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Abstract

Given a vertex-labeled tree onn vertices we show how to obtain a straight-line, crossings-free draw-
ing of it on a set ofn labeled concentric tracks, such that the vertex labels match the track labels. The
tracks can be defined by conic sections (such as circles, ellipses, circular arcs) or other smooth convex
curves. We show that this type of embedding can be used to simultaneously embed tree-path pairs,
such that the tree is drawn without crossings, using one straight-line segment per edge, and the path
is drawn without crossings, using one circular arc segment per edge. This result generalizes to outer-
planar graphs. We also consider star-track embeddings of trees which we use to obtain simultaneous
embeddings of tree-path pairs using piecewise linear edges. In particular, we show how to simultane-
ously embed tree-path pairs so that the tree is drawn withoutcrossings, using one straight-line segment
per edge and the path is drawn without crossings, using at most 2 bends per edge. These results also
generalize to outerplanar graphs.

1 Introduction

Embedding trees and other classes of planar graphs on predetermined pointsets, or small integer grids is
motivated by graph layout algorithms and applications in the visualization of relational information. Si-
multaneous embedding of planar graphs is motivated by its relationship with problems of graph thickness,
geometric thickness, and contour tree simplification.

We define tracks to be nonintersecting copies of a shape formed by translating the shape in a direction
or scaling the shape around a point. As may be seen in Fig. 1, line, sine wave, and staircase tracks may be
formed by translating a shape to form parallel copies. Similarly circular and star tracks may be formed by
scaling a shape around the origin.

Informally, a graph can be embedded on tracks if we can find a straight-line, crossings-free drawing
of the graph on a set of fixed curves in the plane, so that each vertex lies on its corresponding curve; see
Fig. 1. Formally, we embed a graphG on a set of tracksL, whereG is ann-vertex graph with vertex labels
v1,v2, . . . ,vn and L is a set ofn tracks (smooth non-intersecting curves in the plane), labeled l1, l2, . . . ln,
provided thatvi ∈ l i, for 1≤ i ≤ n and the graph drawing is straight-line and crossings-free.

A simultaneous geometric embeddingof two vertex-labeled planar graphs onn vertices is possible if
there exists a labeled point set of sizen such that each of the graphs can be realized on that point set (using
the vertex-point mapping defined by the labels) with straight-line edge segments and without crossings. For
example, any two paths can be simultaneously embedded, while there exist pairs of outerplanar graphs that
do not have a simultaneous embedding. While it may be tempting to say that if the union of the two graphs
contains a subdivision ofK5 or K3,3 then the two graphs have no simultaneous geometric embedding, this is
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Figure 1:A tree embedded on line tracks, circle tracks, staircase tracks, sinx tracks, and star tracks.

not the case; see Fig. 2. In fact, while planarity testing fora single graph can be done in linear time [17],
the complexity of determining whether a pair of graphs can besimultaneously embedded is not known. In
addition to generalizing the notion of planarity, techniques for simultaneous embedding of cycles have been
used to show that degree-4 graphs have geometric thickness at most two [12].

Contour trees were proposed by van Kreveldet al [24] for computing isolines on terrain maps in ge-
ographic information systems. Carr, Snoeyink and van de Panne [7] use contour trees for scientific and
medical visualization. Contour tree simplification applies the ideas of topological persistence to trees and
is another application for simultaneous drawing of trees, and in particular trees on tracks [6]. Simultaneous
embedding techniques are also useful in the visualization of graphs that evolve through time, for example,
in the context of visualization of the evolution of software[8].

In this paper we present results about track embeddings of trees and outerplanar graphs, as well as
related results on simultaneous embedding of tree-path pairs. In particular, we show that trees cannot be
embedded on parallel line tracks, but they can be embedded ontracks defined by conic sections (such as
circles, ellipses, circular arcs) or other smooth convex curves. These results generalize to outerplanar graphs
as well. We also show that tree-path pairs can be simultaneously embedded, such that the tree is straight-line
and crossings-free and the path is crossings-free and each edge is drawn using one circular arc. We also show
that tree-path pairs can be simultaneously embedded, such that the tree is straight-line and crossings-free
and the path is crossings-free and each edge has at most 2 bends.

1.1 Related Work

The existence of straight-line, crossing-free drawings for a single planar graphs is well known [14, 23, 25].
Moreover, straight-line drawings forn-vertex planar graphs can be found inO(n) time, usingO(n2) area,
with vertices placed at integer grid points, as shown by de Fraysseix, Pach and Pollack [9] and Schnyder [22].
If bends on the edges are allowed, Biedl [2] shows that outerplanar graphs can be embedded usingO(nlogn)
area.

Brasset al [5] describe linear time algorithms forsimultaneous geometric embeddingsof pairs of paths,
cycles, and caterpillars, usingO(n2) area. If bends on the edges are allowed, Erten and Kobourov [13] show
that tree-path pairs can be embedded simultaneously using one bend per tree edge. Moreover, tree-tree pairs
can be embedded simultaneously using at most 3 bends per edge.

A related problem is the problem ofgraph thickness, defined as the minimum number of planar sub-
graphs into which the edges of the graph can be partitioned into; see survey by Mutzel, Odenthal and
Scharbrodt [20]. If a graph has thickness two then it can be drawn on two layers such that each layer is
crossing-free and the corresponding vertices of differentlayers are placed in the same locations. Dillen-
court, Eppstein and Hirschberg [10] studygeometric thicknessof graphs, where the edges are required to be
straight-line segments. Thus, if two graphs have a simultaneous geometric embedding, then their union has
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Figure 2:The union of the graphs in (a) and (b) is K5, but (c) shows a simultaneous geometric embedding.

geometric thickness two. Similarly, the union of any two planar graphs has graph thickness two. Duncan
et al [12] use simultaneous geometric embedding techniques to show that degree-four graphs have geomet-
ric thickness two. Finally,book thicknessadds the further restriction that the vertices must be in convex
position [1].

While the thickness and simultaneous embedding problems are related, results from one do not neces-
sarily translate into the other. Bose, Hurtado, Rivera-Campo and Wood [4] show that the complete convex
graphK2n can be partitioned inton plane spanning trees and moreover, characterize all the different parti-
tions. In particular, they show thatK2n can be partitioned inton non-crossing paths. However, givenn paths
it it not possible to always simultaneously embed them forn≥ 3, as shown by Brasset al [5].

Simultaneous drawing of multiple graphs is also related to the problem offixed pointset embeddingof
planar graphs. Bose [3] and Gritzmanet al [16] show that if the mapping between the verticesV and the
pointsP is not fixed, then trees and outerplanar graphs can be drawn without crossings, using straight-line
edges. In the same setting general planar graphs cannot be drawn without bends. If bends are allowed,
Kaufmann and Wiese [19] show that two bends per edge suffice. However, if the mapping betweenV andP
is predetermined, Pach and Wenger [21] show thatO(n) bends per edge are necessary to guarantee planarity,
wheren is the number of vertices in the graph.

In the context of 3D layout, Dujmovic, Por and Wood [11] studythe(k, t)-track layoutsof graphs, where
the graph is vertext-colored and edgek-colored. They examine the relationship between such layouts and
geometric thickness. Felsner, Liotta and Wismath [15] characterize the trees that can be drawn on then×2
grid and describe a universal pointset for outerplanar graphs in 3D.

1.2 Our Contribution

We begin with results on track embeddability.1 There exists a tree with vertices labeledv1 to vn such that
for any set of labeled parallel lines (i.e., tracks)L1 to Ln there does not exist a straight-line crossings-free
drawing ofT, such thatvi is on trackLi. However, if the tracks are concentric circles instead of lines, then
for every tree there exists such a drawing on some set of (concentric circular) tracks. We describe a linear
time algorithm for obtaining such drawings and show that thealgorithm easily generalizes to outerplanar
graphs. Moreover, we show that other types of tracks also support such drawings, in particular tracks defined
by conic sections, and other smooth convex tracks.

Our motivation for the problem of track embeddings comes from two open problems in simultaneous
geometric embedding. Formally, in the problem of simultaneous geometric embedding we are given two
planar graphsG1 = (V,E1) andG2 = (V,E2) and we would like to find straight-line crossings-free drawings

1Our use of “tracks” differs from earlier use of the word [11, 15], where the mapping between vertices and tracks is not given.
In this paper, the mapping between the vertices and the tracks is predetermined by the vertex labels.
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Figure 3: Path-path simultaneous embedding. The vertices of the first (second) path have monotonically
increasing x-coordinates (y-coordinates), hence the first (second) path is crossings-free.

D1 andD2 such that for all verticesv ∈ V the location of the corresponding vertices inD1 andD2 is the
same (i.e.,Di(v) = D j(v)). On one hand, several simple types of pairs, such as path-path, cycle-cycle, and
caterpillar-caterpillar can be simultaneously embedded.On the other hand, several types of pairs, such as
outerplanar-outerplanar and path-outerplanar, cannot always be simultaneously embedded. These results
leave open the status of many other types of pairs. Recently,it was shown that tree-tree pairs cannot always
be simultaneously embedded [18].

The circular track layout of trees and outerplanar graphs can be used to obtain simultaneous embeddings
of path-outerplanar graph pairs, such that the outerplanargraph is straight-line and crossings-free while the
path edges are crossings-free circular-arc segments. Moreover, particular kind of track, which we call a “star
track” allows the simultaneous embedding of path-outerplanar graphs pairs so that the outerplanar graph is
straight-line and crossings-free and the path edges are crossings-free and have at most 2 bends per edge.

2 Trees and Outerplanar Graphs on Tracks

A common method for simultaneous embedding of path-graph pairs, is to place all of the vertices that
form the path in order of their appearance on a series of parallel lines [5]. Without loss of generality we
can assume that then-vertex path is labeledv1,v2, . . . ,vn. Thus, if we can draw the other graph without
crossings while placing the vertices on a set of parallel lines labeledL1,L2, . . . ,Ln in order, then the pair can
be simultaneously embedded. This method is illustrated forthe case when both graphs are paths; see Fig. 3;

In particular, if we can draw a labeled tree on a set of parallel labeled line tracks, then tree-path pairs
can be simultaneously embedded. We show that not all trees allow such embeddings. However, we show
that trees can be realized on labeled concentric circular tracks, provided that the ratio between the radii of
the largest and the smallest circles is small. We generalizethe result to outerplanar graphs and show that if
the radii of the circular tracks are arbitrary, it is not possible to realize all trees and outerplanar graphs.

2.1 Trees on Parallel Line Tracks

Theorem 2.1 Labeled n-vertex trees cannot always be embedded on n labeled parallel line tracks.

Proof Sketch: To show that not all trees can be embedded on a labeled parallel line tracks it suffices to find
a counterexample. The 8-vertex tree in Fig. 4 is the smallestsuch counterexample. Assume that we have
already placed all vertices except for 2 and 7, on their corresponding tracks and there are no crossings yet.
Then it is easy to show that any placement of 2 on track 2 and 7 ontrack 7 will result in either a crossing of
the edge (3,7) with an edge of the tree or in a crossing of (2,6)with an edge of the tree.
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Figure 4:The tree on the left cannot be drawn on a set of parallel lines with the vertices in increasing order.
Regardless of how we place all of the vertices except v2 and v7, every placement will cause an intersection
in the graph.

We can show that this is the smallest counterexample by observing that every tree which does not have a
subgraph of Fig. 4(c) is a caterpillar and caterpillars may always be embedded on tracks[5]. Since Fig. 4(a)
has only one more node, for a smaller counterexample to existit must be Fig. 4(c) with some node labelling.
Now observe that regardless of the track labelling of nodes,at least two of the children ofR must be either
above or below it. WLOG assume that the children are labelledA andB and that they are belowR with A
is aboveB. Let us place theR on its track at x=0 and draw nodesC andF at x=-1. Notice this causes no
crossings.

Now we have three cases:

• Case 1:D is belowA

If this is the case then we can placeA andD at x=0 and placeB andE at x=1. This cannot cause a
crossing becauseA andD are drawn directly belowR andB andE are both to the right.

• Case 2:D is aboveA andE is belowB

If this is the case then we can placeB andE at x=0 and placeA andD at x=1. This cannot cause a
crossing becauseB andE are placed directly belowR andA andD are both to the right.

• Case 3:D is aboveA andE is aboveB

Recall thatA is aboveB. Let us placeA, B, andD at x=1 and placeE at x=2. SinceA andB have the
same x location the edges from them toRcannot cross. SinceA is aboveB andD is aboveA similarly
(A,D) will not cross another edge. The edge(B,E) cannot cross any others because it is the furthest
edge to the right. Thus the drawing has no crossings.

It is not surprising that trees cannot be embedded on parallel line tracks, as the restriction that the order
of they-coordinate of every vertex is determined in advance is too strong. What is surprising, however, is
that introducing just the slightest curvature to the tracks, is enough to allow us to embed all trees. Next we
show how this can be done, starting with circular tracks.

2.2 Trees on Concentric Circular Tracks

The infeasability of embedding trees on a set of labeled parallel lines leads to the question of whether trees
can be embedded on other types of tracks. In particular labeled concentric circular tracks are of interest,
bearing in mind the simultaneous embedding applications. We show that any vertex-labeled tree can be
realized on labeled concentric circular tracks by describing an algorithm for drawing trees on concentric
circles and a formula for determining the appropriate radii.
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Figure 5:The vertices of the tree in (a) are arranged around a circle in order given by a pre-order traversal
(b). The circle is scaled to n concentric circles and each vertex is moved along a ray from the center through
its original position, until the appropriate track is reached (c).By moving the vertices to their tracks we may
have introduced crossings (d). This problem can be resolved by fixing the ratio between the radii of the
circles (e).

Theorem 2.2 Any n-vertex labeled tree can be drawn without crossings on aset of n labeled concentric
circular tracks, using straight-lines segments, in O(n) time.

Proof: We prove this claim by providing a linear time embedding algorithm. We begin by showing that any
tree can be embedded on a single circle with the vertices evenly spaced around it. Next we perturb then
points so that each of them belongs to a unique concentric circle. This step, in effect, corresponds to the
construction of a universal circular track set, which can bedone by carefully selecting the radii of then
circles. Each of these steps is described below.

Drawing a Tree on a Circle: This is a special case of embedding a tree on a set of points in general
position [3, 16]. Since we need the specifics of the placementfor the next step, we provide some details.
We begin by creating a circle,C, centered at the origin. We placen points p1, p2, . . . , pn around the circle
and evenly spaced. We map then vertices of the tree to thesen points using a mapping obtained from a pre-
order traversal of the tree. Recall that in a pre-order traversal we visit the root of the current tree and then
recursively explore all of its children. We perform a pre-order traversal of the tree, starting at an arbitrary
vertex, and mapping thei-th vertex visited, to thei-th consecutive endpoint,pi , of the circle; see Fig. 5(a-b).

To see that the resulting straight-line drawing of the tree is crossings-free consider two arbitrary tree
edges(a,c) and(b,d). Two vertices labeledi, j by the pre-order traversal, are connected by an edge, only if
∀k, i < k < j,(k, l) implies i ≤ l ≤ j. This means that we cannot have crossings by connecting vertices that
lie on a circle in this manner because a crossing of(a,c) and(b,d) impliesa< b< c< d, which contradicts
the assumption that the labels came from a pre-order traversal.

Perturbing the Points: In this step we perturb then points on circleC so that each of them is on its own
circular track. We do this by creatingn concentric circles starting withC and move each vertex along a ray
from the origin through each point ofC until it intersects the appropriate circle; see Fig. 5(b-c). However,
the resulting tree drawing may not be crossings-free; see Fig. 5(d-e). Fortunately, is it not difficult to remedy
this problem, by choosing the radii of the circular tracks more carefully.

Circle Radius Selection:We can draw the tree without any crossings on a set of concentric circles by
choosing the radii appropriately. In particular, if a crossing of (a,c) and(b,d) impliesa < b < c < d then
we can use the same algorithm as above. Notice that withn vertices, it is sufficient to show that any edge
between verticesx andy crosses the smallest concentric circle; see Fig. 5(e). In order for each edge to have
this property, it is sufficient to show the shortest edge has this property. Given two points on a circle that
are 1

n ∗ 2π radians away from each other, the distance between the midpoint of this line segment and the
radius of the circle is 1− cos(π

n) in units where 1 is the radius of the circle. This means that ifwe maken

concentric circles have radii
1−cos( π

n )
n apart, we have the desired property. Note this is not a tight bound as it
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can be shown that we can relax the circle distance by a factor of 3 by observing that only the edges between
vertices at least 2 apart need to cross the smallest concentric circle and that both of the vertices cannot live
on the outermost circle.

2.3 Outerplanar Graphs on Concentric Circular Tracks

The idea of embedding a tree on a single circle and then refining the circle ton concentric circular tracks
can be extended to outerplanar graphs as well, as we show below.

Corollary 2.3 A n-vertex labeled outerplanar graph can be drawn on a set of nlabeled concentric circular
tracks without crossings in O(n) time.

Proof: We assume that the outerplanar graph is maximally outerplanar. If it is not, it can be appropriately
augmented, and when the algorithm completes, the extra edges can be removed. A combinatorial embedding
of the graph can be found in linear time [17]. Next we place thevertices of the graph onton points evenly
spaced around a given circle, so that the edges can be drawn asstraight-line segments and there are no
crossings. Once again, the correctness of this step followsfrom [3, 16]. Similar to the approach in Theorem

2.2, we then perturb then points by scaling the circle inton distinct circular tracks,
1−cos( π

n )
n apart. The

vertex labels ofG determine the appropriate tracks for each vertex. The separation of the tracks was chosen
so that every edge on the outerface must intersect the innermost track. Once again, it is straight-forward to
verify that if all edges intersect the innermost track, thenresulting drawing is still-crossings free.

2.4 Trees and Outerplanar Graphs on Refinable Shapes

It is easy to see that the results above extend to circular arctracks, as well as to conic section tracks, such
as parabolas, ellipses, hyperbolas, and more generally, toany shape that may be refined into tracks. We can
draw labeled outerplanar graphs on any set of shapes given certain restrictions (all the tracks are obtained
by scaling or translating one original shape, tracks do not intersect, and the separation between the tracks is
bounded). We summarize the results in the following theorem.

Theorem 2.4 Given a straight-line, crossings-free drawing of an outerplanar graph G with n vertices on
a shape S in the plane where S can be refined into n tracks, G can be drawn on the refinement of S into n
tracks.

Proof Sketch: G is drawn on a some shapeS in the plane if its vertices lie onS. Consider a plane drawing
of G on S. Let ε be the minimum distance between a pair of non-adjacent edgesof G. Considern copies of
S (then tracks), scaled from the original one, so that the distance between two tracks is at mostε/2n. By
perturbing the vertices from their original positions onSto the track determined by their label, in a direction
perpendicular to a tangent atS, a vertex moves no more thanε/2 away from its original position. Since the
minimum distance between any pair of edges ofG wasε, after the vertex positions have been perturbed, no
pair of non-adjacent edges intersects.

2.5 Trees on Predetermined Concentric Circular Tracks

Circular tracks, tracks determined by conic sections, or tracks determined by smooth convex curves allow the
realization of trees and outerplanar graphs only if the separation between neighboring tracks meets certain
criteria. If the separation is predetermined, it is not necessarily true that any tree or outerplanar graph can be
realized without crossings and using straight-line segments. This idea is captured in the following lemma
for the case of circular tracks.
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Figure 6:(a) This tree cannot be drawn on circular tracks with predetermined radii if multiple vertices must
be placed on the same track; (b) Any vertices placed on the concentric circular arc in the top 1/3 region
must have strictly increasing y-coordinates.
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Figure 7: (a) Routing one circular arc per edge that fits inside two consecutive concentric circles; (b) The
concentric circles with the center at C. C′ is the center of a circle that gives a curve (dashed circle) that must
connect vi and vi+1 while staying in the annulus of Li and Li+1.

Lemma 2.5 If the radii for the circular tracks are predetermined, trees cannot always be realized without
crossings.

Proof Sketch: We will constrain the problem slightly by placing multiple vertices on the same concentric
track. Note that we can do this for an arbitrary tree if we are allowed to choose the radii. The tree in
Fig. 6(a) has its root vertex labeled 0, and hence must be placed on the innermost track. The root’s 6
children are labeled so that they must be placed on the outermost track. Any drawing of this tree must divide
the concentric circular regions into at least three sectors(because we can place two of the edges adjacent to
the root next to each other and place pairs of their subtrees on opposite sides). The subtrees hanging off the
root’s children are copies of the tree that cannot be embedded on parallel tracks; see Fig. 4. Since we have
three sectors there must be at least one sector of size 1/3 or less. Without loss of generality let this sector
be the top 1/3 of the circular tracks; see Fig. 6(b). Then the radii of the tracks can be chosen progressively
larger as we move away from the innermost track, so that any vertices placed on the concentric circular
arc in the top 1/3 sector must have strictly increasingy-coordinates. Since we cannot realize the subtree on
parallel line tracks, we cannot realize the entire tree.
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3 Simultaneous Embedding with Curves and Bends

In this section we use the results from the previous section to obtain simultaneous embedding of an outerpla-
nar graph and a path. The fact that we can embed an outerplanargraph on concentric circular tracks, can be
used to show that we can simultaneously embed an outerplanargraph and a path, such that the outerplanar
graph is straight-line and crossings free, while the path uses one circular arc per edge and is crossings free.

Typically, piecewise-linear edges are used to visualize graph edges, and we can extend the idea to si-
multaneous embedding with bends. It is straight-forward tosimultaneously embed a pair ofn-vertex pla-
nar graphs such that one is straight-line and crossings-free and the other hasO(n) bends per edge and is
crossings-free, using the result by Pach and Wenger [21]. Using our track embeddings of outerplanar graphs
and trees, we can improve on this result for the case of path-outerplanar graph pairs.

We show that we can simultaneously embed an outerplanar graph and a path, such that the outerplanar
graph is straight-line and crossings-free, while the path is crossings-free and has exactly one circular arc per
edge.

For the case where we insight on piecewise-linear edges, we can simultaneously embed an outerpla-
nar graph and a path, such that the outerplanar graph is straight-line and crossings-free, while the path is
crossings-free and has at most 2 bends per edge. We do this by embedding the tree on “star tracks” with-
out crossings using straight-line edges, while routing thepath edges between the star tracks with at most 2
bends.

3.1 Curvilinear Simultaneous Embedding of a Path and Outerplanar Graph

Recall that givenn consecutive concentric circular tracks,L1,L2, . . . ,Ln we can realize any outerplanar graph
onn vertices such thatvi ∈ Li, 1≤ i ≤ n. Also, we assume (without loss of generality) that the pathpcontains
the vertices in order, i.e.,p = v1,v2, . . . ,vn. We show how to route the edges of the path using exactly one
circular arc segment per edge of the path so that no two such circular arcs intersect (other than at incident
vertices).

Lemma 3.1 A crossings-free drawing of a path p= v1,v2, . . . ,vn can be realized on n consecutive concentric
circular tracks L1,L2, . . . ,Ln, such that vi ∈ Li, 1≤ i ≤ n, using one circular arc per edge.

Proof: It suffices to show that one circular arc can be used to connecttwo consecutive vertices on the path,
vi andvi+1, such that the arc is outside circular trackLi and inside circular trackLi+1, regardless of the exact
placement ofvi onLi andvi+1 onLi+1; see Fig. 7(a).

LetC′ be the circle that forms the needed circular arc connectingvi andvi+1. We begin by placingC′ on
the line betweenC, the center of the concentric circles, and the vertexvi+1 on Li+1; see Fig. 7(b). We chose
the radius of the circle, so that it intersectsLi+1 exactly once (and sinceC′ is inside, the circle is completely
inside trackLi+1). This curve will intersectLi at most twice and we can place the center of the circle so
that one of these intersections is at the vertexvi on Li. We can findC′ by first drawing a perpendicular line
bisecting the line segment betweenvi andvi+1. We can then intersect this line with the line fromC to vi+1 to
obtain the location ofC′. Since the distance betweenvi andC′ is equal to the distance betweenC′ andvi+1,
the circular arc connectingvi to vi+1 is insideLi+1 and outsideLi.

Theorem 2.3 together with Lemma 3.1 give us the following theorem.

Theorem 3.2 An outerplanar graph and a path can be simultaneously embedded, such that the outerplanar
graph is straight-line and crossings-free, while the path uses one circular arc per edge and is crossings free.

Using our algorithm to draw a path with circular arcs and our tree with straight lines, it immediately
follows that if we were to view the circular tracks asn-gons instead, we can simultaneously embed the tree
with no bends and the path (by following then-gon) withO(n) bends.



10

L2
L1

L0

(a) (b) (c)

Figure 8:A star shape (a), a tree (b), and an embedding of the tree on the star shape (c).

3.2 Star Tracks

In this section we show how to reduce the number of bends on thepath fromO(n) per edge to 2 per edge. In
order to do this we will use a different kind of track called a star track. We begin by showing how to draw
arbitrary outerplanar graphs on a star shape.

Lemma 3.3 An unlabeled outerplanar graph G on n vertices can be drawn without crossings using straight-
line segments with its vertices placed on integer grid coordinates defined by three line segments L0,L1,L2,
with endpoints(0,n) and(n,n), (0,2n) and(n,n), (2n,2n) and(n,n), respectively.

Proof: A slightly weaker result (using 3 longer line-segments) canbe obtained as a corollary from Theorem
5 of Felsneret al [15], where outerplanar graphs are drawn on a prism in 3D space. The argument below
follows along similar lines.

Let us assume we have an unlabeled outerplanar graphG and an outerplanar embeding of this graph.
Consider the 3 line segments,L0,L1,L2; see Fig. 8(a). These line segments determine 3n+ 1 points on the
integer grid: (n,0),(n,1), . . . (n,n) on L0; (0,2n),(1,2n− 1), . . . ,(n,n) on L1; and (2n,2n),(2n− 1,2n−
1), . . . (n,n) on L2. Any unlabeled outerplanar graphG on n vertices can be drawn without crossings, using
straight-line segments, by placing the vertices on a subsetof the 3n+1 points defined by the 3 line segments
as follows. We can take an arbitrary vertexr from the graph and call it the root. Using a counterclockwise
breadth first search ofG from r we can label the vertices ofG with two labels: the order they are visited
(ignoring nodes that have already been visited) and their distance from the root. For each vertex, if its
distance from the root isk we place it on segmentLi , wherek mod 3≡ i. The order of the vertices along
the segmentsLi is determined by the order they were visited. We begin by placing r at position(n,n−1) on
segmentL0. All of its children are placed onL1, starting with(n−1,n+1), and taking grid points in order.
All of r ’s grandchildren are placed onL2 starting at(n+1,n+1), and so on in clockwise manner. It is easy
to see that this method produces no crossings but we leave thedetails out of the abstract; see Fig. 8(b-c).

This is anO(n) algorithm that requires a 2n×2n integer grid.

Now, we extend the line segmentsL0,L1,L2 into a star track as shown in Fig 9(a). First of all, we refine
the star shape to have starting and stopping points. We will use the area between the starting and stopping
points for drawing our outerplanar graph. In order to build star tracks from our star shape, we connect the
end of the used part of track 1 to the beginning of the used partof track 1 on the next clockwise star area. To
define track 2, we create a connecting line parallel to that for track 1 and extend track 2 past the used area
until they intersect. We draw the other tracks in a similar fashion; see Fig 9(b). Observe that we can draw
arbitrarily many tracks in this fashion and none of the tracks intersect.
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Figure 9:A refinement of the star shape (a) and the corresponding star tracks (b).

Since the separation between neighboring tracks is bounded, we can extend the outerplanar graph em-
bedding algorithm for one star shape (determined byL0,L1,L2) to an embedding algorithm on then star
tracks. This leads to the following theorem, the full proof of which is left out of this extended abstract.

Theorem 3.4 Any n-vertex labeled outerplanar graph can be realized on a set of n concentric star tracks
without crossings.

Proof: We know from Theorem 2.4 that since we can draw an outerplanargraph on this shape, we can draw
a outerplanar graph on tracks of this shape (because it may berefined by scaling about the center of the star
shape). We can use the algorithm described in Lemma 3.3 to place our nodes on tracks. Note that we only
use the indicated regions of the tracks in Fig. 9(b) when we place the nodes.

We can use this outerplanar graph embedding on star tracks toyield our final theorem.

Theorem 3.5 An outerplanar graph and a path can be simultaneously embedded such that the outerplanar
graph is straight-line and crossings-free, while the path uses 2 bends per edge and is crossings-free.

Proof: From the point of view of simultaneous embeddings with bends, Theorem 3.4 provides us with a
method for embedding an outerplanar graph on star tracks. Recall that without loss of generality the path
is labeledv1,v2, . . . ,vn. Given the above star track embedding of the outerplanar graph, we can route edges
of the path(vi ,vi+1), 1≤ i < n, along the star tracks so that they do not intersect. We have two cases for
connecting adjacent path nodes, either they are in the same used region of the star tracks or different regions.

If they are in the same region we can simply connect the nodes and this path line will be fully contained
between the two tracks.

If the nodes are in different regions we will connect the lower numbered node by following the higher
numbered track either clockwise or counterclockwise (whichever is shorter) until we reach the higher num-
bered node. To get on the higher numbered track we connect to the higher numbered track at the location
of the first bend in the direction of the higher node. Since this is a point on the parallel track we clearly
don’t move outside of the region between the two tracks (including the higher track). Now we just follow
the higher numbered track around to reach the node.

Since each path edge doesn’t cross the boundaries between tracks and that tracks themselves do not
cross we have no crossings of path edges in the graph. Since ittakes 2 bends to go from one region to the
next using the tracks, we can draw the path with 2 bends and without crossings. By Theorem 3.4 we can
simultaneously draw the outerplanar graph crossings-freewith straight lines.
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4 Conclusions and Open Problems

We presented several results on embedding labeled trees andouterplanar graphs on labeled tracks. We
showed how these results can be used to obtain simultaneous embeddings of path-tree and path-outerplanar
graph pairs using circular arc edges or a small number of bends. Several simultaneous embedding problems
remain open, with two of the most relevant to this work being:

1. Do all tree-path pairs have simultaneous geometric embedding?

2. What is the complexity of determining whether two planar graphs admit a simultaneous geometric
embedding?
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