
A distributed system for track discovery

by

Matthew Cleveland

A Dissertation Submitted to the Faculty of the

Department of Computer Science

In Partial Fulfillment of the Requirements
For the Degree of

Masters of Science

In the Graduate College

The University of Arizona

2 0 1 1

2

Table of Contents

List of Figures . 4

List of Algorithms . 5

Abstract . 6

Chapter 1. Introduction . 7

Chapter 2. Track discovery background 9
2.1. Terminology . 9
2.2. Track extraction . 10
2.3. Computational complexity of track extraction 10

Chapter 3. Sequential track discovery 12
3.1. Recursive tree walk . 12
3.2. Track extraction . 12

Chapter 4. Parallel track discovery 15
4.1. Parallel algorithm structure . 16

4.1.1. Simulated annealing . 17
4.1.2. Optimal cache replacement . 18
4.1.3. Holistic view of DLT . 19

4.2. Models . 19
4.2.1. Notation . 19
4.2.2. Computational model . 22
4.2.3. I/O model . 22
4.2.4. Execution Model . 23

4.3. Goal . 23

Chapter 5. Analysis and Results . 25
5.1. Execution environment . 25
5.2. Metrics . 25
5.3. Results . 26

5.3.1. Simulated Annealing . 26
5.3.2. Optimal cache replacement . 26
5.3.3. Scalability . 27

Chapter 6. Conclusion . 29

Table of Contents—Continued

3

Chapter 7. Future Work . 30

Chapter 8. Acknowledgments . 31

References . 32

4

List of Figures

Figure 2.1. A work item is comprised of sectors and each sector contains
tracklets. There are two endpoint sectors in a work item and n−2 support
points, where n is the total number of sectors in the work item. 11

Figure 5.1. Simulated Annealing reduces overall execution time by intelli-
gently assigning work to processors . 26

Figure 5.2. Optimal Cache Replacement . 27
Figure 5.3. Parallel Scalability . 28

5

List of Algorithms

1. Track extraction . 10
2. Recursive tree walk . 13
3. Simulated annealing . 18
4. DLT master processor . 20
5. DLT worker processor . 21

6

Abstract

Existing data fitting algorithms for track discovery are accurate and field-proven. As
data sets increase in size, however, memory and computational restraints demand
more robust solutions than are currently available. In this paper we present a set
of algorithms for parallel data fitting. These algorithms make use of approximation
algorithms, intelligent caching, and modeling to facilitate the efficient parallelization
of the model fitting problem, with applications in track discovery.

7

Chapter 1

Introduction

Track discovery is a procedure that involves fitting object data to models of an object’s
movement over time. Fitting data points to a model is a research domain with
established work, and track discovery is one application domain that has benefited
from this work. Existing algorithms for track discovery do not efficiently handle large
data sets, and their corresponding heavy computational loads. This thesis presents a
set of algorithms for parallel track discovery capable of handling large data sets and
their computational workloads.

Current sequential data fitting algorithms for track discovery are not designed
to handle the large data sets that are now commonplace [ITA+08]. The algorithms
pertinent to the context of this paper are those that utilize variable tree approaches to
perform track discovery [Kub05]. These variable tree algorithms have unacceptable
performance characteristics on large data sets.

This research focuses on the variable trees algorithms due to their pervasive use
in the field. These algorithms suffer from a design that makes naive parallelization
impractical. In order to achieve acceptable performance via parallelization, a restruc-
turing of the variable trees algorithms is required. A thorough analysis of existing
algorithms shows how the variable trees algorithms can be restructured in a way that
enables its efficient parallelization.

This paper presents a set of algorithms and modeling techniques designed to ef-
ficiently perform parallel track discovery while utilizing the foundation provided by
the variable trees algorithms. Two primary algorithms are discussed: a load balanc-
ing algorithm and a memory caching algorithm. These algorithms parallelize track
discovery by identifying the basic algorithmic sections of the restructured variable
tree algorithms and intelligently dividing processing between a master processor and
worker processors.

Our load balancing algorithm uses solution space sampling to ensure that an effi-
cient work distribution is realized. Modeling techniques enable the accurate prediction
of worker processor computational load. These models were developed to enable the
load balancing algorithm to analyze work loads and assign them scalar costs.

Memory caching enables worker processors to efficiently manage their workload.
Data sets that exceed total memory size are expected. As these data move in and
out of memory, the memory caching algorithms designed for this system ensure that
the minimum penalty for those caching events is incurred.

We show that the restructured variable trees algorithms and the new parallel algo-
rithms converge to create an efficient parallel track discovery system: load balancing

8

is shown to reduce execution time, memory caching is shown to minimize I/O events,
and the system is shown to be scalable as nodes are added.

Track discovery is used in many application domains. This work was inspired
by the use of track discovery in Astronomy can be used to define the movement of
celestial bodies over time. By tracking object movement, orbits can be identified, and
objects such as asteroids can be discovered.

This thesis evolved out of work being done at the Large Synoptic Survey Telescope
(LSST) project. LSST is an Earth-based telescope whose construction is slated to
complete in 2015. Once operational, the telescope expects to fulfill a variety of sci-
entific goals, one of which is asteroid identification. The LSST will survey the entire
visible night sky, giving a synoptic, or full, view of the heavens as they change over
time.

9

Chapter 2

Track discovery background

2.1 Terminology

A detection is an object observed in space such as a star, asteroid, or some noise point.
Detections can be grouped together into sets called tracklets. These tracklets define
a detection’s path through space and time. When a collection of tracklets can define
a detection’s path through space and time we have a track. A collection of tracklets
from a common region of space and common time, however, is called a sector. A
sector differs from a track in that a sector is a set of tracklets from a similar region
of space at the same time, whereas a track is a set of tracklets from different times
and different spaces. A track defines a detection’s movement over large spans of time
and space and could define the orbit of celestial bodies, such as asteroids.

Sectors are grouped into work items. Sectors are useful as they allow the grouping
of tracklets by region of space, which increases the granularity of work item data. A
work item contains two endpoint sectors and a set of support sectors. The sectors
that comprise a work item are chosen deliberately as they have been determined to
contain data that represent regions of space that could describe detections at different
times in space.

Each work item requires processing by the track extraction algorithm, which is the
process of comparing a group of sectors and determining if any of their constituent
tracklets create a roughly-quadratic line of motion, or path through space and time.
If track extraction finds a collection of tracklets that could define a detection’s path
over space and time, a track is generated.

The tree walk algorithm is a recursive algorithm that examines groups of sectors
to determine if they meet the minimum criteria for track candidacy. This is also
called to the variable tree walk algorithm in other related papers, such as [Mye08]
and [Kub05].

A task pool is a set of work items. The distribution algorithm is the logic that
examines the task pool and its associated meta-data and assigns work items to worker
nodes.

The pseudocode in algorithm 1 describes track extraction, the processing of a work
item.

10

Algorithm 1 Track extraction

Input: Two endpoint sectors S
Input: Set of support sectors R
Output: A set of tracks T

for each s ∈ S do
/* s and s’ are pairs of chunks of space-time */
for each s′ ∈ S and s′ 6= s do
for each t ∈ s do

/* t and t’ is a pair of tracklets within s and s’ */
for each t′ ∈ s′ do
if t and t′ are compatible then

determine if t, t′, and compatible R describe a track, add the track to
T

end if
end for

end for
end for

end for

2.2 Track extraction

Figure 2.1 illustrates a work item and the items that comprise it. A work item
contains a set of sectors that may contain tracklets constituting a full track when
linked together. To generate a track from a work item, two tracklets from different
times are used as endpoints. The tracklet from the earlier time is the first endpoint
and the tracklet from the later time is the second endpoint. Between these two
tracklets must exist one or more tracklets from times greater than the first tracklet
and less than the second tracklet. These intermediate tracklets are contained in
support points. Track extraction requires one first endpoint, one second endpoint,
and at least one support point. This set of endpoints is now evaluated to see if it
represents any tracks.

2.3 Computational complexity of track extraction

Track extraction is a stage in the track discovery procedure that is significantly time-
consuming and, to our knowledge, has no parallel algorithms available. This section
discusses the sources of the computational complexity of track extraction, how cur-
rent algorithms handle those complexities, and how parallelization can enable the
dispersion of the load with the goal of mitigating the long computation time and vast
memory requirements.

11

Figure 2.1. A work item is comprised of sectors and each sector contains tracklets.
There are two endpoint sectors in a work item and n− 2 support points, where n is
the total number of sectors in the work item.

To illustrate why track extraction is so demanding of memory and computational
resources, consider the following procedure required to generate all tracks from an
input data set of tracklets. Each work item contains n sectors and each sector contains
m tracklets. As shown in the track extraction pseudocode, all tracks from each sector
must be compared with all the tracks of the remaining sectors. For each pair of sectors
there are O(m2) tracklet comparisons.

Each sector must be compared withO(n) other sectors, resulting inO(m3) tracklet
comparisons. There are O(n) sectors which must be compared with O(n) other
sectors, resulting in O(m4) total tracklet comparisons per work item.

For each of the O(m4) comparisons a significant amount of double-precision com-
putations is required, as object trajectories are calculated and compared. Due to
the computational complexity and math-heavy operations, track extraction is time
consuming and memory intensive.

12

Chapter 3

Sequential track discovery

Analysis of the current sequential track discovery algorithms reveal that two primary
phases constitute the track discovery procedure. The first is a recursive traversal of
the trees, the second is the analysis of potential track linkages.

3.1 Recursive tree walk

In the tree walk algorithm, binary trees are used to hold data representing tracklets.
For a given data set there are n trees, where n is the number of distinct times at
which data was observed. The goal of the tree walk is to traverse the trees and arrive
at a point where between 3 and n leaf nodes from unique trees have been selected (3
is the minimum number, as it describes a set with two endpoint nodes and a single,
intermediate, support node.) These leaf nodes represent areas of space in which an
object could feasibly exist at the times represented by the tree in which they are
stored (more information can be found in Kubica’s paper [Kub05]). To be clear, a
leaf node is a collection of tracklets and is synonymous with term sector. This set of
leaf nodes is a work item and contains many potential candidate tracks.

The algorithm starts by selecting two trees’ root nodes as endpoint nodes. All
trees whose time falls between the two chosen endpoint nodes have their root nodes
included as potential support nodes. The recursion starts by checking if all nodes in
the set are leaf nodes. If not, the two endpoint nodes are examined to determine which
is “widest”, or contains data representing the largest amount space. The recursive
algorithm is then called twice, once with the widest endpoint’s left child as a new
endpoint node, and once with the widest endpoint’s right child as a new endpoint
node. This recursion continues until the two endpoints are leaf nodes. At this point
the set of endpoint tree nodes and support nodes are considered a work item and are
ready for track extraction.

The pseudocode in algorithm 2 [Kub05] illustrates the logic of the recursive tree
walk algorithm. This algorithm is performed for each unique pair of trees.

3.2 Track extraction

The track extraction phase in the sequential track discovery algorithms operates ac-
cording to algorithm described in 2.2 and 2.3. Comparing all items from the one
set to all objects in the set of another is an expensive process, and through careful

13

Algorithm 2 Recursive tree walk

function: RecursiveTreeWalk(e1, e2, S)
Input: First endpoint e1 and second endpoint e2
Input: A set of support tree nodes S
Output: A list Z of tracks

S ′ ← {};Scurr ← S
if tree nodes in e1 and e2 are compatible: then
while s ∈ Scurr do
if s is compatible with M : then
if s is not a leaf node: then

Add s’s left and right children to the end of Scurr.
else

Add s to S ′

end if
end if

end while
if we have enough valid support points: then
if both e1 and e2 are leaves: then

Test all combinations of points owned by the endpoint nodes, using the
support nodes
Add valid sets to Z.

else
Let m∗ be the endpoint node that owns the most points.
e1’ = m∗’s left child
e2’ = m∗’s right child
RecursiveTreeWalk(e1’, e2, S

′)
RecursiveTreeWalk(e1, e2’, S

′)
end if

end if
end if

14

analysis it was determined that this stage of processing was the best granularity at
which to divide processing in a parallel approach. This is further discussed in the
following section.

As this set of algorithms became unmanageable in terms of computation time,
parallelization was pursued. The resulting set of distributed algorithms comprise
what we term Distributed Link Tracklets (DLT). These algorithms were designed to
perform the variable trees algorithms task while leveraging multiple processors in an
intelligent manner. In the following sections DLT is presented and described in detail.

15

Chapter 4

Parallel track discovery

Distributed Link Tracklets (DLT) is an extension of the existing variable trees al-
gorithms with some key additions and modifications. Justifications for the design
and a detailed description of the DLT algorithms are discussed in the subsequent
subsections.

Parallel track discovery requires a reworking of the sequential algorithms to facil-
itate proper load balancing and memory management. Towards achieving this end, a
thorough analysis was performed on the sequential track discovery algorithms. The
main algorithms can be divided into two logical components: a tree walk process and
a tracklet extraction process. The tree walk process, discussed in section 3.1, is where
the tracklet sets are generated. The track extraction process is where these tracklet
sets are analyzed for the existence of object orbits.

The latter phase of the sequential algorithm, the track extraction, dominates the
execution time of the track discovery stage. Unfortunately, tracklet set comparisons
occur as the base case of the recursive tree walk process, so the isolation of this process
required major algorithm restructuring.

Ultimately, the goal of DLT is to distribute the track extraction workload while
minimizing total cost. The master generates x work item sets of size n, Wk; 0 ≤ k <
x. For each Wk we partition the work items into per-processor sets of work items,
Pi

k; 0 ≤ i < p, where p is the number of processors. To be clear, a partition Pi
k is a

work item distribution where all work items are assigned to some worker processor,
and each processor receives at least one work item. Each Pi

k consists of p work item
sets wi; 0 ≤ i < p, consisting of work items wij such that all wij are assigned to
exactly one processor and ∀wi; |wi| > 0.

Describe the cost of processing a work item as f(wij). Therefore processor i’s cost
of processing a work item set is

Ci =

|wij |∑
j=0

f(wij)

With these values established we can define the cost of a work item set partition
to be

costOf(Pi
k) = max(∀i; i ≤ 0 < p;Ci) .

The optimal partition of Wk is the partition with the minimum cost over all
possible partitions for Pi

k, define this quantity as Gk

16

Gk = argmin
i

(costOf(Pi
k))

The goal, therefore, is to find the optimal partition for all Wk

x∑
k=0

Gk

4.1 Parallel algorithm structure

As track extraction is the most time consuming step of the overall track discovery
procedure, it was the algorithm whose parallelization provided the most benefit to
overall execution time. This step is encountered at the base of the recursive tree
walk, however, which posed a problem. Distributing work items to workers each
time the tree walk reached a terminal recursion would incur too much overhead, and,
additionally, would prevent work load analysis for load balancing. Therefore, instead
of performing track extraction as the tree walk generated work items, the work items
were instead accumulated until a sufficient number had been generated for analysis
and distribution.

This set of work items, say of size n, can be divided among the m workers in mn

different ways, which is far too large a set to consider many distributions. Since a
work item describes a set of tracklets, it is possible that multiple work items may
have similar constituent tracklets. Noting that work items may have similar tracklet
composition allows us to leverage this overlap to intelligently assign task pools to the
workers, keeping in mind that the size of the data to be distributed is likely larger
than the memory available to a worker. With these memory restrictions in mind,
we must design algorithms that can operate using restricted subsets of a processor’s
memory.

Worker processors, each with their own cache of sectors in memory, greatly benefit
from having sectors assigned to it in such a way that cache hits are maximized. For
every cache miss, sector data must be retrieved from auxiliary storage at great com-
putational expense. By considering memory implications, intelligently distributing
work items to workers can yield significant performance improvement. Algorithms
for parallel track discovery, therefore, should leverage the knowledge of task pool con-
tents to distribute work items with the intent of minimizing computational expense
with regard to caching.

Distributing work items intelligently is not an easy task. With such a vast num-
ber of possible task pool assignments, it is prohibitively expensive to evaluate each
assignment to determine which would best facilitate the aforementioned cache con-
siderations. Naive task pool assignments, while easy to generate, ultimately result
in poorer performance. The following section describes a mechanism for finding in-
telligent task pool assignments. We show that the processing required to determine

17

intelligent task pool assignments results in overall performance gains in run time and
cache hits.

4.1.1 Simulated annealing

For tasks with large search spaces, such as task pool assignment, approximation
algorithms are often used. The simulated annealing approximation algorithm com-
plements this problem well, because simulated annealing algorithms examine diverse
subsets of large solution spaces and provide safeguards against selecting solutions
that are local optimums instead of global ones. In this section we describe simulated
annealing as it is used in parallel track discovery.

First, a solution is chosen as the starting point. In DLT this solution is a set
of work item sets, or a task pool. The number of work item sets in the task pool
is equal to the number of workers. According to simulated annealing, this solution
must be analyzed and assigned a scalar cost. This cost is calculated according to the
execution model discussed in section 4.2.

Next, a permutation of the task pool set is generated, at random, and is assigned
a cost using the same execution model. This process continues until the simulated
annealing algorithm completes.

As task pools are encountered, they are accepted as the “current” solution, with
a specified probability. The fact that higher-cost task pools may be accepted is a
key to the simulated annealing algorithm. This feature is what deters the algorithm
from settling on a local optimum. The probability with which a task pool is accepted
is a function of temperature, which, in the case of DLT, is the number of simulated
annealing iterations completed. As the temperature approaches zero, or the number of
iterations approaches an empirically-chosen limit in the case of DLT, the probability
of a higher cost task pool chosen as “current” decreases exponentially. At the end of
the algorithm, the best encountered solution is used to define the task pool.

The simulated annealing algorithm is performed on the master node while waiting
for the worker nodes to complete the processing of their work item sets. Immediately
after assigning the task pool, the master spawns a thread that waits for signals from
the workers indicating that they have completed processing. The main thread of the
master then generates the next task pool and performs simulated annealing continu-
ously on it while waiting for the signal thread to indicate that all workers have finished
processing their current task pool and are ready for the next. This scheme provides
the benefit of simulated annealing along with ensuring that the master processor is
never idle.

The pseudocode in algorithm 3 describes how the simulated annealing algorithm
works.

18

Algorithm 3 Simulated annealing

Input: A set of work items Wi

Output: A work item set distribution bestSolution

current← naive distribution of Wi

cost← costOf(current)
while workers still working do
trial← random permutation of current
cost← costOf(trial)
if cost < bestCost then
bestCost← cost
bestSolution← trial

end if
if F(cost, bestCost, T) == 1 then
current← trial

end if
T ← T − 1

end while

4.1.2 Optimal cache replacement

The data in a worker’s task pool will likely exceed the capacity of the worker’s memory.
Therefore, the worker has a fixed-size cache of sectors that it keeps in memory that are
available for use during track extraction. When a track extraction references a sector
that is not currently in the cache, the sector must be read from auxiliary storage, and
the cache must be updated accordingly. If the cache is full then some sector must
be evicted from the cache in order to make room for the newly-encountered sector.
This is standard cache behavior, but our scenario is unique in that we have prior
knowledge of cache access patterns for the entire future of this task pool. A worker
can analyze its task pool and see when each sector will be required for processing.
This fact enables a worker to employ intelligent caching algorithms when managing
its cache.

The optimal cache replacement (OCR) strategy was developed by Belady [Bel66].
In the event of a cache eviction, according to OCR, the cached item that will be used
farthest in the future should be the one chosen for replacement. By always replacing
the node in the cache according to this scheme, the minimal number of cache misses
can be realized. The benefits DLT enjoys due to the OCR algorithm are discussed in
the results section (Section 5).

19

4.1.3 Holistic view of DLT

DLT maintains a similar structure to its sequential counterpart but has some key
conceptual differences. The pseudocode in algorithm 4 and algorithm 5 describe the
overall processing sequence of the DLT algorithm.

4.2 Models

Modeling potential solutions was an essential step in the understanding of this prob-
lem. The model was used in both defining the distributed structure of the sequential
algorithms and for evaluating costs in the simulated annealing algorithm.

Evaluating the cost of a task pool is a crucial role of the simulated annealing
algorithm. The cost assigned to a task pool identifies the expected computational
load for that task pool. The models we define in this section describe the cost function
used by the simulated annealing algorithm to assign task pool cost.

Two component models make up the full execution model of a solution to the track
extraction algorithm. These two models are the computational model and the I/O
(or memory) model. These models are described in detail in the subsequent sections.

4.2.1 Notation

Here we define some common variables used in the following sections.
Define set S as a set of nodes, here, leaf nodes, each of which represents a sector.

Define set W as the set of all subsets of S whose data represent a possible linkage,
potentially resulting in a track. Each of these potential tracks requires processing.
Each processor, pi, will receive some subset of W , wi. The processing it will perform
is the track extraction work of the algorithm. Each wi, being a subset of W , will be
a set of work items. wi’s work items can be denoted individually as wij.
Now define ni as the cardinality of set wi:

ni = |wi|

Define li as the total number of leaf nodes, or sectors, assigned to processor pi:

li =

ni∑
j=0

|wij|

Each processor is responsible for processing ni sets. Each of these sets, wij, is a
set of size |wij|. During track extraction, each of these nodes, or sectors, in wij will
be compared with each of the remaining nodes, or sectors, in wij. The processing
time required for each set depends on the number of “compatible” tracklets in the

20

Algorithm 4 DLT master processor

function: RecursiveTreeWalk(e1, e2, S)
Input: First endpoint e1 and second endpoint e2
Input: A set of support tree nodes S
Input: A set of work items W
Output: A list Z of tracks

S ′ ← {};Scurr ← S
if tree nodes in e1 and e2 are compatible: then
while each s ∈ Scurr do
if s is compatible with e1 and e2: then
if s is not a leaf node: then

Add s’s left and right child to the end of Scurr.
else

Add s to S ′

end if
end if

end while
if we have enough valid support points: then
if all of e1 and e2 are leaves: then

create work item, add to W
if |W | ≥ threshold then

spawn simulated annealing thread
distribute W when simulated annealing thread completes

end if
else

Let m∗ be the endpoint node that owns the most points.
e1’= m∗’s left child
e2’= m∗’s right child
RecursiveTreeWalk(e1’, e2, S

′)
RecursiveTreeWalk(e1, e2’, S

′)
end if

end if
end if

21

Algorithm 5 DLT worker processor

Input: A set of current work items W
Output: A set of tracks, T

for each w in W do
load first, p, and second, q, endpoint nodes into cache
load all support nodes, S, into node cache, or as many as cache can hold
for each si in S do
if si is not in the cache then
if cache is full then

identify cached node which will be used farthest in the future, c
load si into cache slot occupied by c

else
load si into next empty cache slot

end if
end if
if si is a valid support point for p and q then

add si’s data to the track comparison data structure, D
end if

end for
if p, q, and D are a potential track then

add track to T
end if

end for

22

endpoint sectors. Define this quantity as cij. Tracklets are “compatible” if an ob-
ject could feasibly exist in the space defined by each tracklet at the tracklet’s time,
where feasibility is based on data-specific object movement threshold variables such
as acceleration and velocity.

4.2.2 Computational model

The computational model defines the cost of a solution in terms of computation.
Through empirical analysis we were able to accurately define the computational re-
quirements of a solution with great precision. During track extraction a work item
is evaluated. It was found that the amount of time required for track extraction on
a given work item could be modeled as a function of the total number of sectors
and the number of tracklets contained in the two endpoint sectors that were feasible
endpoints for a track, or were compatible.

The following formula defines this relationship more formally.

p(wi) = k

ni∑
j=0

cij × |wij|

Note the addition of k. This is defined as the constant value associating real CPU
time with the time units produced by the model.

4.2.3 I/O model

The I/O model measures the number of required storage accesses for a processor.
This is the final model considered for the execution model. Large numbers of work
items are assigned to the processors, and each work item is, in turn, comprised of
large numbers of sectors. For a single track extraction computation, a processor needs
to have all of the work item’s data in memory.

For each successive work item a processor performs track extraction on, it must
load that work item’s tree node data into memory. However, if the current work
item and the previous work item have tree node data in common, then the number
of storage accesses can be reduced. So, for a given work item, the cost, in terms of
storage accesses, is the total number of sectors in the work item minus the number of
sectors already loaded into memory by the previous work item. The only exception
to this is the first work item processed, as this work item must assume the processor’s
memory contains no useful data.

Therefore, for processor pi, the I/O time can be modeled as:

m(wi) = L× (|wi0|+ (

ni∑
j=1

|wij| − (|wij| ∩ |wij−1|)− |S|)))

∀ k; k ≤ 1 ≤ j;Sk = wik ∩ wik−1, S = Sk ∩ Sk−1

23

where L is the constant value representing the cost to load a sector’s data from
storage.

We will now establish the worst-case memory model for processor pi. The worst
case occurs when pi is assigned a work item set, wi, in such a way that all work items,
wij, are comprised of entirely unique tree nodes.
We define set P and ui as follows:

P =

ni⋃
j=0

wij

ui = |P |

ui is the total number of unique leaf nodes, or sectors, from the subset wi on
processor pi.

Therefore, the worst case is one where:

ui = li ,

that is, the number of unique tree nodes is equal to the total number of tree nodes
for processor pi.

With intelligent work item distribution, however, we can do much better. In
regards to memory, then, the goal of work item distribution algorithm is to distribute
task pools, wi, while minimizing ui. The lower bound on ui, and thus the best-case
distribution in terms of memory requirements, is

max(∀ j ∈ |wij|) .

4.2.4 Execution Model

The execution model naturally follows from the previous models. Each work item will
need to be computed, communicated, and will perform I/O according to the defined
models. As such, the full cost to perform track extraction on a work item is the sum
of the models.

f(wi) = p(wi) + m(wi)

4.3 Goal

With the distributed algorithms and models defined, we now return to the goal of
DLT: distributing work items while minimizing time. Each algorithm has been shown
to best address this goal. Simulated annealing discovers an intelligent task pool
distribution, with respect to the execution model. Optimal cache replacement ensures
that the workers minimize their I/O costs. The execution model enables us to define

24

how all these algorithms converge to work towards the goal of minimizing with respect
to

min(
x∑

k=0

(max(∀ i; i ≤ 0 < p;Ci)k))

where p is the number of processors and x is the number of distributions.
In the following sections we will demonstrate that these algorithms meet the goals

described here.

25

Chapter 5

Analysis and Results

The algorithms of DLT provide a scalable mechanism for increased workloads. In the
following sections we define how performance is measured and present and analyze
the results according to these metrics.

5.1 Execution environment

The data presented in the subsequent sections was gathered from DLT executions
performed on a shared academic research cluster. The cluster is comprised of ten
machines, each with access only to its own local memory. Cluster machines are
equipped with 2GB of memory and have dual-core 64-bit Intel processors capable of
3.0GHz per processor.

5.2 Metrics

There are two key algorithms whose execution has the largest impact on total execu-
tion time: simulated annealing and optimal cache replacement.

Simulated annealing has the main goal of assigning task pools in such a way
that total execution time, according to the execution model, is minimized. To best
demonstrate the benefits of this algorithm, total execution times can be compared in
the scenarios when simulated annealing is performed and when simulated annealing
is not performed. In the latter case a naive, cyclical, distribution is used.

Optimal cache replacement minimizes the number of I/O operations performed
as the result of cache misses. These I/O operations are much costlier than mem-
ory accesses and will result in increased execution times. To best demonstrate the
benefits of this algorithm, total execution time is compared in the scenarios where
optimal cache replacement is employed and where it is not. In the latter case, a naive
cache replacement strategy is employed where nodes are chosen at random for cache
replacement.

Finally, scalability is crucial for parallel systems. To show that DLT is scalable
we will demonstrate that as worker processors are added run times are decreased
proportionally.

26

5.3 Results

5.3.1 Simulated Annealing

The graph in Figure 5.1 shows total execution time with the simulated annealing
algorithm disabled and enabled. The key to this graph is the gap in processing times
between executions which utilize simulated annealing and those that do not. As the
task pool size increases, the gap between execution times grows. This behavior is due
to the granularity at which simulated annealing is able to balance the load. With
larger task pool sizes there are fewer distributions and therefore less situations where
workers are waiting for the others to complete their processing. With smaller task
pool sizes the load imbalance that results from the absence of simulated annealing is
a larger factor. This imbalance causes longer execution times because there are more
task pools and correspondingly more instances where workers are waiting for others
to finish.

Simulated annealing evenly spreads the load so that even when task pool sizes are
low, the load is evenly balanced, and worker idle time is reduced.

Figure 5.1. Simulated Annealing reduces overall execution time by intelligently
assigning work to processors

5.3.2 Optimal cache replacement

The graph in Figure 5.2 shows total cache misses with optimal cache replacement
algorithm disabled and enabled. As cache sizes increase, the number of total cache
misses decreases. Regardless of cache size, optimal cache replacement significantly
reduces cache misses over naive replacement strategies.

27

Figure 5.2. Optimal Cache Replacement

5.3.3 Scalability

The graph in Figure 5.3 shows total execution time when 1, 2, 4, and 8 worker
processors are utilized. As evidenced by its logarithmic trend, as worker processors
are added total execution time decreases. This trend shows how DLT is designed
to scale linearly and efficiently utilize large numbers of processors to reduce total
execution time.

The following figure shows total execution time as the sum of time taken by the
master, which are the bottom dark segments of the bars, and the time taken by the
workers, which are the top lighter segments of the bars. The amount of time spent
in the master is roughly constant regardless of the number of workers. The amount
of time the workers spend processing is the item of focus in this graph and is where
the exponential time savings are realized.

28

Figure 5.3. Parallel Scalability

29

Chapter 6

Conclusion

In this thesis we show that the algorithms designed are well-suited for distributed
track discovery systems. Simulated annealing effectively reduces run time by bal-
ancing the processing load among the worker processors. By performing simulated
annealing in its own thread that executes while the master is waiting on the workers
to complete their processing, the overhead for this algorithm is effectively eliminated.

Optimal cache replacement significantly reduces the number of cache misses on
the worker processors. This lowered cache miss rate enables worker processors with
limited memory resources to operate on work items of arbitrary size while minimizing
the penalty incurred by the auxiliary storage accesses associated with cache misses.

Finally, DLT’s performance scales proportionally to the number of processors uti-
lized. This scalability enables DLT to effectively utilize processor pools of arbitrary
size to decrease overall execution times.

30

Chapter 7

Future Work

Exciting challenges have arisen over the course of this work but were outside the scope
of the project.

One assumption that is made by DLT is that any given work item will fit in
memory. If this assumption doesn’t hold then the execution models will have to be
re-examined. The ripple effect of such a change will likely present challenges to the
caching scheme, as well.

Another interesting topic that was researched briefly during the course of this
thesis was the study of the construction of the trees used by the tree walk algorithm.
Execution time varies depending on the number of tracklets held in the leaf nodes
of the trees. However, picking a leaf node size for a tree is not easy, as an optimal
leaf node size varies depending on the data. The possibility of having a collection of
trees, each with a different leaf node size, means that, again, the execution models
may have to be revisited to take into account such variations.

The simulated annealing algorithm currently uses a static, empirically chosen,
value for its temperature variable. The temperature could be initialized dynamically
based on the input data, or other factor. Parameters and algorithms for this procedure
are areas of future study. Additionally, the relationship between temperature and
the probability factor of accepting a solution is static. This relationship could be
reconsidered and the temperature could affect the probability factor in a dynamic,
data-specific manner. Determining this relationship and which factors are significant
is a future realm of study for this work.

31

Chapter 8

Acknowledgments

Dave has been incredibly patient and understanding throughout this work. I truly
appreciate his input on the design of our system and his good-natured approach to
the whole project. Jon has been a tremendous help throughout the entire project.
From design tips to procedural advice to his great knowledge of the astronomical data
which we processed, without Jon this project would have suffered greatly.

Also I must thank Dr. Barnard and Dr. Efrat for introducing me to Jon in the
first place. Without their reference this project would not be where it is today.

Thanks are in order to Jeffrey Kantor for allowing me to “intern” (provide free
labor, in his words) for LSST one summer and thus provide an opportunity to work
with this exciting project.

Finally, thanks to my wife Jenna. Her well of encouragement and understanding
is truly bottomless and really helped this project reach fruition.

32

References

[Bel66] Laszlo Belday. A study of replacment algorithms for a virtual-storage com-
puter. IBM Systems Journal, 5:78–101, 1966.

[ITA+08] Z. Ivezic, J.A. Tyson, R. Allsman, J. Andrew, R. Angel, and for the
LSST Collaboration. Lsst: from science drivers to reference design and
anticipated data products, 2008.

[Kub05] Jeremy Kubica. Efficient Discovery of Spatial Associations and Structure
with Application to Asteroid Tracking. PhD thesis, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, December 2005.

[Mye08] Jonathan Myers. Methods for solar system object searching in ’deep stacks’.
Master’s thesis, The University of Arizona, 2008.

