
IMPROVING THE RUNNING TIMES FOR
SOME STRING-MATCHING PROBLEMS

Sun Wu
Udi Manber

Eugene Myers

August 1991

Improving the Running Times for Some String-Matching Problems

Sun Wu, Udi ~ a n b e r ' , and Eugene ~ ~ e r s ~

Department of Computer Science

University of Arizona

Tucson, AZ 85721

August 199 1

Keywords: algorithm, approximate string matching, finite automata, regular expressions,

sequence comparisons.

ABSTRACT

We present new algorithms for three basic string-matching problems: 1) An algorithm for approx-
imate string matching of a pattern of size rn in a text of size n in worst-case time

0 (n + nrnl logn), and average-case time 0 (n + ndl log n), where d is the number of allowed
errors. 2) An algorithm to find the edit &stance between two sequences of size n and rn (n > m) in

time 0 (n +ndl log n), where d is the edit distance. 3) An algorithm for approximate matching of

a regular expression of size rn in a text of size n in time 0 (n + n r n l l ~ g ~ + ~ n) , where d is the

number of allowed errors. The last algorithm is the first o (mn) algorithm for approximate match-
ing to regular expressions.

1. Introduction
String-matching problems are becoming increasingly important parts of many applications. They
appear in diverse areas such as molecular biology, information systems, pattern recognition, and

text processing, just to name a few. In this paper we address three basic suing-matching problems
that have been studied extensively. We present new algorithms that generally obtain an 0 (log n)

speedup over previous algorithms. We assume a unit-cost RAM model, in which arithmetic
operations on 0 (n)-size numbers and addressing in an 0 (n)-size memory can be done in constant

time. This model, of course, holds in most practical situations.

Let A = a l a 2 a 3...a, and B = bl b2b 3...b,, such that n 2rn, be two sequences of characters

from a finite fixed alphabet C. An edit script from B to A is a sequence of insertions, deletions,

and/or substitutions to B that result in A. The problem of determining a shortest edit script (SES)
between two sequences of symbols has been studied extensively ([Hi75, HS77, My86, NKY82,

' Supported in part by an NSF Presidential Young Investigator Award (grant DCR-8451397). with matching funds f m

AT&T, and by an NSF grant CCR-9002351.

Supprted in part by the h?H (grant R01 LM01960-01) , and by an NSF grant CCR-9002351.

Uk85b, WF74, WMMMBO] is a partial list). The classic dynamic programming algorithm by

Wagner and Fischer [WF74] has 0 (mn) worst-case running time. Masek and Paterson [MY801
were the first to improve the 0 (mn) worst case by using the "Four-Russians" technique
[ADKF70] to reduce the worst-case running time to 0 (n + mn 1 logn). This is the best known

running time in terms of n and m. However, several algorithms have been designed that are much
faster under some conditions. Hunt and Szymanski @S77] presented an algorithm whose running

time is 0 (R log log n), where R is the total number of ordered pairs of positions at which the two

sequences match (see also [AG87]). Myers [My86], Ukkonen [Uk85bl, and Nakatsu, et al.

MY821 gave algorithms with worst-case time complexity O(nd), where d is the length of an
SES, which are efficient when A and B are similar. Myers further showed how to refine his ver-

sion of the result to take 0 (n logn +d2) time in the worst case using suffix trees and 0 (1) lca
finding. Wu et. al. -901 improved the running time slightly to an 0 (np) algorithm where

p is the number of deletions in the shortest edit script (which could be much smaller than d when
m is much smaller than n). We present here a new algorithm whose running time is

0 (n + ndllog n) in the worst case.

The approximate string-matching problem is a similar problem, with the difference being

that B is to be matched inside A rather than to all of A. Also, we assume that the number of
allowed errors (insertions, deletions, or substitutions), d, is given to us, and the goal is to find all

positions in A that match B within d errors. The dynamic programming approach extends easily to

solve the approximate string-matching problem with the same 0 (mn) complexity [Se80]. Several

algorithms achieve 0 (nd) running time for the approximate string-matching problem [GG88,
GP90, LV88, LV89, Uk85a1, which is better than the dynamic-programming approach for small d,

but not in the worst case. Masek and Paterson results [MY801 also apply to the approximate
string-matching problem with the running time of 0 (n + nmllog n). (The log factor is actually

log,n for c = 0 (I C 1 2.) Our algorithm achieves the same worst-case running time.
0 (n +nmllogn), but it is simpler, and it serves as a basis for the other algorithm. Its average-case

running is 0 (n +ndllogn), which is better than Masek and Paterson's algorithm. Moreover, our
algorithm is better in practice. Whereas Masek and Paterson showed that their algorithm
improves the direct dynamic programming algorithm only when n is larger than 262,419, our
approach of a universal, precompiled table delivers a log-factor speedup for all choices of n.

The approximate regular-expression matching problem is similar to the approximate string-
matching problem, except that instead of a simple string as a pattern we are given a regular

expression. We want to find all the substrings in A that are within d errors to strings that can be
generated by the regular expression. Algorithms with running time of 0 (mn) have been given by

CWS781 and [MM891. Wu and Manber WM911 presented another algorithm (which is part of the
agrep package) whose worst case running time is 0 (nd + mnd llog n), but which performs very
fast in practice (where usually d and m are quite small). Myers [My881 has used the 4-Russians
technique to speed up the exact regular expression matching problem (i.e., no errors are allowed)

to 0 (mnllogn). Speeding up the approximate case is listed as the major open question in his

paper. In this paper we present a new algorithm for the approximate matching of regular expres-
sions with a running time of 0 (n + nm l l ~ g ~ + ~ n) .

2. The Main Approach
The problems we address have a common feature in that there is a text and a pattern and we find

the matching by scanning the text, character by character, recording some information and looking
for matches. Most string-matching algorithms operate that way. The question is what information

to maintain and how to process it. We take a general approach. We model the scanning by an
automaton. In each step we scan one character and model the information we have so far as a

state in the automaton. Thus, processing the next step after seeing the next character corresponds
to moving in the automaton from one state to another. The main problem, of course, is to find a

good short encoding of the states and a good fast traversal algorithm for the automaton.

Let's assume that the number of states that the automaton, corresponding to a particular
problem, has is S(m). If S(m) is not too large, we can precompute the whole transition table,
which is a directed graph with the states as nodes, and then implement the automaton traversal by

table lookup. But usually S(m) is very large. For example, if we follow the dynamic-

programming approach for the sequence comparison problem, in each step we maintain a column

of size m with the sizes of the best matches of all prefixes of the pattern. Since matches can

potentially cost as much as m, the number of states in the automaton is mm. Not only are we
prevented from storing the whole transition table, but each state requires m logm bits to represent

so each table lookup would take (at least) 0 (m). (And we can compute the next step in 0 (m)
time without having the whole table anyway.) Our approach is first to reduce the number of states

as much as we can (e.g., we will show that for the edit-distance problem 3" states are sufficient)
and second to find a way to partition the set of states into regions such that 1) the transition table

within each region (i.e., the subgraph) is small enough so that it can be precomputed and stored
and 2) the transition between two (global) states can be computed by combining the transitions

between regions (modified in some fashion) in an efficient way.

Furthermore, except for the regular expression case, we use a universal automaton such that

' every region uses the same automaton. Using a universal automaton is not crucial for the approxi-

mate string-matching problem (although it simplies the algorithm), but it is crucial for the

sequence-comparison problem. If there are S(m) states then each state is encoded by at least
log2S (m) bits. We divide this encoding into blocks of size K (whose value depends on the prob-

lem). Given the current state and the next text character, we start with the first block and compute
a bit vector that is used in the transition of the universal automaton to find the new block (which is

the first block in the new state) and some output that is then used (along with the text character) to
compute another bit vector with the second block, and so on. We use the special properties of the

automata corresponding to our problems to achieve these goals (arbitrary graphs cannot be parti-
tioned so nicely). We use different encodings and different partitions for the three problems we

address, but the main idea is the same.

We start with the approximate string-matching problem, whose solution is the simplest

among the three problems. We then use the same partition scheme, but a more efficient traversal
procedure, for the sequence comparisons problem. We end with the most complicated algorithm,
the one for regular expressions, which uses a whole different parution scheme.

3. Approximate String Matching
The input to the problem is a textA = a l a 2 a ,...a,, a pattern B = b l b 2 - b,, and d the number of

allowed errors. We want to find all the substrings in A that are within d errors to B. We start with
the regular dynamic-programming algorithm. Let A b] denote the sequence a a 2 a ,...aj (the j'th

prefix of A) and let B [i] denote the sequence blbzb ,...bi. We compute an m x n matrix E such
that E [i, j l is the cost of the smallest SES between B [i] and a suffix of A b] . The matrix is com-

puted using the following recurrence [Se80]:

Sii = 1 otherwise I
E [i, j] = min (E[i-1, j-l]+sii. E[i-l , j]+ l,E[i,j-1]+ 1). (3.1)

Ukkonen D 8 5 a] used an automaton such that each column vector is treated as a state, and
the next column is obtained by a state transition of the automaton. He showed that the automaton

has 5 3" states, which is implied by the next lemma.,

Lemma 3.1: CUk85al

-1<E[i, j] -E[i -1 , j lS l for 15 iSm. OSjSn. (3.2)

We carry this idea a little further by using the differences D [i, j] = E [i, jl-E[i-1, j]

directly in the recurrence and maintaining only these values. (The ci values used in the recurrence

depend on j, but since they are computed separately for each column, we index them with the row

number only for simplicity.)

Lemma 3.2:

' If substitutions are not allowed (e.g., we want the longest common subsequence), then we can reduce the number of states
to 2". and make the algorithm simpler to implement

Proof: We have to prove that (3.3) is equivalent to (3.1). First note that ci =
, , ID [k,j-11-D[k, j]). Thus, ci is equal to E[i,j-11-E [i, j]. The proof is by induction on j

k=l

and i. Assume that the recurrence is correct up to j-1 for all i, and for j up to i-1, and consider
D [i, j]. There are two cases.

bi # a,

There are two subcases. If E[i-1. j] < min(E[i-1. j-11, E [i, j-11) (i.e., a deletion is in

order), then if we use (3.1) we get E[i, j]=E[i-1, j] + 1, which implies that D [i, j l = 1.

Now if we use (3.3) and the induction hypothesis, we get ci-l 2 0 and ci-l +D[i, j-1150,

thus from (3.3) we get that D [i, j] = 0 + 1 = 1. Otherwise, let E denote the minimum of

E[i-1,j-1] and E[i, j-I.], which implies (by (3.1)) that ~ [i , j] = E + l . We have

D[i , j]=E[i , j] -E [i - l , j] = E + 1 - ~ [i - l , j] = (by definition of E) 1 +
min((E[i-1, j-11 -E[i-1, j]), (E[i, j-11- E [i - I)) = 1 + min(~ ;_~ , ci-1 +D[i, j-I]),
which is exactly D [i, j] as defined by (3.3).

b i = a . J

In this case, since E[i, j]=E[i-1, j-11, D [i, j] = (by (3.1)) E [i, j]-E[i-1, j l =

E[i-1, j-11-E[i-1, j] = ~ ; - ~ , which is exactly (3.3).

A global state of the automaton can be represented by a vector of size m whose entries are
-1, 0, or 1. We divide the global states in a natural way. Each m-vector is divided into sub-

vectors, called regions, of sue r (to be determined later). Each region corresponds to a string of
size r, thus it can have 3' possible values. We call the values of a region its state (from now on we

will use the term state to represent a region rather than a global state of the automaton). We

encode the state of a region by an integer. We would like to compute the state transition for each,

region in constant time. In other words, we would like to use (3.3) instead of going from i-1 to i
(for a given j), going from i-1 to i+r-1 (r values of the column vector) in one step. Let's study

(3.3) more closely. The values of D [i, j] to D [i+r-1, j] depend on 1) the values of D [i, j-11 to
D[i+r-1, j-11; 2) the value of c i -~ ; and 3) the values of sij to s(i+r-lfi, called characteristic vec-

tor. Overall, they depend on two vectors of sue r, and the 'carry' ci-,. Both the column vector

and characteristic vector (of size r) can be encoded by an integer in an obvious way. We can
build a function (corresponding to a universal automaton) which, given any such 2r+l values
encoded as three integers, outputs the following values: ci+r-l, an integer corresponding to D [i, j]

i+r-1
to D [i+r-1, j] , and D[k, j] (so that E[n, j] can be computed). If r ='hlogsn, then it is easy

k=i

to see that the function has 0 (31h1"g1n .2"0g3n) = o (n) possible inputs and it can be computed in

time 0 (n) (we can actually make r slightly larger; in practice, the value of r should be deter-
mined by the amount of available space and n). We can precompute the transition table for this

function and store it. Since this is a universal automaton, it needs to be computed only once for
each n (or range of values for n).

Using the precomputed transition table, we can compute r = 0 (log n) values of the
dynamic-programming table in constant time if the input to the transition table can be obtained in

constant time. The problem is the characteristic function. We need r binary values for each input,
and computing these values from scratch every time will take r steps. Instead, we utilize the fact

that there can be at most 1 C 1 different characters in the text and compute characteristic vectors for
each o~ C. In other words, we build a two-dimensional table of dimensions I C I xmlr, such that

for each o E C we can obtain the mlr vectors of the characteristic function corresponding to a, = o
directly.

After the transition table and the characteristic function table have been built, the algorithm
finds the approximate matches in the following way. Initially the state of each region p,

1 I p -< rmld, are set to the value corresponding to (l , l , 1, ..., 1). We scan the text one character
at a time. For every character aj being scanned, we compute the state transition for every region p

in increasing order of p, and accumulate the column sum along the way. First, we find the charac-
teristic value for aj corresponding to region p by looking up the characteristic function table.

Then, by using c@-,,, (obtained from the computation in region p-1). the current state of region
p, and the characteristic value, we look up the transition table to find the new state of region p, the
next carry cP.,, and the column sum of the new state. The computation is continued, with the
column sum being accumulated, until the last region. The algorithm reports a match whenever the

accumulated column sum is I d (i.e., E [m, j] 5 d). Since each region can be processed in con-
stant time, and there are 0 (mllog n) regions in each column, the total time for scanning a charac-

ter is 0 (mllog n). The total running time is thus 0 (n +nmllogn). The space needed is
O(n+m ICIllogn).

The algorithm described above can be improved to be more practical. As was shown in
[UkgSa], the expected time for the dynamic programming can be improved to 0 (nd) by comput-
ing only a portion of the dynamic programming table. The approach is to compute, for each

column j ,arowfi suchthatEIfj,j]<dandE[i, j]>dfora l l i> f i . Ifweknowthevalueoffi,
then we do not need to look at rows below it in column j. It is not hard to see that

-1 I fi I 1, and that fi can be computed from fi-, . (Notice that it is not sufficient to find the

first E value that is > d, because following values can still be I d.) Since we handle whole
regions in each step, it is slightly more difficult to determine the last region that we need to com-
pute. Let s = (D[i, jl .D[i+l, jl, D[i+r-1, j]) be a state; the minimal prefix sum of s is

P

minx D [i, j l . 1 I p I r. We keep the minimal prefix sum for each state, and add that informa-
p i= l

tion to the transition table. Let r, denote the last region in column j that contains an entry whose E

value is I d. We assume that r,-, is known; we compute r, in the following way. Suppose we
have computed regions up to region r,-, + 1 in column j. (If we need a state from the previous

column that has not been computed, we use a default state equals to (1,1,1, ..., I).) There are three
cases (all column sums and prefix sums refer to column J].

1. The column sum up to region rib, plus the minimal prefix sum of region r,-, + 1 is I d. In

this case, we set r, = r,-, + 1.

2. The condition of case 1 is not satisfied, and the column sum up to region r,-, - 1 plus the

minimal prefix sum of region r,-, is > d. In this case, we set r, = r,-, - 1.

3. Otherwise, r, = r , - ~ .

These rules are easy to verify and we leave it to the reader. Since our approach has an
0 (log n) speedup over the dynamic programming approach, the expected time complexity of the

improved algorithm is 0 (n + ndi log n).

4. Sequence Comparison
The sequence-comparison problem can be solved similarly to the approximate string-matching

problem. The only differences from Lemma 3.2 is the boundary conditions which are

and that we need only the value of E[m, n]. The computation can proceed in the same manner
leading to 0 (n + nm /log n) running time. But we can do better when the two sequences are simi-

lar. For simplicity, we assume that n = m, so the matrix is square. Let d be the length of the SES

between A and B. The standard dynamic programming approach computes all D [i, jl's. How-

ever, if the SES is of size d then no match that occurs within distance of more than dl2 from the

main diagonal will be used, because it will cost more than d insertions, deletions, or substitutions
to get there and back to the main diagonal (which is where we have to end). Therefore, a band of
width dl2 around the main diagonal contains all the information needed to compute E[n, n] . We
would like to compute the values of the matrix only in that band. This is done by using the same
partition of the set of states and the same recurrence (with a different boundary conditions) but

with extra care as to how we scan the text.

Since the values beyond the d band are not used, we might as well assume that there are no

character matches there. We will actually use a 'jagged' band of size at most d + 2 r (where r is
the size of a block) as is shown in Figure 1. Of cowse, the value of d is usually unknown, but this

is not a major problem because we can use doubling.

The only part in this computation that is different from before is when we 'jump' from a

square to one below (as in going from X to Y in Figure 1). Let i be the row at the beginning of

square Y. The only values we need from the rows above is the column sum and c i - , . The column
sum is incremented by 1 from the previous column (at the same row position). And, since we can

assume that there are no character matches above i at that column (they will not count anyway),

Figure 1: Working around the diagonal.

we assign c i - ~ =-1, and continue accordingly. The edit distance we get is guaranteed to be

correct if it is I d. Since we process at most 0 (d) rows for each column, the running time is

0 (n + ndllog n) in the worst case (the preprocessing is the same as before).

5. Approximate Matching of Regular Expressions
The input to the problem now is a text A = a la2a3...a,, a regular expression R of size m, and d the
number of allowed errors. We want to find all the substrings in A that are within d errors to strings

that can be generated by regular expression R. We use the same approach of dividing the pattern
into parts and processing each part in constant time, but the partition (and the corresponding
recurrence) is much more complicated. In a nutshell, we first use Thompson's construction of a

non-deterministic finite automaton (NFA) for the regular expression rTh681, then partition the
NFA into modules (following Myers' construction My881) such that the modules 'communicate'

among themselves in a particular way. Each module is solved by two DFA's in an amortized

fashion. We design the recurrences to take advantage of the construction. We then put it all
together to improve the running time.

Let R be a regular expression, and let M be the corresponding NFA constructed using

Thompson's construction. We call the nodes corresponding to characters L-nodes and nodes
corresponding to &-moves &-nodes. We number the nodes by a topological order disregarding the
back edges (which were formed by the closure operation). The cost of going from one node v to

another node u in the NFA is the minimal number of L-nodes along a path from v to u (excluding

v) . Let ri denote the character corresponding to node i, and let Pre (i) denote the nodes in M that

are predecessors of node i. Let ~;(i) E Pre (i) denote the predecessors of i excluding back edges.
Let ~ r e * (i) denote the closure predecessors of i,which is the set of L-nodes such that the shortest

path from any node in Pre9(i) to i has cost 1 if i is an L-node, and cost 0 if i is an &-node. E [i, j]

will again denote the cost of the edit distance from the a sub-pattern of R to a substring of A end-

ing at a,, except that now the sub-pattern corresponds to every string that can reach the ith node of

the NFA from the start state. We compute E [i, j] in a similar way to (3.1). with two exceptions.

1) Instead of i-1 in (3.1), we use Pre (i) and/or PY(i); 2) To avoid cycles in the recurrence (any

NFA corresponding to a regular expression with a closure operation * will contain cycles), and to

handle the & moves, we use two passes. The value of E [i, j] after the first pass is denoted by

E'[i, j l . We denote by E [Pre(i),j] = min , E [k,j]; that is, the minimum edit distance to any
k E Pre (1)

predecessor of i; Et[Pre (i), j] is defined similarly with E' replacing E, E [PT(i), j] is defined simi-

larly with PY replacing Pre, and E [~re*(i) , j] is defined similarly with re* replacing Pre. The
exact recurrence is given next.

E[O,j]=O f o r o l j l n ; E[i,O]=S(i), for l l i l m ,

where S (i) is the shortest path from the start state of M to node i (moving to an & node costs 0).

S . . =
11 1 1 otherwise

min(Et[i, j], E [~;(i), j] + 1) if i 2 1 is an L-node
2. E[i.jl=

min(Et[Pre(i), j], E [~<(i), j]) if i 1 is an &-node

This recurrence is equivalent to Figure 6 in [MM89], and its proof follows from the discus-
sion in [MM89]. We only outline the intuition behind it. The first pass for L-nodes handles inser-

tions, substitutions/matches, and deletions (in that order), but only for edges in the forward direc-
tion (which is always the case for L-nodes). We cannot handle back edges in one pass, because

they might come from nodes with higher labels, which we have not processed yet The fist pass
for &-nodes propagates the values obtain so far through &-moves. Again, no back edges are used.

After the first pass, the values of E'[i, j l are equal to the desired E [i, jl , except for a possibility of
a series of deletions on a path that includes back edges. The second pass handles such paths. If i

is an &-node, then in pass 2 it receives the best E' value from its predecessors including those con-
nected by back edges. Thus, deletions will be propagated through at least one back edge. If i is

an L-node, then we use the regular forward propagation for deletions. So, a series of deletions on
a path with no more than one back edge will be handled. It turns out that one never has to use

more than one back edge in such a propagation (see NM891). Figure 2 shows an example of
computing E [i, j] by using recurrence 5.1.

Recurrence (5.1) leads to an algorithm whose running time is 0 (nm) in the worst case,

because Thompson's construction guarantees that 1 Pre (i) (< 2 for all i. We can improve the run-

ning time by using our general technique. First, we reduce the number of states in the global

deterministic finite automata from mm to (d+2)'" by allowing only d+2 values for the E [i, jl's. If

the edit distance is d, then there is no need to maintain values > d, and they can be replaced by
d+l . We then decompose the NFA into modules, each of size 0 (logd+~n), such that, when com-

bined together, they can be used to simulate the behavior of the original algorithm. The technique
is similar to the one we used in the previous two sections, but the implementation is much more

complicated. We do not use a universal automaton here, because we will need to encode the

structure of the module. (This is probably possible, but too complicated.)

To improve the algorithm we have to answer the following two questions: 1) how to decom-

pose the NFA into appropriate modules, and 2) how to combine the modules to simulate the func-
tion of the original algorithm. The 'decomposition' part is about the same as in [My88], and we
will describe it only briefly here. The 'combine' part is quite elaborate and will be described in

detail.

The decomposition of the NFA for R takes advantage of the hierarchical form of regular
expressions. For this reason, we will first express the decomposition in terms of the associated

parse tree, TR, for R. Hereafter, T refers to TR whenever R can be inferred from context. We first

partition T into a collection of subtrees. Then, we connect the subtrees in the following way. Let

Tp and Tq be subtrees, and assume that Tp is connected to Tq by an edge (v, u) such that v E Tp
and u E Tq. We add a 'pseudo-node' to Tp to represent u. This 'pseudo-node' will serve to

E [i, 81

*
Figure 2: An example of computing E [i, j]; R = abc(defghi) j; A = abcdefgi ...

communicate values between the subtrees. We call the subtrees (with the extra pseudo-nodes)

modules. We will use the term 'original nodes' to indicate nodes that are in T (i.e.. nodes that are

not pseudo-nodes). Figure 3 shows an example of this decomposition. A square denotes a

pseudo-node. The following lemma shows that the decomp;osition of T can be done evenly.

Lemma 5.1: For any K 2 2 , we can decompose T as described above into a module U that

contains T s root and has no more than K nodes, and a set of other modules, denoted by X, each

having between [Kt21 and K nodes.

Proof: The proof is by induction on size of the tree. Suppose that the hypothesis is true for

trees of size m-1, and consider a tree of size m. (The base case is trivial.) Let r be the root of T.
There are two cases:

r has two children

Let c and d be the children of r and Tc and Td be the subtrees rooted at c and d respectively.

By the induction hypothesis, T, and Td can be decomposed into U , y Xc and Ud y Xd

respectively. Let kc be the number of nodes in U,, and kd be the number of nodes in U d . If
kc + kd < K then we can set U = U , y Ud y (r 1 , and X= Xc y Xd. Otherwise, without loss

of generality, assume that kc 2 kd. This implies that kc 2 [K I A . If kd < K then we can let U
= Ud y (r 1 , and X = Xc y Xd y U,. Otherwise it must be that kc = kd = K, and we can let

x = x C ~ X d ~ U c (J U d a n d U = (r] .

r has one child

Let c be the only child of r , and Tc be the subtree rooted at c. By induction hypothesis, T,
can be decomposed into U , and Xc. Let kc be the number of nodes in U,. If kc < K then we

just let U = U , u (r 1 , and X = Xc. Otherwise, let U = (r] and X= Xc u U,, and the proof

is completed.

We can decompose the NFA for R in a way corresponding to the decomposition of R's

parse tree such that a module in the NFA for R corresponds to a module in R's parse tree. Inside a
module Mi, we will call a node an original node if that node is the original node in the NFA. Oth-

erwise that node corresponds to a module inside Mi and is called a pseudo-node. Module Mi is
called the parent module of Mi (and Mi is called the child module of Mi) if Mi contains the

pseudo-node corresponding to Mi. A module that contains only original nodes is called a leaf
module. A module that contains pseudo-nodes is called an internal module. It is not hard'to see,

based on Lemma 5.1, that given a constant K, we can decompose the NFA into a collection of
modules such that 1) each module contains I K nodes, (including original nodes and pseudo-

nodes), 2) each module contains one input node and one output node which are used to communi-

cate with its parent module, and 3) the total number of modules is bounded by 0 (mlK). Figure 4
shows an example of decomposition for regular expression R = a (b I c)* I (de)*f. (All moves,
except for the back edges, are from left to right); The NFA for R is decomposed into 3 modules,

assuming each module can have up to 6 nodes.

In our algorithm, we choose K = %10g~+~n. For each module obtained from the decomposi-

tion we build two transition tables corresponding to pass 1 and 2 of recurrence 5.1. Suppose we
are to build the transition tables for Mi, which contains t S K nodes. Suppose that g out of the t

nodes in Mi are pseudo-nodes (g=O if Mi is a leaf module). We label the nodes in a topological

order ignoring the back edges. Node 0 is the input node, and node t-1 is the output node of Mi.
We call the value of node i (whether it is after or before pass 1, that is, whether it corresponds to
E [i, j] or to E l i , j]) the E value of i. A state s of Mi is a vector (eo, e l ,..., e,-l), where ei

Figure 4: The NFA for a (b 1 c)* I (de)*f and its decomposition.

denotes the E value of node i. We encode the state s by an integer I,. In the encoding, I, contains
t components each containing r10g2(d+2] bits. A component of I, corresponds to an e i ,
0 < i < t-1, in s. Hereafter, we will refer to ei as the component in I, that corresponds to e i .
Assume that x is a pseudo-node in M i . Let M, be the module corresponding to x . Suppose that u
and v are original nodes in M i , and that u is a predecessor of x and v is a successor of x. Note that

the computation of the E value for the input node of M , depends on the E value of u, and the com-
putation of the E value for v depends on the E value of the output node of M,. In other words, the
computation of the E value for v has to wait until the computation in module M , has been com-

pleted. The dependency on pseudo-nodes prohibits us from building a transition table that can be
used to compute the state transition for Mi in constant time as in previous sections. We divide the

state transition into a series of smaller transitions as follows. We partition Mi into h layers such

that 1) nodes in layer p have labels greater than nodes in layer p-1; 2) no two pseudo-nodes that

are connected by a path are in the same layer; 3) if x is a pseudo-node in layer p then its successor
node is in layer p+l; 4) each layer either contains at least one pseudo-node or it contains the out-

put node of M i . (If Mi is a leaf module, then it has only one layer.) Figure 5 shows an example of
partitioning a module into layers. Nodes represented in boxes are pseudo-nodes. The E values of

nodes in layer p do not depend on pseudo-nodes inside p. So, we can build transition tables such
that the computation of the E values in a layer can be done in constant time.

The state transition for Mi is decomposed into h serial steps, each corresponding to a state

transition for one layer. In the preprocessing, for every possible state s (represented by I,), every

layer number p, 1 I p < h, and every possible input character a,, we precompute the state transi-
tion for layer p using pass 1 of recurrence 5.1 on the nodes in layer p. The result is stored in the

fust transition table Next ,. The building of the second transition table Next2 is in the same way

except that now the input character is not needed and pass 2 of recurrence 5.1 is now applied;

namely, the second transition table Next2 is addressed by current state and layer number only.

Figure 5: An example of the partitioning

With the transition tables described above, the state transition for M; is done in two passes
in the following way. We call the procedure for pass 1, Transition and the procedure for pass 2,
Transition2. In Transition1, we first apply a state transition for layer one of Mi using table Next1

based on the current state, the input character, and the layer number, 1. Then we apply the state
transitions for all child modules of M; that are in layer one, by recursively calling Transitionl.

The pseudo-nodes are used to communicate values between parenuchild modules; we discuss this
in the next paragraph. After that we apply the state transition for layer two of module Mi, based

on the new state, the input character, and the layer number, 2. We continue in this way until every

layer of Mi has been processed. After pass 1 is done, we apply Transitionz in the same way
except that the input character is not needed and Next2 instead of Next1 is used.

Before we use Nextl for each layer of Mi, we have to ensure that the E values of the

pseudo-nodes are consistent in the parent and child modules. Recall that a pseudo-node x

represents a regular node in M,, whereas in Mi x represents the module M,. In M, we have two
special nodes, an input node and an output node. The E value of the input node of M, should be

the same as the E value of x in M; before we apply the transition on the appropriate layer in Mi
containing x. After we are done with the layer (which means that we have applied the transition to

all its child modules), we copy of the E value of the output node of M, to x. This way the E values

are kept consistent between modules. The complete algorithm is is given in Figure 6. The algo-
rithm reports a match whenever the E value of the output node of the outer most module is I d.

Analysis: Let's start with space complexity. In the decomposition we have chosen K, the

maximum size of a module, to be '/210g~+~n. SO, the maximum number of possible states for a

module is (d+2)"1°&"" = n". Thus, each state can be represented by an integer, which we assume

takes constant space. There are at most 0 ((d+2)1/"0&"n 1x1) enmes in the transition table for

each leaf module. There are at most O((d+2)"10&"n 1x1 h) entries in the transition table for

internal modules, where h is the number of layers in that module. There are altogether I
2m

layers counting all the internal modules; thus, the total space needed is
'/2 logd+,n

m o(,,".-) (the first factor corresponds to the the number of entries in one layer, and the
logd+zn

n"m second factor corresponds to the number of layers), which equals 0 (-). (We assume that
logd+2n

I C I is a small constant.) The time to compute an entry in the transition table is 0 (log2(d+2));

thus, the prepmessing time needed is 0 (n% m).

nm Now we show that the time complexity for scanning the text is 0 (n + -). For every
1°gd+zn

character scanned, the time spent in a leaf module is constant, and the time spent in an internal
module is 0 @), where p is the number of pseudo-nodes contained in the module. Since the total

number of pseudo-nodes counting all modules is the total number of modules - 1 =
0 (m /10g~+~n) , the total time spent for scanning a character is 0 (m 1 logd+,n). So the total time

nm complexity is 0 (n + -). We have the following theorem.
logd+2n

Input: a regular expression R , a textA = a l a 2 a 3...a,, and the error bound d
Output: the ending positions of those approximate matches in A

begin
build the NFA for R using Thompson's construction;
find the initial value of every node using recurrence 5.1;
decompose the NFA hierarchically into modules;
build transition tables Next and Next for each module;
for every module encode the E values to be its initial state;
Let M be the root module, and let t be the number of its nodes;
for j= 1 tondo

Transition (M, a,, e o);
Transitionz (M, eo);
if e,-l I d, then report a match at position j;

end

Procedure Transition1 (Module M, input character a, input value e,) ;
begin

Let Is be the current state of M;
copy e, to e of I,;
let h be the number of layers in M;
f o r k = l toh do

for every pseudo-node y in layer k do
copy the E value of the input node of My to ey of I,;

Is = Nextl(Is, a, k);
for every My in layer k do

Transition (My, a, e,);
for every pseudo-node y in layer k do

copy the E value of the output node of My to ey of I,;
end:

Procedure Transition2 (Module M, input value e,) ;
begin

Let Is be the current state of M;
copye, toeo ofI,;
let h be the number of layers in M;
f o r k = l toh do

for every pseudo-node y in layer k do
copy the E value of the input node of My to ey of I,;

I, = Next (Is, k);
for every My in layer k do

Transition 2 (My, ey);
for every pseudo-node y in layer k do

copy the E value of the output node of My to e, of Is;
end ;

Figure 6: Algorithm Approximate~RegularExpression~Matching

Theorem 5.2: Given a regular expression of size m, a text of size n, and the number of

errors allowed d, the approximate regular expression pattern matching problem can be solved in
n m time 0 (n + - n" m

) and space 0 (- 1.
logd+2n l0gd+2~

References
[AG87]

Apostolico, A., and C. Guerra, "The longest common subsequence problem revisited,"
Algorithmica, 2 (1987), pp. 315-336.

[ADKROI
Arlazarov, V. L., E. A. Dinic, M. A. Krornod, and I. A. Faradzev, "On economic construc-
tion of the transitive closure of a directed graph," Dokl. Acad. Nauk SSSR, 194 (1970), pp.
487-488 (in Russian). English translation in Soviet Math. Dokl., 11 (1975), pp. 1209-1210.

[GG881
Galil Z., and R. Giancarlo, "Data structures and algorithms for approximate string match-
ing," Journal of Complexity, 4 (1988), pp. 33-72.

[GP901
Galil Z., and K. Park, "An improved algorithm for approximate smng matching," SIAM J.
on Computing, 19 (December 1990), pp. 989-999.

[Hi751
Hirschberg, D. S., "A linear space algorithm for computing longest common subse-
quences," Communications of the ACM, 18 (1975), pp. 34 1-343.

[HS77]
Hunt, J. W., and T. G. Szymanski, "A fast algorithm for computing longest common subse-
quences," Communications of the ACM, 20 (1977), pp. 350-353.

ILV881
Landau G. M., and U. Vishkin, "Fast smng matching with k differences," Journal of Com-
puter and System Sciences, 37 (1988), pp. 63-78.

ILV891
Landau G. M., and U. Vishkin, "Fast parallel and serial approximate string matching,"
Journal of Algorithms, 10 (1989).

[MP801
Masek, W. J., and M. S. Paterson, "A faster algorithm for computing string edit distances,"
Journal of Computer and System Sciences, 20 (1980), pp. 18-31.

[My861
Myers, E. W., "An OWD) difference algorithm and its variations," Algorithmica, 1 (1986),
pp. 251-266.

[My881
Myers, E. W., ''A four-Russians algorithm for regular expression pattern matching," Jour-
nal of the ACM, to appear. Also, Technical Report TR-88-34, Department of Computer Sci-
ence, University of Arizona (October 1988).

[MM891
Myers, E. W., and W. Miller, "Approximate matching of regular expressions," Bull. of

Mathematical Biology, 51 (1989), pp. 5-37.

[my821
Nakatsu, N., Y. Kambayashi, and S. Yajima, "A longest common subsequence algorithm
suitable for similar text smng," Acta Informatica, 18 (1982). pp. 171-179.

[Se801
Seller P. H., "The theory and computations of evolutionary distances: Pattern recognition,"
Journal of Algorithms, 1 (1980), pp. 359-373.

[Th681
Thompson, K., "Regular expression search algorithm," CACM, 11 (June 1968), pp.
419-422.

IUk85al
Ukkonen E., "Finding approximate patterns in strings," Journal of Algorithms, 6 (1985),
pp. 132-137.

CUk85bl
Ukkonen, E., "Algorithms for approximate smng matching," Information and Control, 64,
(1985), pp. 100-1 18.

[WF741
Wagner, R. A., and M. J. Fischer, "The string to smng correction problem," Journal of the
ACM, 21 (1974), pp. 168-173.

IWS781
Wagner, R. A., and J. I. Seiferas, "Correcting counter-automaton-recognizable languages,"
SIAM J. on Computing, 7 (1978), pp. 357-375.

-901
Wu, S., U. Manber, E. W. Myers, and W. Miller, "An O(NP) sequence comparison algo-
rithm," Information Processing Letters, 35 (1990), pp. 317-323.

W 9 1 1
Wu, S., and U. Manber, "Fast text searching with errors," submitted to CACM. Also,
Technical Report TR-91-11, Department of Computer Science, University of Arizona (June
1991).

