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Abstract. Spring embedders are conceptually simple and produce straight-line drawings with an undeniable
aesthetic appeal, which explains their prevalence when it comes to automated graph drawing. However, when
drawing planar graphs, spring embedders often produce non-plane drawings, as edge crossings do not factor
into the objective function being minimized. On the other hand, there are fairly straight-forward algorithms for
creating plane straight-line drawings for planar graphs, but the resulting layouts generally are not aesthetically
pleasing, as vertices are often grouped in small regions and edges lengths can vary dramatically. It is known
that the initial layout influences the output of a spring embedder, and yet a random layout is nearly always the
default. We study the effect of using various plane initial drawings as an inputs to a spring embedder, measuring
the percent improvement in reducing crossings and in increasing node separation, edge length uniformity, and
angular resolution.

1 Introduction
Some of the most flexible algorithms for drawing simple undirected graphs belong to a class
known as force-directed algorithms. Also called spring embedders, such algorithms compute
the layout of a graph using only information contained within the structure of the graph itself,
rather than relying on domain-specific knowledge. Graphs drawn with such algorithms tend to
be symmetric and have uniform edge lengths with good vertex distribution. As these are often
desirable goals for the readability of a graph [18], it is no surprise that force-directed algorithms
are the most commonly available tool for drawing graphs, networks, and diagrams. From family
trees drawn by amateur genealogists to chemical molecules and Facebook friendship networks,
the overwhelming majority of graphs that are drawn with such tools are small and sparse.

In general, force-directed methods define an objective function which maps each graph lay-
out into a number in R+ representing the energy of the layout. This function is defined so that
low energies correspond to layouts in which adjacent nodes are near some pre-specified distance
from each other, and in which non-adjacent nodes are well-spaced. Typically, force-directed al-
gorithms are initialized with a random layout and iteratively move vertices so as to find a (often
local) minimum of the objective function. Therefore, different initial layouts can influence the
quality of the final layouts.

If the input graph happens to be planar, force-directed methods may reduce the edge cross-
ings present in the initial random layout, although the objective function does not explicitly
consider them. At the same time it is easy to compute an initial plane drawing in linear time
and on an integer grid [16, 20]. Even for planar graphs, the running time of most force-directed
algorithms is quadratic given that all vertex pairs are considered. Hence, adding an efficient pre-
processing step that computes a plane (instead of random) initial layout, would not significantly
increase the overall running time of a standard force-directed tool. We study the effect of such
planar preprocessing on the number of crossings, node separation, edge lengths, and angular
resolution.



1.1 Related Work

An early force-directed method by Eades [10] models edges as springs obeying Hooke’s Law.
A popular variant is that of Fruchterman and Reingold (FR) [12], who model the problem in
terms of a strong nuclear force attracting two protons within the atomic nucleus at close range,
but with an electrical force repelling them at a further range. Alternatively, forces between the
nodes can be computed based on their graph theoretic distances, determined by the lengths of
shortest paths between them. The algorithm of Kamada and Kawai (KK) [15] uses spring forces
proportional to graph theoretic distances, and is in effect a variant of multi-dimensional scaling
(MDS).

Modifications to the basic force-directed functionality, with the aim of improving the layout
quality for planar graphs, have also been considered. Harel and Sardas [14] use an initial plane
embedding and then apply simulated annealing while not introducing any crossings. They use
an O(n2)-time heuristic to find a large face as the outerface and an O(n3)-time step to “center”
the vertices in the drawing. Overall this method significantly improves the aesthetic quality of
the planar layout, but at the expense of a significant increase in running time.

Bertault [1] describes a force-directed algorithm, PrED, that avoids introducing edge cross-
ings by using repulsive forces between the n vertices and the m edges in the graph. This ap-
proach also leads to an increase in running time of O(n2 + nm) for each iteration. Moreover,
since adjustments are much more restricted in this model, many more iterations can be required
to reach a low energy state. Recently, Simonetto et al. improved this approach with the faster
algorithm ImPrEd [21]. Tunkelang [22] studies a variant of the Fruchterman-Reingold method
using quad trees to approximate forces at a distance in order to compute a gradient, which took
O(m+ n log n) time. Even though vertex-edge repulsive forces are used, it is not clear whether
this results in overall reduction of edge crossings.

Brandes and Pich [3] show that layouts obtained with MDS are better at preserving rela-
tive distances than those obtained by force-directed algorithms. While they do not consider the
number of edge crossings explicitly, one could argue that an algorithm that better preserves
distances in the graph could lead to fewer edge crossings overall.

Using a greedy heuristic of picking edges from low to high betweenness (the likelihood of
an edge participating in some shortest path), van Ham and Wattenberg [23] extracted a spanning
planar subgraph with a low overall betweenness consisting of 80% of the edges in their real-
world graph having a small diameter. By laying out this planar subgraph with a straight-line
force-directed algorithm and drawing the remaining edges with curved arcs, they construct a
drawing where clusters are clearly separated.

Other applications of force-directed methods to polylines drawings include Didimo, Liotta,
and Romeo [7] and Dwyer et al. [8, 9]. Didimo et al. developed a customized force-directed
algorithm to augment planarization-based approaches, e.g., orthogonal and poly-line layouts
with bends in order to achieve drawings with fewer crossings than standard straight-line force-
directed algorithms for a sampling of random graphs over a range of edge densities and for the
Rome graph library. Their force-directed algorithm works by restricting the range of each force
acting on vertex so that no additional crossings are introduced, which can alter the topology
since crossings can potentially be eliminated from the original layout. Alternatively, Dwyer
et al. showed how to use P-stress, a bend-point invariant goal function, to construct topology
preserving constrained graph layouts, where edges form polylines that can bend like rubber
bands.
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2 Hypothesis and Methodology
There are many specialized drawing algorithms that guarantee crossings-free layouts for cer-
tain classes of graphs: binary trees, arbitrary trees, outerplanar graphs, general planar graphs.
However, most popular graph visualization tools (e.g., GraphViz, yEd, Gephi) do not contain
implementations of such algorithms but rather use a spring embedder and do not test whether the
input graph is planar. At the same time, many real-world examples (e.g., molecules in chemistry,
small business hierarchies, genealogical relationships) are indeed planar and spring embedders
are known for failing to find crossings-free layouts.

Our main goal is to gauge to what degree, for a given planar graph, that a plane embedding
preprocessing step can reduce the number of edge crossings in the final drawing. Similarly,
we would like to assess the effect, if any, the preprocessing step has on node separation, edge
lengths and angular resolution.

It is generally believed that the quality of the final layout of a spring embedder can be
improved by starting with a “better” layout than a random one. However, to the best of our
knowledge, there are no results studying the effect that such a preprocessing step can have on
reducing the number of crossings while maintaining other aesthetic qualities. With this in mind,
we took three standard planar layout algorithms and four off-the-shelf spring embedders and
tried to study these effects.

2.1 Data-sets
We use six libraries of connected planar graphs for our experiments:

I Prüfer trees (PRUFER) a set of uniformly sampled labeled trees obtained by using Prüfer’s
algorithm [17];

II Random trees (R-TREES) a set of random trees with unbounded maximum degree con-
structed by adding new pendant edges to randomly selected nodes in the tree constructed
so far;

III Fusy graphs (FUSY) a set of uniformly sampled unlabeled graphs created using the Fusy
generator [13];

IV Expansion graphs (EXPAN) a set of random triconnected planar graphs using the expan-
sion method that performs n− 4 split operations (starting with a K4) on randomly selected
nodes that randomly distributes neighbors between split nodes;

Library Size
n m Average Degree Percentile

min max avg med std min max avg med std 0% 5% 25% 50% 75% 95% 100%

PRUFER 910 10 100 55.0 55 26.3 9 99 54.0 54 26.3 1.80 1.86 1.94 1.96 1.97 1.98 1.98

R-TREES 910 10 100 55.0 55 26.3 9 99 54.0 54 26.3 1.80 1.86 1.94 1.96 1.97 1.98 1.98

FUSY 910 10 100 55.0 55 26.3 11 230 116.7 116 58.7 2.20 3.60 4.00 4.21 4.35 4.53 4.79

EXPAN 910 10 100 55.0 55 26.3 18 240 126.0 126 61.9 3.60 4.19 4.43 4.55 4.67 4.81 5.18

ROME 3279 10 89 25.8 24 11.8 9 103 30.2 28 14.2 1.80 2.00 2.17 2.32 2.46 2.77 3.85

AT&T 854 10 100 29.0 23 19.4 9 120 32.7 26 21.3 1.80 1.85 2.00 2.22 2.47 3.00 4.74

Table 1: Data-set statistics showing the minimum (min), maximum (max), average (avg), median (med), and standard
deviation (std) of the number of vertices n and the number of edges m of each library with the percentile distribution
for the average degree.
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V Rome graphs (ROME) a subset of the undirected Rome graphs from the GDToolkit con-
sisting of all connected planar graphs; and

VI AT&T graphs (AT&T) a subset of the directed AT&T graphs (also known as the Graph
Catalog) consisting of all connected planar graphs.

Libraries I–IV were constructed to each have 10 graphs per value n, whereas, V and VI have
a variable number of graphs per value of n; see Table 1. Both tree libraries I and II have the
lowest median average degree of 1.96, while the other two constructed libraries III and IV have
higher median average degrees of 4.21 and 4.55, respectively, whereas the pre-existing libraries
V and VI also have low median average degrees of 2.32 and 2.22, respectively. Hence, libraries
I, II, V, and VI all have relatively low edge-density, while III and IV both have relatively high
edge-density.

2.2 Tools
While there are many popular graph drawing tools (e.g., GraphViz, yEd, Gephi), most of them
do not contain algorithms for planar graphs. With this in mind, we use the Open Graph Draw-
ing Framework (OGDF) [5], together with additional code and scripts to generate libraries I–
IV, to compute the graph aesthetics metrics, and to perform the experiments. Our code is
written in C++ and is available, along with all the graph libraries and experimental data, at
http://planarpreprocessing.cs.arizona.edu. All figures with plots were drawn using gnuplot
using the ‘acspline’ smoothing function.

2.3 Initial Placers
In addition to our hand-coded purely random layout (RANDOM), OGDF includes the following
three straight-line drawing algorithms for planar graphs:

(i) FPPLayout (FPP) implements the algorithm of de Fraysseix, Pach and Pollack [6] for
plane drawing on a grid of size (2n−4)× (n−2), obtained by augmenting the graph until
it is fully triangulated and then computing a canonical ordering and incrementally placing
the vertices in this order;

(ii) SchnyderLayout (SCHNYDER) implements the algorithm of Schnyder [20] for plane
drawing on an integer grid of size (n − 2) × (n − 2), obtained by augmenting the graph
until it is fully triangulated, partitioning the interior edges into three trees and computing
barycentric coordinates for the vertices;

(iii) PlanarStraightLayout (KANT) implements an improved version of the algorithm
of Kant [16] for plane drawing on a grid of size at most (2n− 4)× (n − 2), obtained by
augmenting the graph until it is triconnected and then using an appropriate modification
of the FPP algorithm to compute coordinates for the vertices.

Using RANDOM as an initial placer is equivalent to have no preprocessing done (given that
is what most spring embedders use by default), while using any of the other placers constitutes
adding a preprocessing step.

2.4 Embedders
OGDF also includes the following four distinct energy-based spring embedding algorithms for
general graphs:
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(1) SpringEmbedderFR (FR) implements the force-directed layout algorithm by Fruchterman-
Reingold [12] using a grid-variant of the algorithm to speed up the computation of repul-
sive forces (using the defaults: (i) 400 iterations, (ii) has small initial random perturbations,
(iii) minimum distance of 20 between connected components, and (iv) automatic scaling),

(2) SpringEmbedderFRExact (FRE) provides an alternative implementation of the FR
spring embedder with exact force computations (using the defaults: (i) 1000 iterations,
(ii) has small initial random perturbations, (iii) minimum distance of 20 between connected
components, (iv) cooling factor of .9, (v) ideal edge length of 10, and (v) tolerance factor
of 0.01, which the fraction of ideal length below which convergence is achieved);

(3) SpringEmbedderKK (KK) implements that MDS spring embedder of Kamada and Kawai [15]
(using the defaults: (i) stop tolerance of 0.0001 for energy level, (ii) maximum number of
iterations is based on input graph, (iii) all edges have equal length, and (iv) desirable edge
length is proportional to the area of the display grid divided by the maximum distance
between two nodes in initial layout); and

(4) StressMajorization (SM) implements simple stress majorization by Pich [4] that
allows radial constraints based on shortest path distances (using the defaults: (i) 50 iterations
and (ii) automatic scaling).

Aesthetics: In addition to counting crossings c of G, we consider the following three aesthetic
parameters for a drawing of a graph on n nodes and m edges, which have been shown to have
an effect upon human understanding of a graph; see e.g., Purchase [18]:

(a) Minimum angle aesthetic metric ma from [19], is based on dma, the average deviation of
adjacent incident edge angles from the ideal minimum angle:

dma =
1

n

n∑
i=1

∣∣∣∣ϑi − θi min

ϑi

∣∣∣∣
where ϑi is the ideal minimal angle at the ith node, namely ϑi =

360◦

degree(vi)
and θi min is the

actual minimum angle between the incident edges at the ith node. Then ma is defined as
ma = 1− dma so that 0 ≤ ma ≤ 1, where ma = 0 indicates that every node in the drawing
has a zero minimum angle (i.e., two overlapping incident edges) and ma = 1 indicates
“perfect angular resolution” in which case every angle is optimal as in Lombardi drawings.

(b) Edge lengths aesthetic metric el is based on del, the average percent deviation of edge
lengths using a mean central tendency:

del =
1

m

m∑
j=1

∣∣∣∣∣ |ej| − |e|avg
max{|e|avg, |e|max − |e|avg}

∣∣∣∣∣
where |ej| is the length of the jth edge, |e|avg is the average edge length, and |e|max is
the maximum edge length. Dividing by the max{|e|avg, |e|max − |e|avg} guarantees that
0 ≤ del ≤ 1, so that el = 1− del will be bounded 0 ≤ el ≤ 1, where el = 0 could indicate
that half the edges were all short while other half of the edges were all long while el = 1
indicates all the edges have the same length.
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(c) Node separation aesthetic metric ns is based on dsr, the average percent deviation of sepa-
rating rectangles1 using a mean central tendency:

dsr =
1

n

n∑
i=1

∣∣∣∣∣ |vi| − |v|avg
max{|v|avg, |v|max − |v|avg}

∣∣∣∣∣
1 These are the n axis-aligned, smallest-perimeter rectangles contained within the bounding box of all nodes, such that each

side of the rectangle is either incident to the neighbor(s) of its node or coincides with a side of the bounding box.

Initial Placer
Spring Embedder

None FR FRE KK SM

RANDOM

c=1573, ma=0.26,

el=0.59, ns=0.77

c=94, ma=0.40,

el=0.74, ns=0.82

c=66, ma=0.41,

el=0.72, ns=0.81

c=68, ma=0.40,

el=0.67, ns=0.84

c=182, ma=0.26,

el=0.65, ns=0.66

FPP

c=0, ma=0.34,

el=0.44, ns=0.66

c=84, ma=0.42,

el=0.73, ns=0.78

c=61, ma=0.51,

el=0.69, ns=0.79

c=64, ma=0.46,

el=0.74, ns=0.85

c=92, ma=0.26,

el=0.59, ns=0.73

SCHNYDER

c=0, ma=0.38,

el=0.45, ns=0.64

c=97, ma=0.49,

el=0.71, ns=0.80

c=65, ma=0.49,

el=0.70, ns=0.82

c=77, ma=0.40,

el=0.73, ns=0.82

c=107, ma=0.22,

el=0.65, ns=0.67

KANT

c=0, ma=0.42,

el=0.42, ns=0.64

c=91, ma=0.46,

el=0.71, ns=0.76

c=56, ma=0.49,

el=0.69, ns=0.80

c=63, ma=0.47,

el=0.70, ns=0.84

c=166, ma=0.31,

el=0.65, ns=0.65

Table 2: Sample layouts of a representative 55-node graph with 121 edges from EXPAN library where each row
uses a different placer and each column uses a different spring embedder (except for the first column using only the
placer).
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where |vi| is the perimeter of the smallest rectangle separating the ith node from its nearest
neighbors; |v|avg is the average over all nodes; and |v|max is the maximum over all nodes.
Given that 0 ≤ dsr ≤ 1, then ns = 1− dsr will also be bounded 0 ≤ ns ≤ 1. Then ns = 0,
could indicate that half the nodes were relatively close to their nearest neighbors while the
other half of the nodes were far from their nearest neighbors, whereas ns = 1 indicates the
nodes are more uniformly distributed.

2.5 General methodology
For each graph used in our experiments, we evaluated the above four aesthetic metrics on layouts
produced by each of the four initial placers and by each placer-embedder pairs, where the placer-
generated layout is used as the initial layout for the embedder; see Table 2. (and Tables 3–7 in
the appendix). To reduce the noise of our data, we ran each placer not once, but five times, to
generate five distinct layouts of the same graph, which we then treated as a separate data point
(i.e., as though each of the five layouts were from five different graphs). Thus, for a given library
such as PRUFER, with 10 graphs per value of n, this gave us 50 total data points per value of n.
To obtain a value for a particular aesthetic metric, we took the median of the metric over all 50
layouts. When comparing the overall results of using a planar preprocessor, such as determining
the percent reduction in the number of crossings in going from (RANDOM/FR) to (FPP/FR),
we took the median of the percent reduction in crossings between each pair of layouts before
and after the preprocessing step was included.

3 Experiments and Results
For each of the graph libraries, and for each spring embedder (FR, FRE, KK, SM) we ran exper-
iments to determine the effect of planar preprocessing (using FPP, SCHNYDER, or KANT),
compared against using RANDOM as an initial placer, on the aesthetic criteria (crossings, edge
length, node separation, angular resolution). We first analyze the placers and embedders sepa-
rately, before turning to combining the two.

3.1 Placer Aesthetics
Figure 1 provides a comparison between the four initial placers. Lower y-values for the left
column of plots indicates fewer crossings, which is desirable. Higher y-values for the remain-
ing three columns indicate more desirable aesthetic values for minimum angles, edge lengths,
and node separation. As the only non-planar embedder, RANDOM has the highest number of
crossings. It also has the worst angular resolution, but provides the best edge length and node
separation. KANT has the best angular resolution and is consistently second in the other met-
rics, with 15-30% better angular resolution and about 20% more uniform edge lengths and node
separation than the other planar placers. SCHNYDER and FPP have nearly identical aesthetics
(within 5%) for all the graphs, with the first slightly better with angular resolution and node sep-
aration, and the second better with edge lengths. In summary, among the three planar placers,
KANT has the best overall aesthetics.

3.2 Embedder Aesthetics
Figure 2 provides a comparison between the spring embedders, when using RANDOM as an
initial placer. With no preprocessing, KK has the least number of crossings producing almost
planar layouts for the tree and AT&T libraries. FR and FRE have similar performance, except
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that the exact variant produces 25-50% fewer crossings across all six libraries. SM performs
noticeably worse than the other three with up to 40% worse angular resolution and up to 25%
worse edge lengths and node separation (although it is the fastest among the embedders). In
summary, among the four embedders, KK has the best overall aesthetics when no preprocessing
is done.

Brandenburg et al. [2] did an experimental study comparing straight-line graph drawing
algorithms including variants of FRE and KK implemented in the GraphED framework. Their

Aesthetic Comparison for the Initial Placers
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Fig. 1: Median of aesthetic metrics vs. number of nodes for each initial placer where values closer to 1 are better for
the right three columns.
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results confirm ours that KK is in general superior to FRE in terms of edge lengths and node
distribution. While their variant of KK was shown to be more efficient, it should be noted that it
only performs 10 ∗ n iterations (regardless of the graph structure), rather than iterating until the
energy function converges to a preset threshold as is the case in the standard KK algorithm used
in OGDF. While 10 ∗ n iterations may be sufficient for the smaller sparse graphs studied by
Brandenburg et al., this is not the case in general. For instance, for denser graphs in the FUSY
and EXPAN libraries with a 100 edges, we found FRE to be up to 20 times faster than KK.

Aesthetic Comparison of the Spring Embedders using RANDOM as Initial Placer
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Fig. 2: Median of aesthetic metrics vs. number of nodes for each spring embedder using random layout where values
closer to 1 are better for the right three columns.
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3.3 Effect of Planar Preprocessing with KANT

Figure 3 shows the percent improvement in each aesthetic metric when KANT is used for planar
preprocessing. The x-axis shows the number of vertices and the y-axis shows either the median
number of crossings or the median of the normalized 0-to-1 value for the other metrics. High y-
values in the left column indicate more crossing reduction, which is desirable. High y-values or
near-zero y-values in the remaining columns indicate consistent improvement or no discernible
effect with regard to that column’s metric.

Aesthetic Percent Improvement using KANT as Initial Placer
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Fig. 3: Percent improvement in aesthetic metrics vs. number of nodes for spring embedders using KANT where
higher, non-negative percentage is generally better.
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Preprocessing with KANT clearly reduced crossings. Moreover, this improvement does not
come at the cost of negatively impacting any of the other aesthetic metrics. From the last three
columns in Fig. 3, we can see a remarkable lack of degradation in any of the three metrics for
FR and FRE. The only exception is SM which shows worse angular resolution (which was
already the worst even without preprocessing).2 The effect of preprocessing is negligible for

2 It is worth noting here that SM itself is more of a pre-processing step than a standard embedder.

Aesthetic Comparison of FRE Embedder using KANT Placer to KK Embedder with No Preprocessing
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Fig. 4: Median of aesthetic metrics vs. number of nodes comparing KANT+FRE to KK (with no preprocessing) where
values closer to 1 are better for the right three columns.
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KK. In summary, using KANT as a preprocessing step for FR and FRE resulted in significant
reduction in crossings, while not negatively impacting the other aesthetics.

Specifically, our results indicate that KANT+FRE is the best placer+embedder pair. In fact,
the combination is good enough to compare directly with the best (but much more expensive)
KK embedder. The two approaches yield very similar results for all our graph libraries. KK is
slightly better with 5 to 10 percent fewer crossings. On the other hand, KANT+FR is slightly
better with 5 to 10 percent better edge lengths and node separation. Both approaches provide
nearly identical minimum angle metrics; see Figure 4 that directly compares KANT+FRE to
KK.

We would like to point out that most spring embedders currently in use are based on imple-
mentations very similar to FR and FRE, as implementations of KK are significantly more com-
putationally expensive. Our experiments indicate that popular spring embedders might obtain
nearly as good results as KK for planar graphs, with the help of a linear-time planar preprocess-
ing step such as KANT.

3.4 Effect of Planar Preprocessing with FPP and SCHNYDER

Figures 5 and 6 show the percent improvement in each aesthetic metric when FPP and SCHNY-
DER are used for planar preprocessing.

For FPP, both FR and FRE had crossings reduced significantly for all graphs with more
than 20 vertices. In particular, crossings were reduced by at least 80% for the PRUFER and
R-TREES libraries, 40% for the ROME and AT&T libraries, and about 30% for the denser
FUSY and EXPAN libraries, which we consider a non-trivial and clear improvement.

Preprocessing with SCHNYDER reduces crossings as well as FPP (given their similarity
in Fig. 1) maintaining the 80% reduction for the trees libraries and the 30 to 40% reduction for
the other four libraries. Even though SCHNYDER had a small advantage in angular resolution
over using FPP when preprocessing the FUSY and EXPAN libraries, KANT also showed a
similar 5-10% improvement in increasing minimum angles for those two libraries; see Fig. 3. In
summary, while SCHNYDER and KANT have similar non-crossing aesthetic metrics, KANT’s
overall stronger performance in uniformly reducing crossings clearly demonstrates that KANT
is a better choice than SCHNYDER for planar preprocessing.

4 Conclusion and Future Work
We described a set of experiments on the effect of using three standard planar embedding algo-
rithms as a preprocessing step for four off-the-shelf force-directed algorithms. In this prelimi-
nary, proof-of-concept experiment we use all the default parameters and treat all the algorithms
as black-boxes; i.e., we did not attempt to adjust the parameters of one algorithm, knowing that
the other algorithm will be used (or vice versa).

Surely, we could have guaranteed crossings-free drawings by using specialized algorithms
designed for trees and planar graphs. But precisely because these algorithms are specialized,
they are very rarely used! Instead, the vast majority of graph drawings are obtained with the
default setting of popular spring embedders such as GraphViz, yEd, Gephi, etc. Adding a planar
embedding preprocessing step to such existing tools has little impact on the running time for
any input graph, but offers an increased likelihood of obtaining a plane layout, or reducing the
crossings, if the input graph is planar.
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Specifically, our results indicate that preprocessing small planar graphs reduces the num-
ber of crossings most notably for the Fruchterman-Reingold force-directed layout algorithms,
while not significantly impacting any of the aesthetic metrics we measured. There was little
or no effect on any of the metrics when planar preprocessing was combined with a Kamada-
Kawai force-directed algorithm. There were some negative effects when planar preprocess-
ing was combined with stress majorization. While not particularly surprising, to the best of

Aesthetic Percent Improvement using FPP as Initial Placer
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Fig. 5: Percent improvement in aesthetic metrics vs. number of nodes for spring embedders using FPP where higher,
non-negative percentage is generally better.
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our knowledge, these effects had not been experimentally verified before. We consider this a
promising preliminary study.

The results lead to several natural follow-up questions:

1. It is very likely that integrating the preprocessing and force-directed steps will lead to better
results. Specifically, is it possible to coordinate the ideal-edge-length of the spring embedder
with the average edge length produced by the planar embedding? Can adjusting the cooling
schedule (to ensure no big moves are made) make significant impact on the final drawing?

Aesthetic Percent Improvement using SCHNYDER as Initial Placer
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Fig. 6: Percent improvement in aesthetic metrics vs. number of nodes for spring embedders using SCHNYDER
where higher, non-negative percentage is better.
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2. What is the impact of planar preprocessing for larger graphs? While KANT+FRE and KK
had comparable aesthetics for graphs with under 100 vertices, KK becomes impractical for
larger graphs, requiring minutes to produce a layout. If the performance for large graphs
remains as good, KANT+FRE might be the better option.

3. We only considered planar graphs. Is it possible to leverage planar preprocessing for non-
planar graphs? For example, what it the impact on standard aesthetics when using a planar
subgraph for planar preprocessing?

4. We considered several of the main aesthetics: crossings, angular resolution, node distribu-
tion, edge lengths. What other aesthetics might be worth studying when comparing the final
results of spring embedder layouts?
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5 Appendix
For purposes of comparison, we discuss the differing characteristics of our six graph libraries.

5.1 Characteristics of the Six Graph Libraries
While PRUFER and R-TREES are both tree libraries, they have different characteristics not
evidenced by the statistical comparison in Table 1. The sample trees shown in Tables 3 and 4
look distinctly different. The Prüfer tree in the first table has longer chains connecting internal
vertices than does the random tree seen in the second table. While Prüfer’s algorithm [17]

Initial Placer
Spring Embedder

None FR FRE KK SM

RANDOM

c=378, ma=0.30,

el=0.59, ns=0.67

c=4, ma=0.82,

el=0.82, ns=0.83

c=3, ma=0.77,

el=0.74, ns=0.75

c=1, ma=0.83,

el=0.71, ns=0.79

c=5, ma=0.64,

el=0.63, ns=0.63

FPP

c=0, ma=0.53,

el=0.34, ns=0.65

c=1, ma=0.83,

el=0.83, ns=0.82

c=1, ma=0.81,

el=0.69, ns=0.79

c=0, ma=0.82,

el=0.74, ns=0.79

c=3, ma=0.46,

el=0.64, ns=0.62

SCHNYDER

c=0, ma=0.57,

el=0.26, ns=0.52

c=0, ma=0.80,

el=0.77, ns=0.85

c=1, ma=0.82,

el=0.74, ns=0.73

c=2, ma=0.83,

el=0.79, ns=0.79

c=3, ma=0.46,

el=0.63, ns=0.64

KANT

c=0, ma=0.71,

el=0.39, ns=0.69

c=1, ma=0.82,

el=0.84, ns=0.82

c=0, ma=0.80,

el=0.67, ns=0.76

c=0, ma=0.82,

el=0.73, ns=0.80

c=5, ma=0.42,

el=0.61, ns=0.64

Table 3: Layouts of a representative 55-node tree from the PRUFER library.

16



uniformly samples a labeled tree, those labels are discarded when drawn. Moreover, while there
are only n non-isomorphic labelings of an n-node star (i.e., K1,n), there are n!

2
non-isomorphic

labelings of an n-node path (i.e., Pn−1). This effectively means that there exponentially many
paths, or path-like trees with long chains connecting internal vertices (like the tree in Table 3),
for every star or star-like tree with higher maximum degree (like the tree in Table 4).

While R-TREES is composed of random trees, they are not a uniform sampling of unla-
beled trees. When iteratively choosing at random a node at each step to which to add a pendant
leaf, the tree generator used to construct R-TREES does not weight by the number of auto-

Initial Placer
Spring Embedder

None FR FRE KK SM

RANDOM

c=344, ma=0.33,

el=0.56, ns=0.67

c=8, ma=0.79,

el=0.73, ns=0.84

c=7, ma=0.76,

el=0.72, ns=0.79

c=2, ma=0.79,

el=0.79, ns=0.77

c=39, ma=0.39,

el=0.58, ns=0.62

FPP

c=0, ma=0.53,

el=0.18, ns=0.54

c=3, ma=0.79,

el=0.81, ns=0.87

c=5, ma=0.74,

el=0.72, ns=0.79

c=2, ma=0.76,

el=0.70, ns=0.78

c=14, ma=0.24,

el=0.52, ns=0.61

SCHNYDER

c=0, ma=0.54,

el=0.25, ns=0.48

c=10, ma=0.74,

el=0.78, ns=0.84

c=2, ma=0.73,

el=0.74, ns=0.82

c=1, ma=0.77,

el=0.76, ns=0.80

c=12, ma=0.46,

el=0.61, ns=0.68

KANT

c=0, ma=0.62,

el=0.40, ns=0.59

c=1, ma=0.81,

el=0.75, ns=0.84

c=0, ma=0.74,

el=0.72, ns=0.77

c=0, ma=0.79,

el=0.74, ns=0.80

c=14, ma=0.28,

el=0.58, ns=0.57

Table 4: Layouts of a representative 55-node tree from the R-TREES library.
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morphisms of subtrees to get a truly uniform sampling. For instance, when randomly adding
a pendant edge to an existing k-node star, it only has a 1

k
chance in adding the node to the

root versus one of the leaves. However, in terms of automorphisms, either should be equally
likely since there are only two possible distinct non-isomorphic trees one can construct at that
point, namely a k + 1-node star or the k + 1-node tree obtained after subdividing an edge of a
k-node star. Hence, we would expect that a library consisting of uniformly sampled unlabeled
trees would have a higher maximum degree on average than is the case with either PRUFER
or R-TREES.

Initial Placer
Spring Embedder

None FR FRE KK SM

RANDOM

c=1349, ma=0.22,

el=0.67, ns=0.75

c=113, ma=0.41,

el=0.75, ns=0.80

c=124, ma=0.32,

el=0.67, ns=0.78

c=52, ma=0.40,

el=0.71, ns=0.81

c=314, ma=0.30,

el=0.64, ns=0.66

FPP

c=0, ma=0.35,

el=0.50, ns=0.55

c=71, ma=0.46,

el=0.70, ns=0.86

c=50, ma=0.40,

el=0.69, ns=0.80

c=58, ma=0.37,

el=0.72, ns=0.82

c=156, ma=0.29,

el=0.61, ns=0.61

SCHNYDER

c=0, ma=0.38,

el=0.44, ns=0.57

c=53, ma=0.45,

el=0.74, ns=0.83

c=59, ma=0.41,

el=0.75, ns=0.79

c=69, ma=0.40,

el=0.67, ns=0.77

c=68, ma=0.32,

el=0.71, ns=0.71

KANT

c=0, ma=0.44,

el=0.48, ns=0.59

c=58, ma=0.42,

el=0.70, ns=0.79

c=57, ma=0.38,

el=0.71, ns=0.77

c=52, ma=0.43,

el=0.70, ns=0.76

c=168, ma=0.26,

el=0.66, ns=0.61

Table 5: Layouts of a representative 55-node graph from the FUSY library.
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The graphs in FUSY were constructed with the Fusy generator referred to in [13] written in
Java. Unfortunately, this is a not an n-generator like the ones used to construct either R-TREES
or EXPAN libraries where one only specifies the number of nodes n, and has an n-node tree or
graph returned. Rather, one specifies a median value of n and then can get (with a high level of
variance) graphs that deviate from n. In fact, the deviation is so huge and nonuniform, that we
used the input value of n = 1, 000 (the other two permitted input values for n are 10, 000 and
100, 000). We reran the generator over a million times to get 20 graphs for each value of n from
10–500. The FUSY library is a subset of that larger collection we initially generated.

Initial Placer
Spring Embedder

None FR FRE KK SM

RANDOM

c=418, ma=0.36,

el=0.61, ns=0.63

c=18, ma=0.72,

el=0.76, ns=0.84

c=18, ma=0.79,

el=0.77, ns=0.79

c=7, ma=0.74,

el=0.74, ns=0.81

c=34, ma=0.46,

el=0.68, ns=0.70

FPP

c=0, ma=0.50,

el=0.39, ns=0.56

c=9, ma=0.70,

el=0.66, ns=0.83

c=5, ma=0.78,

el=0.69, ns=0.79

c=7, ma=0.78,

el=0.75, ns=0.81

c=16, ma=0.41,

el=0.63, ns=0.61

SCHNYDER

c=0, ma=0.53,

el=0.44, ns=0.66

c=10, ma=0.73,

el=0.80, ns=0.84

c=6, ma=0.75,

el=0.68, ns=0.80

c=6, ma=0.82,

el=0.78, ns=0.84

c=10, ma=0.60,

el=0.62, ns=0.69

KANT

c=0, ma=0.68,

el=0.47, ns=0.62

c=10, ma=0.69,

el=0.73, ns=0.81

c=5, ma=0.80,

el=0.71, ns=0.80

c=7, ma=0.78,

el=0.78, ns=0.81

c=18, ma=0.53,

el=0.65, ns=0.69

Table 6: Layouts of a representative 55-node graph from the ROME library.
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Regarding planar preprocessing, we note the most relevant distinctions between the EXPAN
and the FUSY libraries; compare representative graphs from Tables 2 and 5.

1. All graphs in EXPAN are tri-connected.
2. Graphs in FUSY have a broader range of average degree than graphs in EXPAN, ranging

from 2.2 to 4.8 with a median of 4.2, versus ranging from 3.6 to 5.2 with a median of 4.6 for
EXPAN; see Table 1.

3. As is the case with the random n-generator used to generate R-TREES, automorphisms
are not considered by the n-generator used to construct EXPAN either (i) when randomly

Initial Placer
Spring Embedder

None FR FRE KK SM

RANDOM

c=641, ma=0.19,

el=0.64, ns=0.73

c=81, ma=0.62,

el=0.71, ns=0.78

c=26, ma=0.56,

el=0.70, ns=0.76

c=8, ma=0.64,

el=0.69, ns=0.76

c=45, ma=0.50,

el=0.63, ns=0.58

FPP

c=0, ma=0.51,

el=0.37, ns=0.53

c=20, ma=0.62,

el=0.71, ns=0.84

c=17, ma=0.66,

el=0.70, ns=0.77

c=24, ma=0.64,

el=0.71, ns=0.75

c=22, ma=0.53,

el=0.60, ns=0.50

SCHNYDER

c=0, ma=0.49,

el=0.44, ns=0.58

c=4, ma=0.69,

el=0.72, ns=0.86

c=7, ma=0.64,

el=0.80, ns=0.71

c=10, ma=0.61,

el=0.64, ns=0.75

c=31, ma=0.41,

el=0.63, ns=0.48

KANT

c=0, ma=0.55,

el=0.35, ns=0.62

c=17, ma=0.66,

el=0.76, ns=0.82

c=11, ma=0.67,

el=0.80, ns=0.68

c=22, ma=0.64,

el=0.72, ns=0.76

c=104, ma=0.31,

el=0.62, ns=0.44

Table 7: Layouts of a representative 55-node tree from the AT&T library.
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selecting nodes to split or (ii) when randomly distributing the neighbors of the split node
(while keeping the graph triconnected).

4. All three of the planar preprocessors must first augment a graph until it becomes biconnected,
where any added edges are then discarded at the end. However, no augmentation is required
for graphs in EXPAN when preprocessing. This is possibly one reason to account for EXPAN
having slightly greater crossing reduction on average than FUSY has for each of the three
preprocessors.
Finally, graphs seen in Tables 6 and 7 are fairly representative of the 28% of the Rome

graphs and the 67% of the AT&T graphs, which are planar, that compose the ROME and the
AT&T libraries, respectively. Most of the graphs from either library have low average degree
ranging from 1.8 (trees) to 3.8 with a median of 2.3 for the ROME library and ranging from 1.8
to 4.7 with a median of 2.2 for the AT&T library; see Table 1. Additionally, each had a much
lower median number of nodes per graph of 23 or 24 nodes versus 55 nodes as is the case with
the other four libraries.
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