing time.

This is because when congestion is detected, the consumer reduces its sending win-

dow aggressively. Since there is no hop-by-hop congestion control, timeout is the

only signal for congestion for AIMD. Even with per-hop Interest limiting, HIS (Fig-

ure 6.9(c)) achieves similar throughput as AIMD. This is because router B will send

102

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)

(a) DIL

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)

(b) AIMD

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)

(c) HIS

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)

(d) HIS with big Interest queue

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)

(e) TCP

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)

(f) TCP with RED queue

Figure 6.9: Throughput and finishing time for linear topology.

103

“Congestion” NACKs back to A when the Interest limit is reached and the Interest

queue is full, which will cause the consumer to decrease its sending window just as

in AIMD. Increasing the Interest queue size from 20 to 100 for HIS has little impact

on the finishing time as shown in Figure 6.9(d). Surprisingly, TCP (Figure 6.9(e))

provides good throughput in this scenario because of the long drop-tail queue on

link B-C. The throughput drops sharply and exhibits the typical fluctuation when

RED queue is used instead (Figure 6.9(f)).

Figure 6.10 shows the CDF of application delay for NDN. Over 98% of the

Interests have RTT of less than 340 ms for DIL, while the 98th percentile of RTT

for HIS is 453 ms. The application delay gets much worse when the Interest queue

size is increased from 20 to 100 for HIS. AIMD also has long application delay due

to the long drop-tail queue on the bottleneck link. It is hard to measure application

delay for TCP due to packet fragmentation, thus we measure the average queue

length instead. Figure 6.11 shows the average queue length of the bottleneck link

for DIL and TCP. The queue length for TCP is around 55 almost all the time. It

becomes smaller when RED queue in installed, but at the cost of throughput loss

as we previously show. In contrast, the average queue length for DIL is stabilized

to around 2 packets soon after the initial stage. In summary, this experiment shows

that DIL is able to effectively utilize the bandwidth of the bottleneck link while

keeping application delay short.

Varying Data Size:

For this scenario, the same topology setup as the base case is used. The only

difference is that the sizes of the Data packets are randomly distributed between

600 and 1400 bytes. The throughput and finishing time for different NDN schemes

are shown in Figure 6.13. Compared to the base case where Data size is constant,

this experiment introduces more dynamics in the returning Data traffic. AIMD

and HIS rely on the output queue of the bottleneck link to absorb such dynamics.

Consequently, the queue of the bottleneck link becomes more occupied and the

throughput is actually improved compared to the base case. As a trade-off, however,

104

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2

P
er

ce
nt

 o
f P

oi
nt

s

Application Delay (s)

DIL
AIMD

HIS
HIS big

Figure 6.10: CDF of application delay for linear topology.

 0

 10

 20

 30

 40

 50

 60

 20 40 60 80 100 120 140 160

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

Time (s)

DIL
TCP

TCP RED

Figure 6.11: Average queue length for linear topology.

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2

P
er

ce
nt

 o
f P

oi
nt

s

Application Delay (s)

DIL
AIMD

HIS

Figure 6.12: CDF of application delay with random Data size.

105

 0
 200
 400
 600
 800

 1000
 1200

 10 20 30 40 50 60 70 80 90 100T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(a) DIL

 0
 200
 400
 600
 800

 1000
 1200

 10 20 30 40 50 60 70 80 90 100T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(b) AIMD

 0
 200
 400
 600
 800

 1000
 1200

 10 20 30 40 50 60 70 80 90 100T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(c) HIS

Figure 6.13: Throughput and finishing time with random Data size.

the application delay gets longer for AIMD and HIS than in the base case as shown

in Figure 6.12. In contrast, REN dynamically adjusts the Interest limit on node B

according to the queue length on node C. As a result, DIL is able to achieve high

and stable throughput with short application delay similar as in the base case. The

98th percentile of application delay for DIL is 361 ms, slightly higher than 333 ms

in the base case.

106

Effect of Caching:

This experiment demonstrates the performance of different NDN schemes under

varying RTT caused by caching. We use the same setup as in the base case exper-

iment. However, all Data with odd sequence numbers are cached by node C from

the beginning of the simulations. As a result, propagation delay will be 100 ms for

half of the Interests, and 150 ms for the other half. Similar to the previous exper-

iment, AIMD and HIS rely on the output queue of the bottleneck link to handle

the dynamics in returning Data traffic, while DIL is able to dynamically adjusts

the Interest limit. The throughput and CDF of application delay are presented in

Figure 6.14 and Figure 6.15, respectively. Again DIL achieves the shortest finishing

time among the three schemes. There is a clear difference of application delay for

Interests with odd and even sequence numbers for DIL. This is because DIL intro-

duces little queuing delay. The phenomenon is not observed in AIMD and HIS due

to the longer queuing delay.

Two-way Traffic:

One of the improvements of HIS over SIL proposed in Section 6.1 is that it takes two-

way traffic into consideration when computing the Interest limit. In this experiment

we create two-way traffic scenarios by making nodes A and D both consumers and

producers, and evaluate the performance of different NDN schemes. The setup is

the same as in the base case, except that nodes A and D each sends 10000 Interests

towards each other.

Figure 6.18 shows the throughput and finishing time of different flows in different

schemes. The two curves in each figure represent the two flows. For DIL, both

flows finish at 91 seconds and the throughput for both flows remains stable. For

AIMD, however, the two flows only finish after 120 seconds. The flows cannot

effectively utilize the bandwidth due to traffic in both directions, as congestion

can also be caused by Interests. By enforcing Interest limit at the bottleneck link,

HIS achieves better throughput than AIMD. The flows are able to finish after 100

107

 0
 200
 400
 600
 800

 1000
 1200

 10 20 30 40 50 60 70 80 90 100T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(a) DIL

 0
 200
 400
 600
 800

 1000
 1200

 10 20 30 40 50 60 70 80 90 100T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(b) AIMD

 0
 200
 400
 600
 800

 1000
 1200

 10 20 30 40 50 60 70 80 90 100T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(c) HIS

Figure 6.14: Throughput and finishing time with caching.

seconds. However, the throughput still fluctuates a lot due to the behavior of the

consumers. Figure 6.16 shows the CDF of application delay for each scheme. Only

one flow for each scheme is shown since the two flows almost overlap with each other.

Although HIS achieves slightly better application delay than DIL in around 62% of

the cases, DIL provides better throughput and smaller jitter in application delay.

6.4.3 Efficiency of DIL in NDN Overlay Networks

In this set of experiments we examine the performance of different schemes in NDN-

over-IP scenarios. We still use the linear topology shown in Figure 6.7. A is still the

108

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2

P
er

ce
nt

 o
f P

oi
nt

s

Application Delay (s)

DIL
AIMD

HIS

Figure 6.15: CDF of application delay with caching.

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2

P
er

ce
nt

 o
f P

oi
nt

s

Application Delay (s)

DIL
AIMD

HIS

Figure 6.16: CDF of application delay under 2-way traffic.

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
er

ce
nt

 o
f P

oi
nt

s

Application Delay (s)

DIL UDP
DIL UDP RED

AIMD UDP
HIS UDP

AIMD TCP
AIMD TCP RED

Figure 6.17: CDF of application delay for overlay scenarios.

109

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(a) DIL

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(b) AIMD

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(c) HIS

Figure 6.18: Throughput and finishing time under 2-way traffic.

consumer and D is still the producer, but B and C are pure IP nodes that don’t

understand NDN. Therefore the NDN link A-D is actually an IP path A-B-C-D.

All IP links have delay of 50 ms; bandwidth is 1 Mbps for B-C and 10 Mbps for A-B

and C-D. In this setup, NDN nodes A and D have no idea where the bottleneck link

is in the underlying IP path. Nor do they know the bandwidth of the bottleneck link.

REN will not work as effectively as in native NDN networks, because the average

queue length observed by D may not accurately reflect the congestion status of the

underlying IP path.

HIS is not designed to work on NDN overlay networks; we place the Interest

110

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)

(a) DIL, UDP

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)

(b) DIL, UDP, RED

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)

(c) AIMD, UDP

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)

(d) HIS, UDP

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)

(e) AIMD, TCP

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)

(f) AIMD, TCP, RED

Figure 6.19: Throughput and finishing time for overlay scenarios.

111

shaper at node A and use 10 Mbps as the link bandwidth when computing the

Interest limit. This way we can emulate HIS over UDP, where the Interest shaper

does not know the exact bandwidth of the bottleneck link (1 Mbps in this case). In

each experiment A will send 10000 Interests towards D; the size of each Data packet

is 1040 bytes. Figure 6.19 shows the throughput and finishing time for different

schemes and configurations. The overlay link A-D is a UDP path in the underlying

network for Figures 6.19(a) - 6.19(d), and a TCP path for Figures 6.19(e) - 6.19(f).

For Figures 6.19(b) and 6.19(f) we replace the drop-tail queue on B-C with a RED

queue. The results show that DIL achieves high and stable throughput no matter

what queue type is used on B-C. AIMD and HIS do not work as good as DIL

due to the back-off behavior of the consumer. The throughput of AIMD degrades

significantly when TCP is used as the transport protocol for the overlay link, and

becomes even worse when RED queue is used on B-C. This is because there are

two window adjustment algorithms working on their own without any cooperation.

Figure 6.17 shows the CDF of application delay for different configurations. For

DIL, LCD can detect congestion upon packet loss, and then DIL will reduce the

Interest limit accordingly to avoid further packet loss. If drop-tail queue is used

on B-C, packet loss will only be detected after the queue gets full, and DIL will

adjust the Interest limit to keep the queue in a close-to-full state. If RED queue

is used on B-C, however, DIL will try to keep the queue short to prevent packets

from being dropped. Therefore the application delay is significantly improved for

DIL when RED queue is used. The jitter of application delay for DIL is small as

well compared to other schemes.

6.4.4 Fairness of DIL

We run simulations on the 6-node dumbbell topology shown in Figure 6.8 to examine

the fairness exhibited by each scheme. In this set of experiments, node A and B

are consumers, which request 10000 pieces of Data from node E and F respectively.

The two flows use different name prefixes. The size of Data packets is 1040 bytes.

All links have 50 ms delay unless otherwise specified. Bandwidth is 1 Mbps for C-D

112

and 10 Mbps for other links.

Base Case:

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180 200T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(a) DIL

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180 200T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(b) AIMD

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180 200T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(c) HIS

Figure 6.20: Throughput and finishing time for dumbbell topology.

In this experiment, the two flows start at the same time. Both consumers send

200 Interests per second for DIL. Figure 6.20 shows the throughput of each individ-

ual flow as well as the overall throughput for different schemes. All three schemes

are able to achieve high overall throughput. However, the throughput for individual

flows in DIL is much more stable than in AIMD and HIS. This is because AIMD and

HIS rely on the consumers to provide fairness. The consumers back off multiplica-

113

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1 1.2

P
er

ce
nt

 o
f P

oi
nt

s

Application Delay (s)

DIL
AIMD

HIS Flow 1
HIS Flow 2

Figure 6.21: Delay for dumbbell topology.

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180 200T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)

Figure 6.22: Throughput and finishing time with different Interest rate.

tively when encountering signs of congestion. When one flow backs off, the other

one will quickly occupy the freed bandwidth. Thus, the throughput of individual

flows exhibits obvious fluctuation. An additional observation is that HIS does not

provide good fairness as one flow finishes 16 seconds earlier than the other.

Figure 6.21 presents the CDF of application delay for different schemes. Only

one curve is shown for DIL and AIMD since the two curves almost overlap with

each other. Similar to the linear topology scenarios, DIL is able to achieve shortest

114

application delay and smallest jitter. The extremely long application delay for AIMD

is caused by the long drop-tail queue on the bottleneck link.

Varying Interest Rate:

In this experiment, we vary the Interest rate of the two consumers for DIL and see

how its performance is affected. Specifically, we increase the Interest rate of one flow

from 200 to 300 per second and draw the throughput of the two flows in Figure 6.22.

The result shows that the two flows still share the bandwidth equally even though

one is sending Interests more aggressively than the other. Therefore the fairness of

DIL will not be affected by ill-behaved consumer applications.

Varying RTT:

In this scenario, the delay of link D-F is set to be 100 ms so that the two flows have

different RTT. Other settings remain the same as in the base case. The throughput

and finishing time for different schemes are presented in Figure 6.23. As in the

base case, DIL still achieves stable throughput for individual flows. The flow with

shorter RTT gets higher throughput in all schemes. HIS has the smallest difference

of finishing time between two flows. However, the flow with longer RTT still finishes

earlier in DIL than in HIS.

Varying Flow Start Time:

In this experiment, we vary the starting time of the two consumers to study how

fast each scheme is able to converge to fairness. We let one consumer start 50

seconds after the other. Figure 6.24 shows that DIL converges to fairness quickly

and provides stable throughput for the two flows. On the other hand, the flow that

starts later gets lower throughput most of the time in both AIMD and HIS.

115

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180 200T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(a) DIL

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180 200T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(b) AIMD

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180 200T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(c) HIS

Figure 6.23: Throughput and finishing time with different RTT.

6.4.5 Multipath Congestion Control with DIL

We repeat the large-scale experiment in Section 6.1 on the Sprint PoP-level topology

to examine how DIL works in multipath congestion control. The delay and cost of

the links are provided by Rocketfuel [62]; bandwidth of all links are set to be 1

Mbps. Drop-tail queues with size 20 packets are installed on all links. In each run

of the experiment, we randomly generate 20 pairs of nodes and run one flow between

each pair. For each flow, the provider sends 2000 pieces of data to the consumer,

the size of which is 1040 bytes. The consumer Interest rate is 100 per second for

DIL. Each flow starts 1 second after the previous one. We run each experiment for

116

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180 200T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(a) DIL

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180 200T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(b) AIMD

 0
 200
 400
 600
 800

 1000
 1200

 20 40 60 80 100 120 140 160 180 200T
hr

ou
gh

pu
t (

kb
ps

)

Time (s)
(c) HIS

Figure 6.24: Throughput and finishing time with different starting time.

100 times and draw the final finishing time of all flows.

Figures 6.25 presents the finishing time of DIL and AIMD. DIL is able to finish

faster than AIMD in all except three cases. Figure 6.26 shows the finishing time

of DIL and TCP. The figure shows that DIL finishes faster than TCP in all runs,

whereas in Section 6.1 TCP finishes faster in 6 of the cases. Therefore, we con-

clude that DIL is compatible with the BestRoute forwarding strategy presented in

Chapter 4 and is able to achieve more effective multipath congestion control than

SIL.

117

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 30 40 50 60 70 80 90 100 110 120

F
in

is
hi

ng
 T

im
e

fo
r

D
IL

Finishing Time for AIMD

Figure 6.25: Finishing time for DIL and AIMD.

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 30 40 50 60 70 80 90 100 110 120

F
in

is
hi

ng
 T

im
e

fo
r

D
IL

Finishing Time for TCP

Figure 6.26: Finishing time for DIL and TCP.

118

CHAPTER 7

DISCUSSION AND FUTURE WORK

In this chapter we discuss the issues that are closely related but not addressed in

this dissertation as well as potential directions for future research.

7.1 Forwarding State Overhead

Compared to CCNx, NDN-BestRoute is more efficient at the cost of higher com-

plexity. It works best in an Internet-like environment. It may not suit the scenarios

where complexity is the major concern. For example, in wireless sensor networks

where memory and power is limited, an alternative design may be required.

The presence of NDN’s datagram state in the PIT brings significant cost in

both router storage and packet processing. Since an Interest stays in the PIT until

the corresponding Data packet returns, the number of PIT entries associated with

each outgoing interface is roughly of the order of Bandwidth × RTT/P , where

RTT and P are the average round-trip time and Data packet size. For an interface

with 10 Gbps bandwidth, we will have 100K PIT entries assuming RTT = 100 ms

and P = 1250 bytes. If a router has 10 such interfaces, its PIT needs to hold 1

million entries. Although today’s core routers can handle more than 1M entries

in IP routing tables, a PIT entry is larger in size than an IP routing entry due

to variable-length names and additional forwarding information. In addition, the

PIT table will grow proportionally as routers get more interfaces and bandwidth

grows larger over time. Therefore, providing the storage needed by NDN routers is

a challenging task.

Operating on the PIT represents an even bigger challenge. IP routers only need

to perform lookup over the FIB, but NDN routers need to not only lookup the

PIT but also write into it. For example, when a new Interest arrives, a PIT entry

119

needs to be inserted; when the same Interest arrives from multiple interfaces, a PIT

entry needs to be updated; when a matching Data returns, a PIT entry needs to be

removed. These are more expensive operations than lookup that require fast and

scalable solutions.

In summary, a scalable forwarding engine needs both novel data structures to

store the PIT efficiently and novel algorithms to operate on the PIT at wire speed.

Designing a scalable forwarding engine is not the purpose of this dissertation and

is by itself an important research problem. There have already been considerable

research efforts underway to tackle these issues (e.g., [67], [72], [60], [68]). Wang et

al. [68] developed a GPU-based name lookup engine that is able to perform 63.52M

searches per second. So et al. [60] implemented a forwarding engine on a Cisco ASR

9000 router that is able to forward NDN traffic at 20 Gbps or higher.

7.2 New Routing Schemes

Routing is a necessary subsystem for any large scale network. Like IP, NDN itself

does not dictate what kinds of routing algorithms or protocols to use. However one

can take advantage of NDN’s adaptive forwarding plane to improve the stability

and scalability of existing routing protocols, as well as enable routing protocols that

deem difficult to adopt in IP networks.

Traditional Routing Protocols: As we have discussed in this dissertation, tra-

ditional routing protocols such as OSPF, RIP, and BGP can benefit greatly from

NDN’s adaptive forwarding plane. Since fast routing convergence is no longer a

requirement, these routing protocols can be tuned for synchronizing among routers

long-term topology and policy information without handling short-term churns.

Routing assumes a supporting role to forwarding. It provides a reasonable starting

point for forwarding which can then effectively explore different choices. Its job

becomes more of disseminating topology and policy information than distributed

computation of best paths. This new division of labor between routing and for-

warding makes routing protocols simpler and more scalable.

120

Centralized Routing: Routing protocols have been designed to operate in a dis-

tributed manner to avoid single point of failure [16]. However with the increas-

ing complexity in network management, Software-Defined Networking (SDN) has

emerged to enable centralized management and control of networks, including log-

ically centralized routing scheme. It is much easier to change the routing configu-

rations on a central controller than on all participating routers, and to implement

sophisticated traffic engineering schemes at the controller than individual routers.

Routing overhead can also be greatly reduced, since routing updates only need to

be sent to the controller instead of being flooded to the entire network, and only

the controller needs to perform SPF computations.

However, a centralized routing scheme is also associated with several disadvan-

tages, e.g., single point of failure and potentially longer convergence delay. One

can mitigate single point of failure by physical replication of the central controller,

which adds both the cost and complexity. A biggest concern is potentially pro-

longed convergence delay, which includes failure detection at local router, report

to the controller, route recompilation at the controller, and dissemination of new

routes to individual routers. NDN’s adaptive forwarding removes the demands on

convergence delay. As we have shown, NDN routers can adapt to network changes

without waiting for routing to converge, making centralized routing feasible.

Coordinate-based Routing: In coordinate-based routing, instead of disseminate

the network topology to routers, the coordinates of nodes are disseminated. The

main characteristics of the network topology are embedded in the coordinates.

Routers do greedy routing based on coordinates, i.e., forward packets to the neigh-

bor whose distance (computed using coordinates) to the destination is the shortest

among all neighbors. One example of such routing scheme is hyperbolic routing [53].

The advantages of this routing scheme include smaller routing tables (i.e., only need

to know the destination’s coordinates and neighbor routers’ coordinates) and min-

imal routing updates (i.e., link failures and recovery do not affect a node’s coordi-

nates). However, in IP networks, this routing scheme is not guaranteed to be able to

deliver packets. It is possible that the forwarding process runs into a local minimal,

121

where all neighbors are farther to the destination than the current router. Path

stretch may also get large. NDN’s adaptive forwarding can fix these problems and

make this routing scheme a possibility.

7.3 Congestion Control

In Chapter 6 we use CIR consumer applications to show the effectiveness of DIL.

However, CIR is not a good choice for practical usage. Bandwidth cannot be fully

utilized if the Interest rate is too low. But if the Interest rate is too high, there will

be too many NACKs between the consumer application and the NDN forwarder,

leading to waste of computing resources. On the other hand, AIMD is not a good

choice either when routers can provide effective hop-by-hop congestion control, since

it reduces the sending window too aggressively upon congestion. It is interesting to

explore new consumer strategies to work with DIL, e.g., AIAD (additive increase,

additive decrease).

With FIL, flows with bigger Data packet sizes or short RTT will take advantage.

The algorithm can be improved to provide strict fairness among all flows. We need

to record the average packet sizes and RTT of each flow, and compute the weight for

each flow using such information. Then we can implement a Weighted Fair Interest

Limiting algorithm taking such information into consideration in computing Interest

limit for each flow.

HIS [66] implements an Interest queue, which keeps Interests waiting at the

interface when the Interest limit is reached. Therefore consumers may suffer from

extra queuing delay introduced by the Interest queue. In DIL, on the other hand, a

node will try alternative interfaces immediately if the Interest limit is reached on the

current interface. Applications may also suffer from extra delay if the alternative

paths are longer than the original paths. We plan to conduct more experiments to

study whether Interest queue is needed.

When NDN is deployed as an overlay on top of IP, it shares the bandwidth

with underlying IP traffic. It is interesting to learn how DIL works together with

122

underlying TCP flows. Although DIL also performs AIMD window adjustment, it is

not clear whether it is TCP-friendly. We will conduct more experiments for future

work to study the TCP-friendliness of DIL.

123

CHAPTER 8

RELATED WORK

This dissertation studies NDN adaptive forwarding. We first proposed NDN-

BestRoute, a new forwarding plane design for NDN; then we examined how NDN-

BestRoute handles network failures and studied the role of routing in NDN; finally

we explored hop-by-hop multipath congestion control in NDN. In this chapter we

present a number of existing work related to this dissertation. Selected forwarding

plane design for other network architectures is discussed in Section 8.1. Section 8.2

describes different IP mechanisms for fast failure recovery. In Section 8.3 we sum-

marize popular congestion control mechanisms in both NDN and IP.

8.1 Forwarding Plane Design

The IP architecture takes the “smart routing, dummy forwarding” approach. Due to

its stateless nature, the forwarding plane strictly follows the routing state. Recent

research efforts have recognized that introducing adaptability to the forwarding

plane is a promising approach. Wendlandt et al. [69] and Caesar et al. [20] argue

that networks should provide end-hosts with multiple path choices, and end-hosts

should be responsible for choosing different paths based on their observed forwarding

plane performance. Works such as Pathlet Routing [31], Routing Deflections [71]

and Path Splicing [48] are specific designs along this direction. The main differences

among them are in the specifics of how alternative paths are obtained and used.

Although NDN is considered as one of the Information-Centric Networking (ICN)

architectures, NDN’s forwarding plane design is drastically different from that of

other ICN architecture proposals. For example, PURSUIT [10] is a recently pro-

posed publish/subscribe network architecture. PURSUIT employs source routing

for packet forwarding. Its forwarding path is encoded in a bloom filter carried in

124

the packet header; routers forward packets according to the path information carried

in the bloom filter [37]. In case of failures, PURSUIT relies on preset backup paths

to get packets delivered, therefore the network’s adaptability is limited. Since each

packet carries its own path in a PURSUIT network, PURSUIT routers do not main-

tain datagram state as NDN routers do. At the same time, individual PURSUIT

routers also cannot measure the forwarding plane performance nor collect feedback

to adapt to failures as NDN routers do.

8.2 Fast Failure Recovery

Francois et al. show that sub-second link-state routing convergence in large intra-

domain networks is achievable by tuning various timers [29]. But their method in-

curs extra routing overhead and may cause routing instability. Fast reroute (FRR)

mechanisms handle link failures using pre-computed alternative paths. MPLS FRR

mechanisms ([52, 50]) are proposed to provide backup paths in MPLS-enabled net-

works in order to handle failures of specific links. Similarly, IPFRR mechanisms

([15, 14, 58, 57, 44]) provide temporary alternative paths before routing conver-

gence in pure IP networks. However, it is hard for the FRR mechanisms to cover

all possible failure scenarios. In addition, they cannot efficiently handle multiple

concurrent failures. Therefore, the FRR mechanisms still require fast routing con-

vergence.

End-to-end multipath solutions ([31, 71, 48]) provide fast failure recovery con-

trolled by end hosts. Take Path Splicing (PS) [48] for example, each router provides

multiple routing tables and let end hosts specify which one to use at each router.

PS may take long time to find alternative paths, and sometimes may not be able

to find them even if they exist. Therefore fast routing convergence is still required.

Multiple routing configuration (MRC) [42] also uses multiple routing configurations

to handle network failures. Different from PS, MRC lets routers switch configura-

tion when failures are detected. However, MRC may not handle multiple concurrent

failures well. Since each router needs to maintain multiple routing tables in PS and

125

MRC, the computation overhead during routing convergence increases significantly

with the number of routing tables.

There are also solutions that carry routing or forwarding information in packet

headers. Failure carrying packets (FCP) [43] put failure information into the packet

headers, and let routers recompute the routing tables on-the-fly upon receipt of FCP.

However, the method increases computation overhead, and the sizes of FCP headers

may become arbitrarily large. Packet Re-cycling (PR) [46] reroutes packets along

pre-computed backup paths in case of failures. In addition to the ordinary routing

table, each router also creates a cycle following table, the generation of which is an

NP-hard problem. When failures are detected, PR bits are set in packet headers to

guide packet forwarding. Liu et al. propose Data-Driven Connectivity (DDC) [45]

to ensure forwarding connectivity at the data plane. DDC organizes the network as

a destination-oriented directed acyclic graph (DAG) to avoid loops, and uses two

bits in the packet header to notify link reversal. DDC has its own control plane

algorithm, therefore cannot make use of existing routing protocols.

8.3 Congestion Control

Congestion control is a critical issue in any existing network architecture. IP con-

gestion control has been studied extensively over the last three decades. Although

NDN has only existed for a few years, its congestion control has also received consid-

erable attention. We summarize the related work in IP and NDN congestion control

in Section 8.3.1 and 8.3.2 respectively.

8.3.1 Congestion Control in IP

The TCP congestion avoidance algorithm proposed by Jacobson et al. in 1988 [35]

provides the primary basis for congestion control in today’s Internet. Since then,

many variations of TCP have been proposed to improve the congestion control per-

formance, e.g., TCP Vegas [17], TCP CUBIC [32] and TCP NewReno [34]. However,

only TCP’s end-to-end congestion avoidance is not enough. When short drop-tail

126

queues are used on the bottleneck links, multiple TCP flows may experience packet

loss concurrently, leading to TCP global synchronization [33]. On the other hand,

long drop-tail queues may cause the bufferbloat problem [51], in which packets are

held in the queues for excessively long time, causing high latency and jitter for ap-

plications as well as reduced overall network throughput. As a result, Active Queue

Management (AQM) mechanisms such as Random Early Detection (RED) [28] and

Controlled Delay (CoDel) [51] have been introduced to address these issues. In addi-

tion, Explicit Congestion Notification (ECN) [54] as an extension to IP and TCP was

proposed to provide end-to-end notification of congestion without actually dropping

packets.

Fairness is another important aspect of congestion control. TCP alone cannot

ensure fairness in the network since there are applications that do not use TCP

and nor are they TCP-friendly. Traditional scheduling algorithms like Fair Queu-

ing (FQ) [25] require routers to maintain per-flow state, making them unsuitable

for practical usage. Stoica et al. propose Core-Stateless Fair Queuing (CSFQ) [63]

to achieve approximately fair bandwidth allocation at routers with small imple-

mentation complexity. XCP [38] is the first work that decouples fairness control

from utilization control. In XCP, routers provide explicit feedback for applications

which can then adjust their sending rate more quickly and accurately. Dukkipati et

al. suggest to use flow completion time as the metric for congestion control and

propose RCP [26] to help short flows gain their fair share of the bandwidth more

quickly.

Multipath TCP (MPTCP) [70] is a recently proposed multipath congestion con-

trol mechanism for IP networks. It utilizes multiple interfaces (IP addresses) of

multi-homed hosts to set up multiple sub-TCP connections between the two ends.

Assuming that each source-destination IP address pair represents a separate physical

path, one can split traffic over the multiple end-to-end paths.

127

8.3.2 Congestion Control in NDN

Considerable research has been conducted on congestion control in NDN. Many of

the previous work follow the end-to-end approach of TCP by adjusting consumer

Interest window size using the AIMD algorithm [18, 21, 24, 59]. However, the

heterogeneous RTT caused by caching, multiple providers and multipath forwarding

makes it hard to set Retransmission Timeout (RTO) as in TCP to detect congestion.

Consequently, some solutions seek to predict RTT more accurately by piggybacking

location information of future content on the Data packets [18, 24, 59].

Hop-by-hop interest shaping mechanisms have also been studied [23, 56, 66,

22]. However, HR-ICP [23], HIS [66] and HoBHIS [56] cannot effectively handle

the dynamics in returning Data traffic since their Interest shapers require prior

knowledge of either returning delay or sizes of the Data packets. Moreover, HIS

and HoBHIS do not consider fairness in their Interest shapers. [22] achieves optimal

multipath congestion control, but its objective is to minimize the number of pending

Interests on the most loaded interface. Therefore Interests may not be forwarded

along the best routing paths even if they are not congested.

128

CHAPTER 9

CONCLUSIONS

In this dissertation, we present a concrete design of NDN’s forwarding plane to make

the network resilient and efficient. NDN’s unique communication model of retriev-

ing data by name leads to a forwarding plane that maintains datagram state at every

router. Because datagram is the most basic communication unit in packet-switched

networks, this per-hop datagram state potentially provides the flexibility to solve a

host of existing network problems. In this dissertation we present NDN-BestRoute,

a concrete forwarding plane design for NDN that utilizes this datagram state to

provide high performance and resilience in NDN networks. Specifically, we design

data structures and methods to collect and store forwarding performance informa-

tion for NDN routers. We also propose a novel Interest NACK mechanism for fast

fault detection and an efficient forwarding strategy for multipath fault recovery. We

quantitatively evaluate the packet delivery performance of NDN-BestRoute under

adverse conditions. Our results show that NDN’s adaptive forwarding mechanism

can provide excellent performance in handling prefix hijacks and link failures.

Additionally, this dissertation studies the role of routing in NDN. NDN’s adap-

tive forwarding plane leads to a new division of labor between routing and forwarding

plane. While the latter can detect and recover from link failures quickly independent

from the former, the former helps bootstrap adaptive forwarding and handle link

recovery. We specify how NDN routing protocols coordinate with the forwarding

plane through interface ranking and probing mechanisms. Our analysis and exten-

sive simulations show that NDN-BestRoute’s packet delivery performance after link

failures does not rely on fast routing convergence. As a result, NDN routing proto-

cols can benefit greatly from the adaptive forwarding plane. By masking short-lived

failures from routing protocols, NDN’s routing stability and scalability can be sig-

nificantly improved. Moreover, adaptive forwarding also enables new and existing

129

routing schemes that may not work well in IP to be used in NDN.

Furthermore, we propose a Dynamic Interest Limiting mechanism for hop-by-

hop multipath congestion control in NDN. The two-way symmetric Interest-Data

exchange and one-on-one flow balance enables NDN routers to avoid congestion on

the link from an upstream router by limiting the number of Interests sent to it.

DIL dynamically adjusts the Interest limit on each interface based on the current

traffic condition. Since accurate RTT estimate is hard in NDN, we propose two

new methods for congestion detection in native NDN networks and NDN overlay

networks which do not rely on RTT estimate. We also present a Fair Interest Lim-

iting mechanism to ensure fairness among multiple flows. Evaluation results show

that DIL is able to achieve efficient and fair bandwidth utilization under different

congestion scenarios. When combined with adaptive forwarding, DIL can utilize net-

work resources more effectively than today’s TCP/IP through multipath congestion

control.

130

REFERENCES

[1] http://www.cisco.com/en/US/products/ps6599/products_white_
paper09186a00800a4409.shtml. Accessed on June 10, 2014.

[2] http://www.scalable-networks.com. Accessed on June 10, 2014.

[3] Abilene topology data. http://www.cs.utexas.edu/~yzhang/research/

AbileneTM/. Accessed on June 10, 2014.

[4] CCNPing. http://github.com/NDN-Routing/ccnping. Accessed on June 10,
2014.

[5] CCNx. http://www.ccnx.org/. Accessed on June 10, 2014.

[6] COntent Mediator architecture for content-aware nETworks (COMET).
http://www.comet-project.org/. Accessed on June 10, 2014.

[7] Mini-CCNx. http://github.com/carlosmscabral/mn-ccnx. Accessed on
June 10, 2014.

[8] NDN Testbed. http://named-data.net/ndn-testbed. Accessed on June 10,
2014.

[9] NS-3 Network Simulator. http://www.nsnam.org/. Accessed on June 10, 2014.

[10] PURSUIT Internet Technology. http://www.fp7-pursuit.eu/PursuitWeb/.
Accessed on June 10, 2014.

[11] The FP7 4WARD Project. http://www.4ward-project.eu/. Accessed on
June 10, 2014.

[12] Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang. ndnSIM: NDN simu-
lator for NS-3. Technical Report NDN-0005, NDN Project, July 2012.

[13] C. Alaettinoglu, V. Jacobson, and H. Yu. Towards Milli-Second IGP Con-
vergence. Internet Draft draft-alaettinoglu-isis-convergence-00.txt, November
2000.

[14] A. Atlas. U-turn Alternates for IP/LDP Fast-Reroute. draft-atlas-ip-local-
protect-uturn-03, Feburary 2006.

[15] A. Atlas and A. Zinin. RFC 5286: Basic Specification for IP Fast Reroute:
Loop-Free Alternates. RFC 5286, 2008.

http://www.cisco.com/en/US/products/ps6599/products_white_paper09186a00800a4409.shtml
http://www.cisco.com/en/US/products/ps6599/products_white_paper09186a00800a4409.shtml
http://www.scalable-networks.com
http://www.cs.utexas.edu/~yzhang/research/AbileneTM/
http://www.cs.utexas.edu/~yzhang/research/AbileneTM/
http://github.com/NDN-Routing/ccnping
http://www.ccnx.org/
http://www.comet-project.org/
http://github.com/carlosmscabral/mn-ccnx
http://named-data.net/ndn-testbed
http://www.nsnam.org/
http://www.fp7-pursuit.eu/PursuitWeb/
http://www.4ward-project.eu/

131

[16] Paul Baran. On Distributed Communications Networks. IEEE Transactions
on Communications Systems, 12(1):1–9, March 1964.

[17] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to End Congestion Avoid-
ance on a Global Internet. IEEE J.Sel. A. Commun., 13(8):1465–1480, Septem-
ber 2006.

[18] S. Braun, M. Monti, M. Sifalakis, and C. Tschudin. An Empirical Study of
Receiver-Based AIMD Flow-Control Strategies for CCN. In Proceedings of
ICCCN, 2013.

[19] Jeff Burke, Alex Horn, , and Alessandro Marianantoni. Authenticated Lighting
Control Using Named Data Networking. Technical Report NDN-0011, NDN
Project, October 2012.

[20] Matthew Caesar, Martin Casado, Teemu Koponen, Jennifer Rexford, and Scott
Shenker. Dynamic Route Recomputation Considered Harmful. ACM SIG-
COMM Computer Communication Review (CCR), 40(2):66–71, April 2010.

[21] G. Carofiglio, M. Gallo, and L. Muscariello. ICP: Design and evaluation of
an Interest control protocol for content-centric networking. In Proceedings of
IEEE INFOCOMM NOMEN Workshop, 2012.

[22] G. Carofiglio, M. Gallo, L. Muscariello, M. Papalini, and Sen Wang. Optimal
multipath congestion control and request forwarding in Information-Centric
Networks. In Proceedings of IEEE ICNP, 2013.

[23] Giovanna Carofiglio, Massimo Gallo, and Luca Muscariello. Joint Hop-by-hop
and Receiver-driven Interest Control Protocol for Content-centric Networks. In
Proceedings of ACM SIGCOMM ICN Workshop, 2012.

[24] Giovanna Carofiglio, Massimo Gallo, Luca Muscariello, and Michele Papalini.
Multipath Congestion Control in Content-Centric Networks. In Proceedings of
IEEE INFOCOMM NOMEN Workshop, 2013.

[25] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair
Queueing Algorithm. In Proceedings of SIGCOMM, 1989.

[26] Nandita Dukkipati and Nick McKeown. Why Flow-completion Time is the
Right Metric for Congestion Control. SIGCOMM Comput. Commun. Rev.,
36(1):59–62, January 2006.

[27] S. Floyd. Metrics for the Evaluation of Congestion Control Mechanisms. RFC
5166, 2008.

132

[28] Sally Floyd and Van Jacobson. Random Early Detection gateways for conges-
tion avoidance. IEEE ACM Transactions on Networking, 1(4):397–413, 1993.

[29] Pierre Francois, Clarence Filsfils, John Evans, and Olivier Bonaventure. Achiev-
ing Sub-Second IGP Convergence in Large IP Networks. ACM SIGCOMM
Computer Communication Review (CCR), 35(3):35–44, July 2005.

[30] C. Ghali, G. Tsudik, and E. Uzun. Needle in a Haystack: Mitigating Con-
tent Poisoning in Named-Data Networking. In Proceedings of NDSS SENT
Workshop, 2014.

[31] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica. Pathlet
routing. In Proceedings of ACM SIGCOMM, 2009.

[32] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A New TCP-friendly High-
speed TCP Variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July 2008.

[33] H. Han, C.V. Hollot, D. Towsley, and Y. Chait. Synchronization of TCP Flows
in Networks with Small DropTail Buffers. In Proceedings of IEEE CDC-ECC,
2005.

[34] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The NewReno Modification
to TCP’s Fast Recovery Algorithm. RFC 6582, 2012.

[35] V. Jacobson. Congestion Avoidance and Control. In Proceedings of SIGCOMM,
1988.

[36] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nicholas H. Briggs, and Rebecca L. Braynard. Networking Named Content.
In Proceedings of ACM CoNEXT, 2009.

[37] Petri Jokela, András Zahemszky, Christian Esteve Rothenberg, Somaya Ar-
ianfar, and Pekka Nikander. LIPSIN: line speed publish/subscribe inter-
networking. In Proceedings of the ACM SIGCOMM conference on data com-
munication, 2009.

[38] D. Katabi, M. Handley, and C. Rohrs. Congestion control for high bandwidth-
delay product networks. In Proc. of SIGCOMM, 2002.

[39] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy,
Kye Hyun Kim, Scott Shenker, and Ion Stoica. A Data-Oriented (and Be-
yond) Network Architecture. In Proceedings of ACM SIGCOMM, 2007.

[40] Derek Kulinski and Jeff Burke. NDN Video: Live and Prerecorded Streaming
over NDN. Technical Report NDN-0007, NDN Project, September 2012.

133

[41] N. Kushman, S. Kandula, D. Katabi, and B. Maggs. R-BGP: Staying connected
in a connected world. In Proceedings of NSDI, 2007.

[42] A. Kvalbein, A.F. Hansen, T. Cicic, S. Gjessing, and O. Lysne. Fast IP Network
Recovery Using Multiple Routing Configurations. In INFOCOM 2006. 25th
IEEE International Conference on Computer Communications. Proceedings,
2006.

[43] Karthik Lakshminarayanan, Matthew Caesar, Murali Rangan, Tom Ander-
son, Scott Shenker, and Ion Stoica. Achieving Convergence-Free Routing using
Failure-Carrying Packets. In Proceedings of ACM SIGCOMM, 2007.

[44] Sanghwan Lee, Yinzhe Yu, Srihari Nelakuditi, Zhi li Zhang, and Chen nee
Chuah. Proactive vs reactive approaches to failure resilient routing. In Pro-
ceedings of IEEE Infocom, 2004.

[45] Junda Liu, Baohua Yang, Scott Shenker, and Michael Schapira. Data-driven
network connectivity. In Proceedings of ACM HotNets Workshop, 2011.

[46] Suksant Sae Lor, Raul Landa, and Miguel Rio. Packet Re-cycling: Eliminating
Packet Losses Due to Network Failures. In Proceedings of HotNets, 2010.

[47] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya, Chen-Nee
Chuah, Yashar Ganjali, and Christophe Diot. Characterization of Failures in an
Operational IP Backbone Network. IEEE/ACM Transactions on Networking
(TON), 16(4):749–762, August 2008.

[48] Murtaza Motiwala, Megan Elmore, Nick Feamster, and Santosh Vempala. Path
splicing. In Proceedings of ACM SIGCOMM, 2008.

[49] J. Moy. OSPF Version 2. RFC 2328, 1998.

[50] T. Nadeau, K. Koushik, and R. Cetin. Multiprotocol Label Switching (MPLS)
Traffic Engineering Management Information Base for Fast Reroute. RFC 6445,
2011.

[51] Kathleen Nichols and Van Jacobson. Controlling Queue Delay. Queue,
10(5):20:20–20:34, May 2012.

[52] P. Pan, G. Swallow, and A. Atlas. Fast Reroute Extensions to RSVP-TE for
LSP Tunnels. RFC 4090, 2005.

[53] F. Papadopoulos, D. Krioukov, M. Bogua, and A. Vahdat. Greedy forward-
ing in dynamic scale-free networks embedded in hyperbolic metric spaces. In
INFOCOM, 2010 Proceedings IEEE, 2010.

134

[54] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168, 2001.

[55] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC
4271, January 2006.

[56] N. Rozhnova and S. Fdida. An effective hop-by-hop interest shaping mecha-
nism for ccn communications. In Proceedings of IEEE INFOCOMM NOMEN
Workshop, 2012.

[57] S. Previdi S. Bryant and M. Shand. A Framework for IP and MPLS Fast
Reroute Using Not-via Addresses. draft-ietf-rtgwg-ipfrr-notvia-addresses-11,
May 2013.

[58] S. Previdi S. Bryant, C. Filsfils and M. Shand. IP Fast Reroute using tunnels.
draft-bryant-ipfrr-tunnels-02, April 2005.

[59] L. Saino, C. Cocora, and G. Pavlou. CCTCP: A scalable receiver-driven con-
gestion control protocol for content centric networking. In Proceedings of IEEE
ICC, 2013.

[60] Won So, Ashok Narayanan, and David Oran. Named Data Networking on a
Router: Fast and Dos-resistant Forwarding with Hash Tables. In Proceedings
of ANCS, 2013.

[61] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP topolo-
gies with Rocketfuel. IEEE/ACM Transactions on Networking, 12(1):2–16,
2004.

[62] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP topolo-
gies with Rocketfuel. IEEE/ACM Transactions on Networking, 12(1):2–16,
2004.

[63] Ion Stoica, Scott Shenker, and Hui Zhang. Core-stateless Fair Queueing: A
Scalable Architecture to Approximate Fair Bandwidth Allocations in High-
speed Networks. IEEE/ACM Trans. Netw., 11(1):33–46, February 2003.

[64] Daniel Turner, Kirill Levchenko, Stefan Savage, and Alex C. Snoeren. A Com-
parison of Syslog and IS-IS for Network Failure Analysis. In Proceedings of
IMC, 2013.

[65] Lan Wang, A K M Mahmudul Hoque, Cheng Yi, Adam Alyyan, and Beichuan
Zhang. OSPF-N: OSPF for NDN Routing. Technical Report NDN-0003, NDN
Project, July 2012.

135

[66] Yaogong Wang, Natalya Rozhnova, Ashok Narayanan, David Oran, and Injong
Rhee. An Improved Hop-by-hop Interest Shaper for Congestion Control in
Named Data Networking. In Proceedings of ACM SIGCOMM ICN Workshop,
2013.

[67] Yi Wang, Keqiang He, Huichen Dai, Wei Meng, Junchen Jiang, Bin Liu, and
Yan Chen. Scalable Name Lookup in NDN Using Effective Name Component
Encoding. In Proceedings of IEEE ICDCS, 2012.

[68] Yi Wang, Yuan Zu, Ting Zhang, Kunyang Peng, Qunfeng Dong, Bin Liu, Wei
Meng, Huichen Dai, Xin Tian, Zhonghu Xu, Hao Wu, and Di Yang. Wire
Speed Name Lookup: A GPU-based Approach. In Proceedings of USENIX
NSDI, 2013.

[69] Dan Wendlandt, Ioannis Avramopoulos, David G. Andersen, and Jennifer Rex-
ford. Don’t secure routing protocols, secure data delivery. In Proceedings of
ACM HotNets Workshop, 2006.

[70] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. Design,
implementation and evaluation of congestion control for multipath TCP. In
Proc. of Usenix NSDI, 2010.

[71] Xiaowei Yang and David Wetherall. Source Selectable Path Diversity via Rout-
ing Deflections. In Proceedings of ACM SIGCOMM, 2006.

[72] Haowei Yuan, Tian Song, and Patrick Crowley. Scalable NDN forwarding:
Concepts, issues, and principles. In Proc. of IEEE ICCCN, 2012.

[73] Lixia Zhang, Deborah Estrin, Jeffrey Burke, Van Jacobson, James D. Thornton,
Diana K. Smetters, Beichuan Zhang, Gene Tsudik, kc claffy, Dmitri Krioukov,
Dan Massey, Christos Papadopoulos, Tarek Abdelzaher, Lan Wang, Patrick
Crowley, and Edmund Yeh. Named data networking (NDN) project. Technical
Report NDN-0001, NDN Project, October 2010.

[74] Zhenkai Zhu, Chaoyi Bian, Alexander Afanasyev, Van Jacobson, and Lixia
Zhang. Chronos: Serverless Multi-User Chat Over NDN. Technical Report
NDN-0008, NDN Project, October 2012.

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF PSEUDO-CODES
	ABSTRACT
	CHAPTER INTRODUCTION
	CHAPTER BACKGROUND
	IP Architecture
	NDN Architecture
	Packets and Names
	Forwarding Process
	Datagram State
	Routing

	CCNx Overview
	CCNx Forwarding Algorithm
	Limitations of CCNx

	CHAPTER OVERVIEW OF APPROACH
	Forwarding Plane Design
	Failure Handling
	Failure Handling with Adaptive Forwarding
	Role of Routing in NDN

	Congestion Control
	Simple Interest Limiting
	Dynamic Interest Limiting

	Contributions

	CHAPTER FORWARDING PLANE DESIGN
	PIT Design
	FIB Design
	Routing Plane Information
	Forwarding Performance Information
	Interface Ranking

	BestRoute Forwarding Strategy
	Prefix Hijack: A Case Study
	A Simple Example
	Path Splicing
	Simulation Setup
	Simulation Results

	CHAPTER FAILURE HANDLING
	Interest NACK
	NACK Design
	Updated Forwarding Plane Design

	Failure Handling with Adaptive Forwarding
	Role of Routing
	Routing in IP
	Routing in NDN

	Routing and Forwarding Coordination
	Interface Ranking
	Probing
	Improving routing stability and scalability

	Benefit for Routing
	Simulation Setup
	NDN without Routing
	Impact of Routing Convergence Time
	Comparison with IPFRR
	Prefix Unreachable
	Probing Overhead
	Routing Overhead

	CHAPTER CONGESTION CONTROL
	A Simple Interest Limiting Mechanism
	Evaluation

	Dynamic Interest Limiting
	DIL Design
	Dynamic Interest Limit Adjustment
	Random Early NACK
	Link-layer Congestion Detection
	Fair Interest Limiting

	Evaluation
	Simulation Setup
	Efficiency of DIL in Native NDN Networks
	Efficiency of DIL in NDN Overlay Networks
	Fairness of DIL
	Multipath Congestion Control with DIL

	CHAPTER DISCUSSION AND FUTURE WORK
	Forwarding State Overhead
	New Routing Schemes
	Congestion Control

	CHAPTER RELATED WORK
	Forwarding Plane Design
	Fast Failure Recovery
	Congestion Control
	Congestion Control in IP
	Congestion Control in NDN

	CHAPTER CONCLUSIONS
	REFERENCES

