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Abstract

We describe A�goVista, a web-based search engine de-
signed to allow applied computer scientists to clas-
sify problems and �nd algorithms and implementations
that solve these problems. Unlike other search engines,
A�goVista is not keyword based. Rather, users provide
a set of input)output samples that describe the behav-
ior of the problem they wish to classify. This type of
query-by-example requires no knowledge of specialized
terminology, only an ability to formalize the problem.

The search mechanism of A�goVista is based on a
novel application of program checking, a technique de-
veloped as an alternative to program veri�cation and
testing.

1 Background

Frequently, working software developers will encounter
a problem with which they are unfamiliar, but which {
they suspect { has probably been treated by the Com-
puter Science theory community. Just as frequently,
theoretical computer scientists will be working on a
problem which they suspect might have a practical ap-
plication.

Unfortunately, the programmer with a problem in
search of a solution and the theoretician with a solu-
tion in search of an application are unlikely to connect
across the geographical and linguistic chasm that often
separate the two. In many organizations working pro-
grammers do not have easy access to a theoretician, and,
when they do, they often �nd communication di�cult.

In this paper we will describe A�goVista, a web-
based, interactive, searchable, and extensible database
of problems and algorithms designed to bring together
applied and theoretical computer scientists. Working
programmers can query A�goVista to look for theoreti-
cal results that are relevant to their current application.
Theoretical computer scientists can extend A�goVista
with problems with which they are familiar, or with ref-
erences to new algorithms they have developed for these
problems.

A�goVista is based on a novel application of a tech-
nique known as program (or result) checking, devel-
oped over the last decade by Manuel Blum and oth-

ers [4{6,10,16,17,19] as an alternative to program veri�-
cation and testing. Program checking extends programs
with checkers to allow them to verify the correctness of
the results they compute.

1.1 Two Motivating Episodes

To motivate the need for specialized search engines
for computer scientists, we will consider two concrete
episodes from the experience of the authors.

Working on the design of graph-coloring register al-
location algorithms, Todd showed his theoretician col-
league Sampath Kannan the graphs in Figure 1(a).

\Do these graphs mean anything to you?" Todd
asked.

\Sure," Prof. Kannan replied, \they're series-
parallel graphs."

This was the beginning of a collaboration which re-
sulted in a paper in the Journal of Algorithms [13].

In a similar episode, Christian showed his the-
oretician colleague Clark Thomborson the graph-
transformation in Figure 1(b).

\Do you know what I am doing here?" Christian
asked.

\Sure," Prof. Thomborson soon replied, \you're
shrinking the biconnected components of the underlying
(undirected) graph."

This result became an important part of a joint pa-
per on software watermarking [8].

It's important to note that, while in both these
episodes the authors (who consider themselves \theory-
challenged") had a pretty good grasp of the problem
they were working on, they lacked knowledge of the
relevant terminology. Hence, standard keyword-based
search techniques would not have been of much assis-
tance. In these episodes, the theoretical computer sci-
entist provided the crucial problem classi�cation that
allowed the authors to conduct further bibliographical
searches themselves.

1.2 Interacting with A�goVista

A�goVista1 is an online database that stores and codi-
�es problems, algorithms, and combinatorial structures

1AlgoVista.cs.arizona.edu.



Figure 1: Some motivating examples and queries.

(a) Series parallel graphs.
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(b) Shrinking biconnected components.
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(c) A topological sorting query
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(d) Bipartite graph query.

developed within the Computer Science theory commu-
nity. An applied computer scientist will typically inter-
act with A�goVista by providing input)output samples.
A�goVista will then search its database looking for prob-
lems that map input to output. As a concrete example,
consider the query in Figure 1(c). This query asks:

\Suppose that from the linked structure on
the left of the ) I compute the list of nodes
to the right. What function f am I then com-
puting?"

A�goVista might then respond with:

\This looks like a topological sort of
a directed acyclic graph. You can
read more about topological sorting at
http://hissa.ncsl.nist.gov/~black/

CRCDict/HTML/topologcsort.html. A Java
implementation can be found at http:

//www.math.grin.edu/~rebelsky/Courses/

152/97F/Outlines/outline.49.html".

A�goVista is also able to classify some simple com-
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binatorial structures. Given the query in Figure 1(d),
A�goVista might respond with:

\This looks like a complete bipartite graph.
You can read more about this structure
at http://www.treasure-troves.com/math/

CompleteBipartiteGraph.html."

1.3 Organization

The remainder of this paper is organized as follows. Sec-
tion 2 introduces program checking and describes how
checklets (program checkers in A�goVista) are used as
the basic entries in A�goVista's database. Section 3
presents the overall architecture of A�goVista and dis-
cusses relevant security issues. Section 4 describes the
design of the A�goVista query language and type sys-
tem. Section 5 introduces query transformations that
the system uses to bridge any potential semantic gap
between user queries and checklets. Section 6 discusses
checklet design issues. Section 7 describes how advanced
type analysis can speed up searching, and Section 8 eval-
uates the performance of the search algorithms. Sec-
tion 9 discusses related work, and Section 10, �nally,
summarizes our results.

2 Program Checking

A�goVista can be seen as a novel application of program
checking, an idea popularized by Manuel Blum and his
students. The idea behind program checking is simply
this. Suppose we are concerned about the correctness
of a procedure P in a program we're writing. We intend
for P to compute a function f , but we're not convinced
it does so. We have three choices:

1. We can attempt to prove that P � f over the
entire domain of P . Unfortunately, in spite of
decades of research into program veri�cation, it is
still only feasible to prove the correctness of trivial
programs.

2. We can test that P (x) = f(x), where x is drawn
from a reasonable domain of test data. The prob-
lem with testing is that the actual distribution of
input data to the program is often either unknown
or prohibitively large.

3. We can include a result checker CPf with the pro-
gram. For every actual input x given to P , the
result checker checks that P (x) = f(x).

We normally require CPf and P to be independent of
each other; i.e. they should be programmed using very
di�erent algorithms. We also want the checker to be
e�cient. To ensure that these conditions are met, it is
generally expected that a result checker CPf should be
asymptotically faster than the program P that it checks.
That is, we expect that if P runs in time T then CPf
should run in time o(T ).

Much theoretical research has gone into the search
for e�cient result checkers for many classes of problems.

In some cases, e�cient result checkers are easy to con-
struct. For example, let P (x) return a factor of the
composite integer x. This is generally thought to be
a computationally di�cult problem. However, check-
ing the correctness of a result returned by P is trivial;
it only requires one division. On the other hand, let
P (x) return a least-cost traveling salesman tour of the
weighted graph x. Checking that a given tour is actu-
ally a minimum-cost tour seems to be as expensive as
�nding the tour itself.

2.1 Checklets: Result Checkers in A�goVista

The A�goVista database consists of a collection of result
checkers which we call checklets. A checklet typically
takes a user query input)output as input and either
accepts or rejects. If the checklet accepts a query, it also
returns a description of the problem it checks for.

Figure 2 shows some simple checklets. Simplest of all
is the integer addition checklet intAdd of Figure 2 (a).
Given the query p(15; 6)) 21q the checklet would accept
and return the result \http://www.cs.arizona.edu/
~collberg/IntAdd.html." Figures 2 (b) and (c) show
a straightforward (slow) and a more complex (faster)
implementation of a sorting checklet.

Figure 2 (d), �nally, shows a particularly interesting
checklet for topological sorting. Any acyclic graph will
typically have more than one topological order. It is
therefore not possible for the checklet to simply run a
topological sorting procedure on the input graph and
compare the resulting list of nodes with the output list
given in the query. Rather, the checklet must, as shown
in Figure 2 (d), �rst check that every node in the input
graph occurs in the output node list, and then check
that if node f comes before node t in the output list
then there is no path t; f in the input graph.

In some cases it may be di�cult to construct check-
lets which run in an acceptable length of time. This
is particularly true of NP-hard problems for which it
would seem to be impossible to �nd polynomial time
result checking algorithms. In these cases we may have
to use spot-checking [10], a recent development in result
checking, to check hard problems probabilistically.

Writing checklets for oating point problems can
also be challenging. For example, which, if any, of
the queries p2:0 ) 1:4142135623q, p2:00000 ) 1:4140q,
and p2:0 ) 1:0q should a oating-point square root
checklet accept? In all cases, the right hand side
is an approximation of

p
2, but just how accurate

should the approximation be in order to be accept-
able to the checklet? In our current implementation,
oating-point comparisons are done in the minimum
precision of any oating-point number in the input
query. Hence, p2:0 ) 1:4142135623q will accept (since
1:41421356232 = 1:9999999997 � 2:0 when comparing
with a precision of one decimal digit), but p2:00000 )
1:4140q will not (since 1:41402 = 1:999396 6� 2:0000
when comparing with four digits' precision).
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Figure 2: Some simple checklets.

(a) An integer addition checklet.

checklet intAdd ((int a, int b) ) int c)

if (a+b)=c then

accept http://www.cs.arizona.edu/~collberg/IntAdd.html

else

reject

(b) A slow sorting checklet.

checklet sorting1 (int[] input ) int[] output)

int[] tmp  quicksort(input)

if tmp = output then

accept http://hissa.ncsl.nist.gov/~black/CRCDict/termsArea.html#sort

else

reject

(c) A faster sorting checklet. Its speed depends on how fast we can compare two multisets for equality. If the
elements are small enough we can use bucket sort in O(n) time. Otherwise, we can use a hashing scheme that
runs in time proportional to the size of the hash table.

checklet sorting2 (int[] input ) int[] output)

if length(input) 6= length(output) then

reject

for i 1 to length(output)-1 do

if output[i] > output[i+1] then

reject

if the multisets input and output don't contain the same elements then

reject

accept http://hissa.ncsl.nist.gov/~black/CRCDict/termsArea.html#sort

(d) A topological sorting checklet.

checklet topologicalSort (Digraph inGraph ) Node[] outNodeList)

if the nodes of inGraph 6= outNodeList then

reject

for (f; t)  the edges of inGraph do

if index of f in outNodeList > index of t in outNodeList then

reject

accept http://hissa.ncsl.nist.gov/~black/CRCDict/HTML/topologcsort.html

3 System Overview

Points 1{ 4 in Figure 3 show how a typical user
will search A�goVista. A query is submitted through
the A�goVista web page, transferred to the A�goVista
server, and matched against the checklets in the check-
let database (the checklet coop). The output from any
accepting checklet is transferred back to the client and
presented to the user.

Figure 4 shows the basic A�goVista search algorithm.
The algorithm is very simple: a query is submitted
to every checklet in the database, and the response
of every accepting checklet is returned. In Section 5
we show that a query may also undergo a set of rep-
resentation transformations prior to being submitted.
These transformations try to compensate for the fact

that user queries and checklets may use di�erent data
representations for the same problem. In Section 7 we
explore more sophisticated algorithms that speed up
search times signi�cantly.

3.1 Extending the Database

To extend the database with new problem classi�ca-
tions, a user downloads a checklet template, modi�es
and tests it, and uploads the new checklet into the server
where it is added to the checklet coop. This is illustrated
by points 5{ 7 in Figure 3.

To the best of our knowledge, A�goVista is the �rst
search engine on the web to allow arbitrary users to
upload executable code into its database. Obviously,
there are a number of security issues that have to be
addressed.
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}
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boolean check (query) {

}

class IntAdd extends Checklet {

~/Add.java

cluckPassword:

Upload

File:
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Name:
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Password:

Alice
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Browser

algovista.cs.arizona.edu

Browser
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(1,3)==>2
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Alice

Figure 3: Alice, a theoretician, and Bob, a software developer, interact with A�goVista. At 1, Bob submits a search query. At 2, the query is mutated

into a set of two queries by the transformation database. At 3, the search engine matches these queries against the checklets in the checklet coop.

The output of any accepting checklets is returned to Bob at 4. At 5, Alice registers as a potential contributor to A�goVista. At 6, she submits an

example query of a checklet Add she intends to write and receives a template checklet in return. At 7, she modi�es the template, and uploads it to the

checklet coop.

6



Figure 4: Exhaustive search algorithm.

function search (query)

q  parse(query)

responses  fg
for every combination of query transformations T1(T2(� � �)) do

q0  T1(T2(� � � q � � �))
for every checklet c in the coop do

if c accepts q0 with response r then

responses  responses [ frg
return responses

Figure 5: Evil and stupid checklets.

(a) A checklet that always accepts, returning a bogus URL.

checklet evil1 (any ) any)

accept http://www.quayle.org/

(b) A denial-of-service checklet that steals memory and/or CPU cycles.

checklet evil2 (any ) any)

while true do

Node n = new Node

(c) A checklet that reads from or writes to the local �le system.

checklet evil3 (any ) any)

exec "mail evil@spam.com < /etc/passwd; /bin/rm -R *"

(d) A prime factorization checklet that uses an extremely slow result checking algorithm, although a trivial fast
one exists. The e�ect is identical to that of a denial-of-service attack.

checklet stupid1 (int composite ) int[] factors)

int[] primes = factor(composite) // Known factorization algorithms are slow.
if primes = factors then

accept http://www.utm.edu/research/primes

else

reject

(e) A checklet providing a list of accepting examples.

checklet intAdd ((int a, int b) ) int c)

examples (0,0)==>0, (5,6)==>11

if (a+b)=c then accept � � �

Figure 5 shows some examples of hostile checklets.
Figure 5 (a) shows an overly general checklet evil1 that
was uploaded in an attempt to promote someone's web
site. Regardless of the input query, evil1 will always
accept and return a link to the bogus site. Checklet
evil2 in Figure 5 (b) launches a denial-of-service at-
tack by stealing as many CPU cycles or as much mem-
ory as possible. Checklet evil3 in Figure 5 (c) attempts
to compromise the security of the A�goVista server by
reading from or writing to the local �le system. Check-
let stupid1 in Figure 5 (d), �nally, while not being out-

rightly hostile, uses an extremely slow result checking
algorithm which results in e�ects similar to that of a
denial-of-service attack.

A�goVista checklets are written in Java and are ex-
ecuted with the same security privileges as an applet
would. This allows us to rely on Java's built-in security
features to prevent checklets from compromising the se-
curity of the A�goVista server.

Denial-of-service attacks [14] are more di�cult to
deal with. While time-outs are used to stop checklets
from stealing too many CPU cycles, as far as we are
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aware, Java does not provide the means to limit the
dynamic memory allocation of a process.

It is unclear whether there are any strong techni-
cal means to prevent attacks by overly general check-
lets. The same problem plagues keyword search engines
such as AltaVista: to promote their own web-pages un-
scrupulous users will \submit pages with numerous key-
words, or with keywords unrelated to the real content
of the page" [1]. Currently, we require every check-
let to provide a list of accepting examples, as shown in
Figure 5 (e). When a checklet is uploaded A�goVista
ensures that

a) the checklet accepts every one of the example
queries it has provided, and

b) the checklet only accepts a small fraction of all the
example queries provided for all other checklets in
the coop.

While not foolproof, this policy provides a reasonable
level of security.

4 The Query Language

To make the use of A�goVista a pleasant experience,
users must be able to easily formalize their queries. This
necessitates the design of a natural and expressive query
language. QL, the A�goVista query language, is essen-
tially a domain-speci�c language where the domain is
very large: users need to be able to express any rea-
sonable mapping between any reasonable literal data
structures.

As is always the case with domain-speci�c languages,
there is a tension between a minimalist syntax (LISP-
like, for example) and a \kitchen-sink" syntax. The
former has a few simple primitives whereas the latter
has many complex primitives, one for each anticipated
use. The minimalist syntax is easy to learn but combin-
ing the primitives into complex sentences (queries, in
our case) can be cumbersome. The kitchen-sink syntax,
on the other hand, has a steeper learning-curve, but
common sentences (those anticipated by the language
designers) are easier to express.2

QL is of \medium" complexity: while it has some
kitchen-sink features, there are many data structures
which cannot be expressed directly but have to be con-
structed by combining simple primitives. QL primitives
include integers, oats, booleans, lists, tuples, atoms,
and links. Links are (directed and undirected) edges
between atoms that are used to build up linked struc-
tures such as graphs and trees. Special syntax was pro-
vided for these structures since we anticipate that many
A�goVista users will be wanting to classify graph struc-
tures and problems on graphs.

Figure 6(a) shows the syntax of QL, and Figure 6(b)
gives some example queries. In the query in Fig-
ure 6(b) 1 a pair of integers (1 and 2) is mapped to
an integer (3). A�goVista returns the result set hBinary

2Our terms \minimalist language" and \kitchen-sink lan-
guage" are equivalent to the terms union-language and
intersection-language coined by Davidson and Fraser [9].

or, Integer addi since 1 + 2 = 3 and 1 j 2 = 3. In the
query in Figure 6(b) 2 a directed graph is mapped to
a directed graph. Each graph is represented, by conven-
tion, as a pair of a node-list and an edge-list. The query
in Figure 6(b) 3 asks A�goVista to classify a particu-
lar graph, which turns out to be a strongly connected
directed graph.

Figure 6(b) 4, �nally, shows a query that maps a
pair of vectors to a vector:

p([3,7],[5,1,6])==>[5,1,6,3,7]q.

A�goVista returns the result hList appendi since
append([5,1,6],[3,7])=[5,1,6,3,7]. To arrive at
this result A�goVista �rst swapped the input pair us-
ing a query transformation. We discuss this further in
Section 5.

4.1 The A�goVista Type System

In Section 7 we show how type analysis can speed up
A�goVista's search engine. The idea is to assign a type
signature to every query, checklet, and query transfor-
mation, and only submit a query to a checklet if the
signature of the query matches that of the checklet.

Figure 7(a) shows the A�goVista type hierarchy.
Only some of these types are directly expressible in QL.
For example, even though A�goVista has a set type,
there is no concrete QL syntax for sets. Rather, as we
will see in Section 5, query transformations are respon-
sible for inferring a collection of possible types from a
QL query, including that a vector p[1,2,3]q could rep-
resent the set f1; 2; 3g. This allows checklets to be very
speci�c about what types of queries they will accept,
and it allows A�goVista users to be very non-speci�c
in how they formulate their queries. For example, an
unsophisticated user might issue the query

p([1,2,3],[3,2,4])==>[1,2,3,4]q

in the search for the set union operation. He is not re-
quired by the A�goVista type system to explicitly state
that the three operands are sets, since he may not even
be familiar with this concept. Rather, he can simply
represent the sets as vectors, A�goVista's general term
for \collections of objects".

The set union checklet, on the other hand, can spec-
ify explicitly that it will only accept queries that map
two sets to a third set, i.e. that has the signature

Map(Pair(Set(Int),Set(Int)),Set(Int)).

Type-checking queries and checklets will prevent a
query such as

p([1,2,2],[2,3,4])==>[1,2,3,4]q

from being submitted to the set union checklet since one
of the vectors is not a set.

Figure 7(b) shows the mapping from QL queries to
type signatures. Figure 7(c) gives some examples.
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Figure 7: A�goVista's type System.

(a) QL's type hierarchy.

Digraph

DAG

Tree

Linked

Graph

List

VectorNumber MatrixBool Null

Primitive Container Node

Int SetPairFloat

Edge

DEdge UEdge

Object

(b) Type assignment for QL.

T [int] = Int

T [float] = Float

T [true] = Bool

T [false] = Bool

T [S1 �==>� S2] = Map(T [S1]; T [S2])
T [�(� S1 �,� S2 �)�] = Pair(T [S1]; T [S2])
T [�[�[ S1 f �,�S2 g ] �]�] = if T [S1] = T [S2] then Vector(T [S1]) else ?
T [atom] = Node(Null())
T [atom=S] = Node(T [S])
T [atom �->�=S atom] = DEdge(T [S])
T [atom �->� atom] = DEdge(Null())
T [atom �--�=S atom] = UEdge(T [S])
T [atom �--� atom] = UEdge(Null())

(c) Examples of QL's type system.

QL query Signature

1 Int

4.5 Float

true Bool

[1,2,3] Vector(Int)

(1,4.5) Pair(Int,Float)

a Node/Null

a/5 Node/Int

a->b DEdge/Null

a->/5b DEdge/Int

a--b UEdge/Null

a--/5.5b UEdge/Float

([a,b,c],[a->b,a->c]) Pair(Vector(Node(Null)),Vector(DEdge(Null)))

([a/3,b/2,c/1],[a->b,a->c]) Pair(Vector(Node(Int)),Vector(DEdge(Null)))

(1,2)==>3 Map(Pair(Int,Int),Int)

([1,2],[3,4])==>[4,6] Map(Pair(Vector(Int),Vector(Int)),Vector(Int))
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5 Query Transformations

Early on in the design of A�goVista we realized that
there is often a representational gap between a user's
query and the checklet that is designed to match this
query. For example, there are any number of reasonable
ways for a user to express the topological sorting query
in Figure 1(c), including representing the input graph as
a list of edges, an adjacency matrix, or a list of neighbors.
These queries are shown in Figure 6(b) 5{ 9. The
corresponding topological sorting checklet, on the other
hand, might expect the input graph only in a matrix
form.

This gap between query and checklet representation
is probably the most contentious part of A�goVista, and
solving this problem is a major key to the success of the
search engine. We have considered two ways of attack-
ing the problem:

1. The �rst solution is the kitchen-sink approach to
query language design that was alluded to in the
previous section. The idea is to provide special
syntax for every conceivable literal data structure,
including graphs, trees, lists, polygons, points, line
segments, planes, sets, bags, etc. The advantage
of this approach is that the query language syn-
tax will guide both checklets and queries to use
the same representation. The disadvantages are
(a) that it is di�cult to know when the query lan-
guage is complete, and (b) that the query language
becomes large and di�cult to learn.

2. The second approach is to provide a set of query
transformations that will automatically mutate
queries between common representations. For ex-
ample, given the topological sorting query in Fig-
ure 6(b) 5, A�goVista would automatically pro-
duce the queries in Figure 6(b) 5{ 9, all of
which would be matched against the checklets in
the checklet coop.

The current implementation of A�goVista uses the
second approach. Figures 8 and 9 lists the transforma-
tions currently in use by the search engine.

Transformation T B (Float2IntFloor) in Figure 8
transforms a oat to an integer by truncation. Trans-
formation T F swaps the elements of a pair. Transfor-
mation T H converts a vector to a set, provided the el-
ements of the vector are unique. Transformations T I
through T O are concerned with transforming a pair of
vectors to various linked structures.

Figure 10 gives an elaborate query transformation
example. A user query

p[a->/5b,b->/9c]q

is �rst transformed (using the Vector2VectorPair

transformation) to

p([a,b,c],[a->/5b,b->/9c])q

by adding the list of nodes left out by the user. Through
a series of analyses it is eventually determined that the
query represents a linked list

pList(;,Int):([a,b,c],[a->/5b,b->/9c])q,

which could also be represented by the vector

pVector(Int):[5,9]q.

Since the vector is of size two, it could also represent a
pair. The elements of this pair, �nally, can be swapped
and converted from integers to oats. The A�goVista
search engine would hand o� any or all intermediate
results of this string of transformations to checklets that
have the appropriate signature.

6 Checklet Design

Extending the A�goVista coop with a new checklet may
seem like an involved process, but, fortunately, much
has been automated. A typical upload involves the fol-
lowing steps:

1. Produce an example query, for example
p(1,2)==>3q for the IntAdd checklet.

2. Submit the example query to A�goVista's checklet
template generator. Figure 11 shows the template
produced from the query p(1,2)==>3q.

3. Fill in the Description() method with a short de-
scription of the problem the checklet tests for.

4. Fill in the References() method with a list of
hyper-references to on-line resources related to the
problem.

5. Replace \return false" in the Check() method
with the relevant program checking code that re-
turns true if the checklet accepts a query, and
false otherwise. The Check() method takes an
AlgoVista.CL.Object as argument, essentially the
abstract syntax tree of a parsed query. The tem-
plate already contains code to unpack this repre-
sentation. For example, in Figure 11 intVal0 and
intVal1 contain the input part of the query, and
intVal2 the output part. Hence, in our exam-
ple, \return false" would be replaced by \return
(intVal0+intVal1)==intVal2"

6. Upload the new checklet to the A�goVista server
where it will be compiled, veri�ed, and tested.
A�goVista will possibly return a list of compilation
errors or security violations that have to be �xed
before the checklet will be accepted into the coop.

The most di�cult part is certainly constructing the
actual program checking code. Inspiration can some-
times be had from the result checking literature [4{6,10,
16,17,19], but more often by examining existing check-
lets. A�goVista supports this by making the source code
of checklets available for perusal.
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Figure 8: Query transformations (A). ; represents Null. Greek letters are type variables. Examples are in the format
signature:query.

T A Int2Float:Int)Float

Description: Convert an integer to a oat.
Example: Int:3)Float:3.0

T B Float2IntFloor:Float)Int

Description: Round a real number to the nearest smaller integer.
Example: Float:1.3)Int:1

T C Float2IntCeil:Float)Int

Description: Round a real number to the nearest larger integer.
Example: Float:1.3)Int:1

T D Int2Bool:Int)Bool

Description: Convert 0/1 to false/true.
Condition: The integer must be 0 or 1.
Example: Int:0)Bool:false

T E Bool2Int:Bool)Int

Description: Convert false/true to 0/1.
Example: Bool:true)Int:1

T F FlipPair:Pair(�,�))Pair(�,�)
Description: Swap the elements in a pair.
Example: Pair(Int,Float):(1,2.3))Pair(Float,Int):(2.3,1)

T G Vector2Pair:Vector(�))Pair(�,�)
Description: Convert a vector to a pair.
Condition: The vector must contain exactly 2 elements.
Example: Vector(Int):[1,2])Pair(Int,Int):(1,2)

T H Vector2Set:Vector(�))Set(�)
Description: Convert a vector to a set.
Condition: The vector must contain no duplicate elements.
Example: Vector(Int):[1,2,5,9])Set(Int):f1,2,5,9g

T I VectorPair2Linked:Pair(Vector(�),Vector(�)))Linked(�,�)
Description: Convert a pair of vectors of nodes and edges to a linked structure.
Example: Pair(Vector(Node(Int)),Vector(DEdge(;))):([a/1,b/2],[a->b]))

Linked(Int,;):([a/1,b/2],[a->b])
T J Vector2VectorPair:Vector(�))Pair(Vector(;),Vector(�))

Description: Convert a vector of edges to a pair of vectors of nodes and edges.
Example: Vector(DEdge(;)):[a->b,c->d])Pair(Vector(;),Vector(;)):([a,b,c,d],[a->b,c->d])

T K Linked2Graph:Linked(�,�))Graph(�,�)
Description: Convert a linked structure to an undirected graph.
Condition: The linked structure must be undirected.
Example: Linked(;,;):([a,b,c],[a--b,b--c,c--a]))Graph(;,;):([a,b,c],[a--b,b--c,c--a])

T L Linked2Digraph:Linked(�,�))Digraph(�,�)
Description: Convert a linked structure to a digraph.
Condition: The linked structure must be directed.
Example: Linked(;,;):([a,b,c],[a->b,b->c,c->a]))Digraph(;,;):([a,b,c],[a->b,b->c,c->a])

T M Digraph2DAG:Digraph(�,�))DAG(�,�)
Description: Convert a digraph to a directed acyclic graph.
Condition: The digraph must be acyclic.
Example: Digraph(;,;):([a,b,c],[a->b,b->c,a->c]))DAG(;,;):([a,b,c],[a->b,b->c,a->c])

T N DAG2Tree:DAG(�,�))Tree(�,�)
Description: Convert a directed acyclic graph to a tree.
Condition: No node may have indegree > 1. Exactly one node must have indegree = 0.
Example: DAG(;,;):([a,b,c,d],[a->b,b->c,c->d]))Tree(;,;):([a,b,c,d],[a->b,b->c,c->d])

T O Tree2List:Tree(�,�))List(�,�)
Description: Convert a tree to a linked list.
Condition: No node may have outdegree > 1.
Example: Tree(;,;):([a,b,c],[a->b,b->c]))List(;,;):([a,b,c],[a->b,b->c])

12



Figure 9: Query transformations (B).

T P List2VectorA:List(�,;))Vector(�)
Description: Convert a linked list to a vector.
Example: List(Int,;):([a/1,b/2,c/3],[a->b,b->c]))Vector(Int):[1,2,3]

T Q List2VectorB:List(;,�))Vector(�)
Description: Convert a linked list to a vector.
Example: List(;,Int):([a,b,c,d],[a->/1 b,b->/2 c,c->/3 d]))Vector(Int):[1,2,3]

T R Linked2MatrixA:Linked(;,;))Matrix(Int)

Description: Convert a linked structure to an adjacency matrix representation.
Example: Linked(;,;):([a,b,c],[a->b,b->c,c->a]))Matrix(3,3,Int):[0,1,0; 0,0,1; 1,0,0]

T S Linked2MatrixB:Linked(;,�))Matrix(�)
Description: Convert a linked structure to an adjacency matrix representation.
Example: Linked(;,Int):([a,b],[a->/5b,b->/8b]))Matrix(2,2,Int):[0,5; 0,8]

T T VectorOfVectors2Matrix:Vector(Vector(�)))Matrix(�)
Description: Convert a vector of vectors to a matrix representation.
Condition: All vectors must be of the same length.
Example: Vector(Vector(Int)):[[1,2],[3,4]])Matrix(2,2,Int):[1,2; 3,4]

Figure 10: Query transformation example. The �rst line is the user's QL query. Subsequent lines show the query and
its signature after a transformation.

Vector(DEdge(Int)):[a->/5b,b->/9c]

T
J

) Pair(Vector(Node(;)),Vector(DEdge(Int))):([a,b,c],[a->/5b,b->/9c])
T
I

) Linked(;,Int):([a,b,c],[a->/5b,b->/9c])
T
L

) Digraph(;,Int):([a,b,c],[a->/5b,b->/9c])
T
M

) DAG(;,Int):([a,b,c],[a->/5b,b->/9c])
T
N

) Tree(;,Int):([a,b,c],[a->/5b,b->/9c])
T
O

) List(;,Int):([a,b,c],[a->/5b,b->/9c])
T
Q

) Vector(Int):[5,9]

T
G

) Pair(Int,Int):(5,9)

T
F

) Pair(Int,Int):(9,5)

T
A

) Pair(Float,Int):(9.0,5)

T
A

) Pair(Float,Float):(9.0,5.0)

7 Query Optimization

In Section 3 we described a straight-forward algorithm
that employs exhaustive search to submit every possible
mutation of a query to every checklet in the checklet
coop. Obviously, with dozens of transformations and
maybe hundreds of checklets this procedure will be pro-
hibitively expensive.

In this section we will examine a more sophisticated
search algorithm that explores the fact that queries,
checklets, and transformations are all typed. To see how
type-analysis can help us speed up the search, consider
a situation where we have two checklets

FloatExp: Map(Pair(Float,Int),Float)

FloatAdd: Map(Pair(Float,Float),Float)

where FloatExp checks for real exponentiation and
FloatAdd checks for real addition, and two transforma-
tions

Int2Float:Int)Float

FlipPair: Pair(�,�))Pair(�,�)
where Int2Float promotes an integer to a real and
FlipPair commutes a pair.

Suppose the input query is p(2.0,2)==>4.0q. This
input has a signature of Map(Pair(Float,Int),Float),
and therefore can be tested immediately against
the FloatExp checklet. Similarly, by applying the
Int2Float transformation, the query can be trans-
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Figure 11: The checklet template generated automatically by A�goVista from the example query p(1,2)==>3q.

public class IntAdd implements AlgoVista.DataBase.Checklet f

public String Description () f
return "";

g

public String[] ProtoExamples () f
String [] examples = f"(1,2)==>3"g;
return examples;

g

public String Signature () f
return "Map(Pair(Int(),Int()),Int())";

g

public AlgoVista.DataBase.Reference[] References () f
AlgoVista.DataBase.Reference [] examples = f

new AlgoVista.DataBase.Reference("tag","link")

g;
return examples;

g

public boolean Check (AlgoVista.CL.Object obj) throws Throwable f
AlgoVista.CL.Map mapObject0 = (AlgoVista.CL.Map)obj;

AlgoVista.CL.Object mapInput0 = mapObject0.GetInput();

AlgoVista.CL.container.vector.Pair pairObject0 = (AlgoVista.CL.container.vector.Pair)mapInput0;

AlgoVista.CL.Object pairFirst0 = pairObject0.GetFirst();

AlgoVista.CL.primitive.number.Int intObject0 = (AlgoVista.CL.primitive.number.Int)pairFirst0;

long intVal0 = intObject0.GetInt();

AlgoVista.CL.Object pairSecond0 = pairObject0.GetSecond();

AlgoVista.CL.primitive.number.Int intObject1 = (AlgoVista.CL.primitive.number.Int)pairSecond0;

long intVal1 = intObject1.GetInt();

AlgoVista.CL.Object mapOutput0 = mapObject0.GetOutput();

AlgoVista.CL.primitive.number.Int intObject2 = (AlgoVista.CL.primitive.number.Int)mapOutput0;

long intVal2 = intObject2.GetInt();

return false;

g
g

formed into p(2.0,2.0)==>4.0q, which matches the sig-
nature of FloatAdd, and therefore can be submitted to
that checklet.

It is a simple observation that a query ptrue==>1q

(which has the type Map(Bool,Int)) can never match
any of the checklets, regardless of which transformations
are applied. Still, the algorithm in Section 3 would
apply all possible combinations of transformations to
ptrue==>1q and submit any generated query mutation
to every checklet in the coop.

We will next show how precomputation can speed
up searching by eliminating any such useless transfor-
mations.

7.1 Fast Checking by Precomputation

Whenever a new checklet is added to the database,
A�goVista generates a new search procedure ST ;C au-
tomatically. This procedure is hardcoded to handle ex-
actly the set of transformations T which are available in
the transformation database, and the set of checklets C

which are currently available in the checklet coop. ST ;C
is constructed such that given an input query q whose
type is T [q], ST ;C will apply exactly those combinations
of transformations to q that will result in viable mutated
queries. A query is viable if it is correctly typed for
checking by at least one checklet.

In other words, A�goVista's optimized search proce-
dure ST ;C will never perform a useless transformation,
one that could not possibly lead to a mutated query
correctly typed for some checklet.

In order to apply transformations and to test
checklets e�ciently, A�goVista determines the signa-
ture of an input query upon its arrival. Given the
query's signature, A�goVista knows exactly which, if
any, checklets to test, and which, if any, transfor-
mations to apply. Furthermore, A�goVista knows
the exact signature of each newly-generated query
because it knows the input query signature and
how the transformation will transform the signature.
(For example, A�goVista knows that applying the
FlipPair transform to Map(Pair(Float,Int),Float)
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will yield Map(Pair(Int,Float),Float).) This obser-
vation yields a very simple, but highly optimized archi-
tecture for A�goVista to apply transformations and test
checklets based on signatures, in which there is one func-
tion per signature responsible for all the operations that
a�ect queries of that signature. Each function has three
parts: verifying the originality of the query, testing all
matching checklets, and generating isomorphic queries
by applying transformations. All generated queries are
simply handed o� to the function that handles their sig-
nature.

For the given checklets and transformations
above, the function that handles the signature
Map(Pair(Float,Int),Float) is as follows:

set FI F AlreadySeen;

function FI F(query Q) f
if Q in FI F AlreadySeen then return;

insert Q into FI F AlreadySeen;

Check if the FloatExp-query accepts Q;

Apply Int2Float (whose signature is
Map(Int,Float)) to Q, yielding Q0 (whose
signature is Map(Pair(Float,Float),Float));

Call FF F(Q0);

g
The AlreadySeen-set prevents the same query mu-

tation from being produced more than once:
(1,2)==>3

T
F

) (2,1)==>3

T
F

) (1,2)==>3

T
F

) (2,1)==>3

) � � �
The only non-trivial aspect of the gener-

ated function is knowing which transforma-
tions can be applied to a given signature, and
where. For instance, given the query signature,
Map(Pair(Pair(Int,Float),Pair(Float,Int))), it is
possible to apply the FlipPair transformation at any
of the four Pairs in the query|even the nested ones.

In addition to the signature-speci�c functions, it is
also necessary to generate a large decision tree that de-
termines the signature of the original query before that
query is dispatched to the appropriate function.

7.2 The Query Signature Graph

Figure 12 is a graphical representation of the functions
that would be generated for the checklets and transfor-
mations in our running example. The nodes depict the
signature-bound functions and the edges show transfor-
mations from one signature to another. The shaded
nodes are those nodes that have associated checklets.

To construct this query signature graph we start
with those signatures accepted by checklets|they are
trivially acceptable. Then, for all of those signatures,
we apply the inverted transformations wherever pos-
sible. I.e., at each step of this process we determine

those signatures that are one transformation away from
the given acceptable signature. By repeatedly apply-
ing these inverted transformations, all acceptable query
transformations can be discovered and the graph can be
constructed.

There is, however, one unfortunate complication to
this architecture. With a su�ciently rich set of trans-
formations, it is possible to generate an in�nite number
of signatures:

[a->b,b->c]

T
J

) ([a,b,c],[a->b,b->c])

T
J

) ([a,b,c],([a,b,c],[a->b,b->c]))

T
J

) ([a,b,c],([a,b,c],([a,b,c],[a->b,b->c])))

) � � �
To avoid this problem, and to bound the number of

signatures, we put a limit on the number of transfor-
mations that will be applied to any query. This limit is
currently set to four. This would seem to limit the use-
fulness of A�goVista, but in practice this is not so. First
of all, the exhaustive search algorithm from Section 3
is still available to those users who are willing to trade
a somewhat longer response-time for a more complete
response. Secondly, very deep chains of transformations
will often mutate a query beyond recognition, resulting
in spurious query results that have little meaning to the
user.

With our current database of 95 checklets, with 28
unique signatures, and 23 transformations, A�goVista
can accept queries with 9828 di�erent signatures.

The generation of the decision tree and all of the
signature-speci�c functions is done automatically by a
small Icon program [12].

8 Evaluation

The ultimate test for A�goVista will be

a) whether theoreticians will be willing to extend the
database with new problem speci�cations, and

b) whether the resulting database will actually pro-
vide useful information to practicing programmers.

Two secondary concerns are

c) whether security breaches can be prevented, and

d) whether the performance of the search engine will
be adequate to ensure reasonable response time.

Unfortunately, most of these questions remain unan-
swered at this time, since A�goVista has yet to be fully
deployed and so far the authors are its only users.

We can, however, give some preliminary timing mea-
surements to evaluate the relative performance of the
two search algorithms.

Table 1 shows the search times for some typical
queries. The times were collected by running each query
four times and averaging the wall clock times of the last
three runs. The reason for discarding the �rst measure-
ment is that Java start-up times are quite signi�cant
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Figure 12: Query signature graph. The two transformations Int2Float and FlipPair are represented by I! F and
(�; �)! (�; �), respectively. Shaded nodes represent viable signatures, those that have associated checklets.
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and unpredictable. Furthermore, in web applications
such as this one, programs are typically pre-loaded into
(a large) primary memory and queries are �elded with-
out any disk accesses.

The �ve columns of Table 1 show the query, the av-
erage wall clock times for the query using the exhaus-
tive and the precomputed search, and the average wall
clock times for generating all mutated queries using the
exhaustive and the precomputed algorithms. In other
words, the last two columns do not include the execution
times of the checklets, just the time it takes to generate
the transformed queries that would be submitted to the
checklets.

Looking at Table 1 it is clear, as would be expected,
the precomputed search algorithm is vastly superior
to the exhaustive algorithm. However, it should be
stressed that the comparison is inherently unfair. The
exhaustive algorithm, although slower, will sometimes
report results that the precomputed algorithm will over-
look. The reason is that the precomputed algorithm
limits the number of transformations that can be ap-

plied to a query, while the exhaustive one does not.
In our current implementation we limit the precom-

puted algorithm to apply at most six transformations.
The hard-coded programs generated by the algorithms
in Section 7 are rather large (even limiting the search to
four mutations yields roughly 1.2 million lines of code
over 20000 Java classes) and current Java tools are only
barely able to handle programs of this size.

9 Related Work

A number of web sites, for example the CRC Dictio-
nary [3] and the Encyclopedia of Mathematics [20], al-
ready provide encyclopedic information on algorithms,
data structures, and mathematical results. Like all en-
cyclopedias, however, they are of no use to someone
unfamiliar with the terminology of the �eld they are
investigating.

More relevant to the present research is Sloane's On-
Line Encyclopedia of Integer Sequences [18]. This search
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Table 1: Timing measurements. Times are in seconds. Anomalous measurements are due to rounding errors and
inadequate timer resolution. The measurements were collected on a lightly loaded Sun Ultra 10 workstation with a
333 MHz UltraSPARC-IIi CPU and 256 MB of main memory.

Search Mutations

Query Exhaustive Precomputed Exhaustive Precomputed

p(1,2)==>3q 3.25 0.22 3.10 0.21

p[1,3]==>2q 3.40 0.22 3.01 0.2

p([a,b,c,d],[a->b,b->c,c->d,d->a])q 2.38 0.03 1.78 0.03

p([a,b,c,d],[a->b,b->c,c->d])==>[a,b,c,d]q 11.51 0.21 9.89 0.22

p([a,b,c,d],[a->/2b,b->/2c,c->/3d])==>3q 13.39 0.13 12.53 0.12

p[a->/1b,b->/2c,c->/3d]==>6q 0.47 0.02 0.34 0.02

p([1,2,3],[4,5,6])==>[1,2,3,4,5,6]q 2.00 0.06 1.66 0.06

p[6,5,4,3,2,1]==>[1,2,3,4,5,6]q 0.13 0.01 0.07 0.01

service allows users to look up number sequences with-
out knowing their name. For example, if a user entered
the sequence p1; 2; 3; 5; 8; 13; 21; 34q, the server would re-
spond with \Fibonacci numbers." It is interesting to
note that, although many of the entries in the database
include a program or formula to generate the sequences,
these programs do not seem to be used in searching the
database. A similar search service is Encyclopedia of
Combinatorial Structures [15].

Inductive Logic Programming (ILP) [2] is a branch
of Machine Learning. One application of ILP has been
the automatic synthesis of programs from examples
and counter-examples. For example, given a language
of list-manipulation primitives (car, cdr, cons, and
null) and a set of examples

append([],[],[]).

append([1],[2],[1,2]).

append([1,2],[3,4],[1,2,3,4]).

an ILP system might synthesize the following Prolog-
program for the append predicate:

append(A, B, B) :-

null(A).

append(A,B,C) :-

car(A, X), cdr(A, Y),

append(Y, B, C1),

cons(X, C1, C).

Obviously, this application of ILP is far more
ambitious than A�goVista. While both ILP and
A�goVista produce programs from input)output
examples, ILP synthesizes them while A�goVista just
retrieves them from its database. The ILP approach
is, of course, very attractive (we would all like to have
our programs written for us!), but has proven not
to be particularly useful in practice. For example,
in order to synthesize Quicksort from an input of
sorting examples, a typical ILP system would �rst
have to be taught Partition from a set of examples

that split an array in two halves around a pivot element:

partition(3,[],[],[]).

partition(5,[6],[],[6]).

partition(7,[6],[6],[]).

partition(5,[6,3,7,9,1],[3,1],[6,7,9]).

A�goVista is essentially a reverse de�nition dic-
tionary for Computer Science terminology. Rather
than looking up a term to �nd its de�nition (as one
would in a normal dictionary), a reverse de�nition
dictionary allows you to look up the term given its
de�nition or an example. The DUDEN [7] series
of pictorial dictionaries is one example: to �nd out
what that strange stringed musical instrument with a
hand-crank and keys is called, you scan the musical
instruments pages until you �nd the matching picture
of the hurdy-gurdy. Another example is The Describer's
Dictionary [11] where one can look up pmixture of

gypsum or limestone with sand and water and

sometimes hair used primarily for walls and

ceilingsq to �nd that this concoction is called plaster.

10 Summary

A�goVista provides a unique resource to computer sci-
entists to enable them to discover descriptions and im-
plementations of algorithms without knowing theoret-
ical nomenclature. A�goVista is a web-based search
engine that accepts input)output pairs as input and
�nds algorithms that match that behavior. This Query-
By-Example mechanism relieves users of the burden
of knowing terminology outside their domain of ex-
pertise. A�goVista is extensible|algorithm designers
may upload their algorithms into A�goVista's database
in the form of checklets that recognize acceptable in-
put/output behavior.

A�goVista is operational at http://AlgoVista.cs.
arizona.edu/. Figure 13 shows a snapshot of this web
page.
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Figure 13: Snapshot of the A�goVista web page.
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