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Abstract

Relational datasets, which also include clustering information, can be visualized with tools such
as BubbleSets, LineSets, SOM, and GMap. The countries in SOM-based and GMap-based visualiza-
tions are fragmented, that is, they are represented by several disconnected regions. Although countries
can be uniquely colored to help with identification, experimental data indicates that such fragmenta-
tion makes it more difficult to identify the correct regions. On the other hand, BubbleSet and LineSets
visualizations (originally developed to show overlapping sets) have contiguous regions but the regions
may overlap, even when the input clustering is non-overlapping. We describe two methods for creating
non-fragmented and non-overlapping maps within the GMap framework. The first approach achieves
contiguity by preserving the given embedding in the plane and creating a clustering based on geometric
proximity. The second approach achieves contiguity by preserving the clustering information and dis-
torting the given embedding in the plane if it would result in fragmentation. We formally analyze these
methods and quantitatively evaluate them using embedding metrics and clustering metrics. We demon-
strate the usefulness of the new methods with several datasets, and make them available in an online
system at http://gmap.cs.arizona.edu.
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(b) A contiguous map built with our new algo-
rithm

Figure 1: Maps of US universities and their average SAT scores, with similarity-based clustering. In the fragmented
map, a country consists of all regions with the same color, whereas in the contiguous map, a country is a single
contiguous region.

http://gmap.cs.arizona.edu
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Figure 2: Comparison of the original GMap results and the new contiguous maps for the same graph, showing
international trade relationships.

1 Introduction

The geographic map metaphor has been utilized as visual interface for relational data, where objects, rela-
tions between objects, and clustering are captured by cities, roads between cities, and countries. Information
spatialization is the process of assigning 2D coordinates to abstract data points, ideally such that the spatial
mapping has much of the characteristics of the original high-dimensional space. Multi-dimensional scaling
and principal component analysis are techniques that allow us to spatialize high-dimensional data, resulting
in point clouds, node-link diagrams, and maps.

In data mining and data analysis, clustering is a very important step and maps are very helpful in dealing
with clustered data. First, by explicitly defining the boundary of the clusters and coloring the regions, we
make the clustering information clear. Second, as most dimensionality-reduction techniques lead to 2D
positioning of the data points, a map is a natural generalization. Finally, while it often takes considerable
effort to understand graphs, charts, and tables, a map representation is more familiar and intuitive as most
people are very familiar with maps.

While many map-based visualizations have been considered, some of them produce fragmented maps
(SOM, GMap), while others have overlapping regions, even when the underlying clusters have no overlaps
(BubbleSets, LineSets). We describe methods for creating maps with contiguous and non-overlapping re-
gions. The algorithms can be utilized in different scenarios depending on the type of input data. The first
algorithm relies on the initial embedding of the input graph and can be applied when nodes have preassigned
coordinates. The second algorithm is applicable in scenarios in which the input graph has been clustered in
advance. We designed and implemented both approaches and they are fully functional online tools.

We also ran a preliminary user experiment on fragmented and contiguous maps generated for the same
dataset. A vast majority of participants prefer the contiguous variant even for relatively small datasets with
50−150 objects and 5−8 clusters. Although each cluster is colored uniquely to help with identification, most
people are familiar with real geographical maps in which countries are largely contiguous. We observed a
significant rate of misinterpretations of the map that occur when countries are fragmented.
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Figure 3: CBA: (a) initial map; (b) squares are placed at country-barycenters; overlaps are removed; (c) a subgraph
induced by a country is scaled to fit inside its square; (d) a spring embedder pulls nodes towards original positions;
flexible boundaries ensure contiguity.

2 Related Work

Using maps to visualize non-cartographic data has been considered in the context of spatialization [21, 7].
Work at PNNL resulted in document visualization systems Themescape [26], and successive systems Spire
and In-Spire. Self organizing maps (SOM), coupled with geographic information systems, render 2D maps
of textual documents [20]. Similarly, maps of science show groups of scientific disciplines [3]. Recent
systems include VOSviewer [23] and the Sci2 system [2]. Maps of computer science (MOCS) [8] provide a
way for visual exploration of topics in a particular conference or journal.

Augmenting node-link diagrams with spatial features can improve graph revisitation tasks [12]. This is
used in visualizations that explicitly draw boundaries to indicate the grouping: BubbleSets [5], LineSets [1],
and Euler diagrams [25, 16, 19]. When providing an underlying overlap-free clustering, the first two tech-
niques would generate contiguous but potentially overlapping regions. Instead, Euler diagram generation
methods would produce contiguous and non overlapping regions, but would ignore the connectivity or the
initial embedding of the graph.

The geographic map metaphor was also used for visualizing recommendations, where the Graph-to-
Map approach (GMap) was introduced [9]. GMap combines graph layout and graph clustering, together
with appropriate coloring of the clusters and creating boundaries based on clusters and connectivity in the
original graph. A follow-up paper describes how this approach can be generalized to any relational data
set [13]. In GMap the visualization is based on a modified Voronoi diagram of the nodes, which in turn
is determined by the embedding and clustering. However, since graph layout and graph clustering are two
separate steps, the result is often fragmented; see Fig. 2.

A recent study compared several techniques for displaying clusters with node-link diagrams [14]. They
found GMap improved performance of searching and exploration tasks, compared to standard node-link
diagrams, BubbleSets [5], and LineSets [1]. On the other hand, GMap worsened performance of group-
based tasks, as there is no explicit connection between disjoint regions of the same cluster, and users were
unsure whether they belong to the same group or not. Such fragmentation makes it difficult to identify the
correct regions and can result in misinterpretation of the map.
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3 Algorithms for Creating Contiguous Maps

Given a high-dimensional data (e.g., similarity between universities in Fig. 1, or international trade patterns
in Fig. 2), we extract an edge-weighted graph and create a drawing in which similar nodes are placed close
to each other, and groups of similar nodes are enclosed in contiguous regions.

We assume that the data is already processed and the input is a graph G = (V,E) with edge weights
w(e) ∈ R for all e ∈ E. If the graph is unweighted then we assume w(e) = 1. The output of our algorithms
is a graph layout, that is, positions pv ∈ R2 for all nodes v ∈ V , and a clustering C = {C1, . . . , Ck} of the
nodes so that nodes of the same cluster form a contiguous region. Let ||pu − pv|| be a Euclidean distance
between nodes u and v, and cv ∈ C be a cluster to which node v ∈ V is assigned. For an edge (u, v), we
define the ideal edge length as d(u, v) = − log[0.9 ·w(u, v)+0.1]. In some scenarios, positions of the nodes
can also be a part of input. For example, if the nodes model actual cities, the positions are their geographic
coordinates.

We first describe an embedding-based algorithm (EBA), which preserves a given graph layout. There
are many applications where the input specifies the positions of the nodes (e.g., MDS, PCA). EBA is well
suited for such settings.

We then describe a cluster-based algorithm (CBA), which preserves a given graph clustering. There are
many applications where the input specifies the clustering of the nodes (e.g., party affiliation in political
networks, countries grouped by continent). CBA is well suited for such settings.

Note that when neither clustering nor embedding is given, we can apply both algorithms to create a
map. We pair EBA with any embedding algorithm, or CBA with any clustering algorithm. Both produce
contiguous maps; see Fig. 2.

3.1 Embedding-Based Algorithm

We assume the input graph is drawn with fixed node positions. The graph is processed in the following two
steps.

1. Cluster graph nodes using K-means [15]. Here the edges of the graph are ignored; the distance
between nodes u and v is the distance between the corresponding points ||pu − pv||. This results in
a partition of graph nodes into k clusters so that every node belongs to the cluster with the nearest
mean. Since we use Euclidean distances, the clusters form convex (thus, contiguous) regions.

2. Iteratively refine the clustering. For every node v, find its nearest neighbor u in a different clus-
ter, i.e., Cv 6= Cu. If v has more edges with nodes of Cu, rather than with the nodes of cv, i.e.,∑

t∈Cu
w(v, t) >

∑
t∈Cv

w(v, t), then reassign v to the cluster Cu. The operation is applied only if
the new clusters are still contiguous. The process is repeated until no node can be moved to a new
cluster. Note that the process converges, as the sum

∑
u,v∈C w(u, v) increases in each step, but we do

not have a good bound on the number of iterations required; in practice the process converges quickly
for all graphs in our datasets.

Any geometric clustering algorithm can be used in the first step; we choose K-means as it is efficient,
simple to implement, and works well with the iterative refinement in the second step. A disadvantage is that
the number of clusters should be specified; but when the number is unknown, we compute a suitable value
using standard methods [22].
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Figure 4: Comparison of the embedding and clustering metrics over all graphs, where the means µ are solid thick
lines and the standard deviations σ are thin dashed lines of the same color; the number of nodes in the graph is
|V | ∈ {50, 100, . . . , 500}.

3.2 Clustering-Based Algorithm

We assume the input graph is given with fixed node clustering and some initial (non-contiguous) layout.
The graph is processed in the following four steps; see Fig. 3b. The algorithm takes as an input graph
clustering and computes an original embedding using an existing graph layout algorithms. The nodes are
initially placed in positions that ensure cluster contiguity and then subsequently pulled toward their original
positions using a force-directed technique. The steps taken by the algorithm are the following.

1. Compute country-barycenters in the initial layout. The country-barycenter is the average coordinate
of the nodes in that cluster. It is used to keep the position of the country as close as possible to its
position in the input layout.

2. Reserve a square for each country. Assign square-nodes of equal size to each country, and then
remove overlaps between the squares using a node overlap removal algorithm [6]. This step ensures
that each country has a non-overlapping square-region reserved for its nodes.

3. Bound country regions and reposition nodes inside. Enclose each country region by four boundary
nodes and edges. Take the layout of the subgraph induced by the nodes of a country and scale it to fit
inside its square.

4. Pull nodes towards their original positions with flexible boundaries. This is accomplished by a mod-
ified spring embedder with added attractive force pulling nodes towards their position in the original
embedding, in addition to the standard attractive and repulsive forces.

For the last step we modify the ImPrEd algorithm, which prevents nodes from crossing edges [18]. The
algorithm keeps nodes inside country boundaries, by making the boundary edges flexible so they can expand
or contract in order to fit the shape of the growing countries.
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Note that the algorithm can also be applied in the setting with a given clustering and embedding. In
most cases the resulting map reproduces positions of nodes of the original layout with good precision. The
nodes of small fragments tend to be placed along the border of the country, in the direction of the original
fragment; see Figure 3.

4 Quantitative Analysis

We evaluate our new methods using real-world datasets and quantitative metrics for graph layout and clus-
tering. The metrics are defined so that the measurement is a real positive number in the range [0, 1] with 1
indicating the best value and 0 indicating the worst one.

4.1 Data Sources

We use 10 datasets, creating a total of 70 maps. Half of them (Amazon crawl for book titles, last.fm crawl
for music bands, GD co-authorship graph, university similarity, and international trade data) are from [13].
The others are extracted from DBLP titles for conferences, journals, and authors using the MOCS system [8].
The maps contain |V | ∈ {50, 100, . . . , 500} nodes in the underlying graph.

4.2 Metrics for Graph Layout

Stress: The stress of an embedding is a classic MDS metric, which measures the energy of the spring
system [11]:

stress =
1

m

∑
u,v∈V

w(u, v)

(
||pu − pv|| − dvu

max(||pu − pv||, duv)

)2

,

where m = 1
2

∑
uv w(u, v). Low stress indicates a good solution; as value 1 is best in all our metrics, we

use 1− stress.
Distortion: Distortion measures whether the distances between pairs of nodes are proportional to the

desired distances. Consider a matrix of ideal distances with entry duv for nodes u and v, and a matrix of
actual distances between corresponding points with ∆uv = ||pu − pv||. The matrices are seen as random
variables with correlation coefficient:

r =

∑
(u,v)∈E(∆uv −∆)(duv − d)√∑

(u,v)∈E(∆uv −∆)2
∑

(u,v)∈E(duv − d)2
,

where ∆ and d are the mean values of the corresponding distances. Since the correlation coefficient takes
values between −1 and 1, the metric is given by (r + 1)/2.

Neighborhood Preservation: For each node v, T adjacent nodes of v are selected and their Euclidean
distances to v are measured. The percentage of the T nodes that are within distance d(T ) (the distance of
the T -th closest node to v in the graph space), averaged over all nodes v, measures neighborhood preserva-
tion [24]. As suggested in [10], we use T = 20 in our experiments.
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4.3 Metrics for Graph Clustering

Modularity: In a good clustering, the number of edges within clusters should be high and the number of
edges between clusters should be low, as measured by modularity:

1

2m

∑
u,v

(
wuv −

degudegv
2m

)
δ(cu, cv),

where the sum is over all pairs of nodes, degv =
∑

tw(v, t) is the weighted degree of node v, m =
1
2

∑
uv w(u, v), and δ(ci, cj) is 1 if ci = cj and 0 otherwise [4].

Conductance: The conductance of a cut compares the weight of a cut and the weight of the edges in
either of the two subgraphs induced by that cut [4, 17]. The conductance φ(C) of any given cluster C can
be obtained as

φ(C) =

∑
v∈C

∑
u6∈C w(v, u)

min(a(C), a(C))
,

where a(C) =
∑

v∈C
∑

u∈V w(v, u) is the sum of the weights of all edges with at least one endpoint in C.
This value represents the cost of one cut that bisects G into two node sets C and V \C. The conductance of
the clustering is the average value of those cuts: φ(G) = 1−

∑
φ(C)/|C|.

Coverage: The coverage is given as the fraction of the weight of all intra-cluster edges with respect to
the total weight of all edges in the whole graph [17]:∑

uv w(u, v)δ(cu, cv)∑
uv w(u, v)

.

4.4 Results

Since EBA preserves the given embedding, we only report its performance on the clustering metrics; see
Fig 4(a-c). On average, EBA results in lower modularity, conductance, and coverage compared to the default
(modularity-based) clustering of GMap. However, the reductions are less than 20%. It is worth noting that
for small maps (50 and 100 nodes) the EBA clustering steadily outperforms the default one. More careful
analysis shows that the second step of EBA (“local refinement”) is very effective for maps of smaller size.

Since CBA preserves the given clustering, we only report its performance on the embedding metrics;
see Fig 4(d-f). On average, CBA produces layouts with worse embedding metrics. The average the decrease
is 13% for stress, 10% for distortion, and 7% for neighborhood preservation. The CBA metrics are very
similar to the default GMap values for instances in which the underlying graph is dense and the default map
is highly fragmented. For some of datasets (international trade data), CBA had better results than the default
(e.g., 9% better neighborhood preservation).

EBA is very fast in practice, taking only few milliseconds to process the largest tested graphs. CBA is
less efficient producing maps with 100 nodes in a few seconds and maps with 500 nodes in under a minute.

A software implementation of the algorithms is available at http://gmap.cs.arizona.edu. The
website allows to generate maps on custom input and export them in several formats.

5 User Study

In order to confirm our suppositions on the negative effect of map fragmentation, we conducted a user study
in which we asked participants to evaluate several map-like visualizations and perform some basic tasks
using the maps. The primary hypotheses addressed in the experiment are as follows.
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H1 People are confused by fragmentation in maps.

H2 People perform faster and with greater accuracy using contiguous maps for several real-world tasks.

H3 People find contiguous maps more appealing rather than their fragmented equivalencies.

5.1 Experimental Set Up

During the experiment, an unsupervised survey was accessible online (http://userstudy-maps.
appspot.com). Using social networks and email lists, we asked our students and colleagues to participate.
An estimated completion time was about 10 minutes. Every participant was randomly and secretly assigned
to one of the two groups. For the first group (referred to as “uninstructed”), we provided brief instructions
about the system and the experiment. The uninstructed users were only told that “the diagrams used in the
study are created with a method for representing data as geographical maps. Like a standard geographical
map, each of these diagrams contains countries, cities and connections between cities.” In contrast, for
the alternative “instructed” group, we additionally explained the map metaphor for graph visualization, the
meaning of “countries”, “cities”, and “road” between them. We also introduced the term fragmentation, and
showed an example with contiguous and fragmented maps pointing out that “the same country can be split
into two or more fragments but countries are always identified by a unique color”. This partitioning into
instructed and uninstructed groups was designed to assess how the encoding used in these maps coincide
with the user intuition.

The study was divided into two parts. In the first one, participants were given a simple real-world task,
which may be performed using map-like data visualization. Specifically users were asked the following
questions:

Task 1a: How many countries do you see?

Task 1b: How many cities are in the country pointed by the arrow?

Task 1c: Which country has more cities?

For each of the questions, a user was given a map with respectively zero, one or two highlighted coun-
tries. We used 5 graphs for each task for which we created 2 versions (contiguous and fragmented) of maps.
This yielded 30 questions for the first part of the study in total. In Tasks 1a and 1b, we asked users to count
the number of countries and cities and select the relative range (we provided as list of possible answers 0−3,
4−6, 7−9, 10−12, 13−15, ≥ 16 for Task 1a, and 0−5, 6−10, 11−15, 16−20, ≥ 21 for Task 1b). For
the Task 1c, where we specified to estimate the country size rather than counting the number of cities, there
were only 3 options (“Red Arrow” country is bigger, “Blue Arrow”, and “Equal Size”). For each question,
the accuracy and response time were recorded. The questions of the Task 1 were designed so that to evaluate
Hypotheses H1 and H2.

The second part of the experiment was more open-minded. We asked users to take their time and
motivate the answers. We also provided a text field and encouraged participants to explain their decisions.
The part consisted of two questions:

Task 2a: Which of the maps do you like more?

Task 2b: Please rate the map.
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Figure 5: Mean and standard deviation of (a) user accuracy and (b) response time for Task 1.

For the Task 2a, we presented pairs of images with contiguous and fragmented maps constructed for the
same graph. There were 10 pairwise comparisons per user. Note that here our purpose was to test the user
intuition; hence, we did not define neither explain what map is considered as the ideal one. Task 2b involved
selecting a rate for the presented map. Participants could choose between “Poor”, “Fair”, “Good”, “Very
good”, and “Excellent” options. A collection of 20 images was generated for the question: 5 fragmented
ones, and 5 for each of the three our methods described in Section 3. Both questions of the section were
designed to assess the hypothesis H3.

The images used in Tasks 1 were generated with one of our algorithms for creating contiguous maps.
We used graphs with 50− 150 vertices in the experiment from the real-world dataset described in Section 4.
Since the questions in Task 1 had the same answers for both the fragmented and the contiguous map of the
same graph, participants who would recognisee the particular input instance could answer the second time
without actually re-calculating the required value. This would bias the user study results and give an unfair
time advantage to the questions that happened to appear later on the user study. In order to make fragmented
and contiguous maps of the same graph less recognizable, we applied a series of simple transformations.
The contiguous maps were rotated by an angle of

randFromTo(20, 70) + brandFromTo(0, 4)c ∗ 90 degrees,

and the colors used for identifying countries were scrambled.
To allow for fair pairwise comparison, the maps used in the Task 2a were not modified. All maps were

rendered at low resolution in order to reduce their loading time. However, the countries and cities were still
well-distinguishable. The questions were presented ordered by their corresponding task. Within each task,
the images were shuffled for every participant to prevent a training effect.

5.2 Results

Of the 64 people who started the study, we processed the results from the 52 who completed all questions.
Among the participants, the average age was 26 years and 37 were male.

To investigate hypotheses H1 and H2, we classified user responses for the Task 1 into four groups
depending on the type of study (instructed/uninstructed) and map (fragmented/contiguous). For each group,
we compute the mean and the standard deviation of accuracy of user answers; see Figure 5a. Consistently,
there was a large difference in accuracy between contiguous and fragmented maps for all three tasks. The
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I like contiguous maps because...
data fragmentation looks weird
it looks simple
countries as single entity and one shape are easy to read
all regions are contiguous. no disjoint regions
its easier to make quick guesses on graph properties
items in each ”country” are consolidated together

I like fragmented maps because...
it looks more real

I like neither of maps because...
don’t know for what i’m searching

Table 1: User comments for the Task 2a.

difference was statistically significant for the uninstructed group for all three tasks and for the instructed
group for the Task 1b (p < 0.001, t-test). This result supports our hypothesis H2; hence, maps without
fragmentation do provide an advantage for performing particular real-world tasks. Somewhat unexpected,
even in the simplest scenario (Task 1a for contiguous maps with 5 − 8 countries per map) accuracy of user
responses reaches only 80%. Our detailed investigation showed that participants were often confused by
similar colors, and considered separate regions as two fragments of the same country.

We have not noticed a difference in accuracy between the instructed and uninstructed versions of the
study for Task 1 on contiguous maps. In contrast, if the input map is fragmented, then the instructed users
perform significantly better. This suggests that hypothesis H1 can be accepted. We stress here that in our
experiments we manually chose the maps with high amount of fragmentation (some countries contain up
to 10 − 15 smaller fragments). At the same time, “mostly non-fragmented” maps might be useful and
meaningful. Future work might explore to what extent the fragmentation in maps is confusing for users.

The analysis of time needed for a participant to give an answer for Task 1 is in Figure 5b. Before the
time analysis, we excluded the responses that required more than 90 seconds. An investigation showed that
such long response times indicate connectivity problems with our online system. For the filtered data, an
average response time is 8.5 seconds per question with standard deviation 5.7 seconds. The Task 1a appears
to be the most difficult in its fragmented variant with over 12 seconds per question. For the Tasks 1b and 1c,
participants showed mostly the same performance. All the differences are not statistically significant.

Finally, we analyzed responses for Tasks 2a and 2b to investigate the third hypothesis on aesthetical
preferences of contiguous maps. There was a strong agreement among respondents as to what representation
appears to be the “nicest”. A majority of participants (over 92%) prefer the contiguous variant, while only
3.5% like the fragmented one. For the Task 2a, we collected comments explaining user preferences, see
Table 1 for a subset of the most popular user comments. Although we did not explain the participants the
research goal of the study, most of them chose the contiguous variant because it had less “islands” and
“regions”. For the Task 2b, we see a significant preference of both our algorithms over the fragmented
version. There is no difference between instructed/uninstructed datasets.
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6 Conclusions and Future Work

We suggested and evaluated two approaches for generating fragment-free maps. These approaches can be
applied in different scenarios depending on the type of input data and user preferences. The simpler but
more efficient embedding-based algorithm tend to produce maps with slightly worsen clustering metrics.
The second algorithm keeps the original clustering and also capable to preserve a given embedding. We also
developed a publicly available system that can be used to generate contiguous maps for a given input graph.
See a video accompanying the submission for more details.

Although contiguous maps are generally more appealing, fragmentation might encode important infor-
mation. If a map is drawn properly, fragmentation may indicate close relationship of fragmented objects
with several countries. An interesting direction for future work is identify cases in which fragmentation
is “meaningful” and should be presented on a map. It would be interesting to perform an in-depth user
study comparing the algorithms. Such a study would investigate the effect of the quality of clustering and
embedding on map comprehension.

Acknowledgements. We thank Joe Fowler and Yifan Hu for productive discussions and help with the
implementation of the algorithms and the online tool.
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