
Supporting Heterogeneity and Distribution in the
Numerical Propulsion System Simulation Project

Patrick T. Homer
Richard D. Schlichting

TR 92-38a

ABSTRACT

The Numerical Propulsion System Simulation (NPSS) project has been initiated by NASA to
explore the use of computer simulation in the development of new aircraft propulsion technology.
With this approach, each engine component is modeled by a separate computational code, with a
simulation executive connecting the codes and modeling component interactions. Since each
code potentially executes on a different machine in a network, a simulation run is a
heterogeneous distributed program in which diverse software and hardware elements are
incorporated into a single computation. In this paper, a prototype simulation executive that
supports this type of programming is described. The two components of this executive are the
AVS scientific visualization system and the Schooner heterogeneous remote procedure call
(RPC) facility. In addition, the match between Schooner’s capabilities and the needs of NPSS is
evaluated based on our experience with a collection of test codes. The basic conclusion is that,
while Schooner fared well in general, it exhibited certain deficiencies that dictated changes in its
design and implementation. This discussion not only documents the evolution of Schooner, but
also serves to highlight the practical problems that can be encountered when dealing with
heterogeneity and distribution in such applications.

December 31, 1992
revised: December 1, 1993

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

This work supported in part by the National Science Foundation under grant ASC-9204021. Homer is supported by the
National Aeronautics and Space Administration under GSRP grant NGT-50966.



Supporting Heterogeneity and Distribution in the
Numerical Propulsion System Simulation Project

1. Introduction

The Numerical Propulsion System Simulation (NPSS) project, sponsored by NASA Lewis
Research Center, aims to reduce the high cost of designing and implementing new propulsion
technologies by using computer simulation [Claus92, Claus91]. Specifically, the project, which is
part of the High Performance Computing and Communications (HPCC) initiative, involves
developing both computational codes to model various engine components, and a simulation
executive to control the simulation and model component interactions. Codes have already been
written for a number of engine components, with others currently under development. The
hardware used by these codes ranges from vector processors to parallel machines to clusters of
workstations. Work on the simulation executive is also underway. The focus in this effort is on
providing sophisticated capabilities to interact with codes, as well as the ability to substitute
different codes at varying degrees of fidelity. A scientific visualization system such as AVS
[AVS92] or Khoros [Rasure91, Mercurio92] will likely form a major component of the finished
product.

The nature of the NPSS project makes it imperative that the simulation executive support
heterogeneous distributed processing, in which diverse software and hardware elements on local-
or wide-area networks are incorporated into a single simulation. Providing such support poses
many non-trivial problems. For example, a given code may be suitable for execution only on a
specific machine architecture, thereby requiring the ability to pass data and control transparently
to and from codes executing elsewhere. The role of the executive, then, is to act as the ‘‘glue’’
that connects new and existing codes to produce a program that encompasses all aspects of a
given simulation. The user of such a program should not see individual codes that execute in
isolation, but rather a single integrated program. In addition to being simpler and more intuitive,
such a model allows interaction capabilities not possible when codes are run separately. For
example, intermediate results can be viewed and parameters modified to affect subsequent parts
of the computation; long running computations can easily be monitored and controlled.

This paper describes how heterogeneous distributed processing is supported in a prototype
version of the NPSS simulation executive. The key to this capability is the Schooner
interconnection system [Homer92a, Homer92b], an application-level remote procedure call
(RPC) facility that includes a simple specification language, an intermediate data representation,
a collection of stub compilers, and a run-time system implementing cross-machine control
transfer. These pieces, together with an execution framework provided by AVS, form a simple
simulation executive that supports heterogeneous distributed processing with capabilities
approaching those required by NPSS.

In addition to describing the way in which this executive works, we also analyze how well
Schooner’s capabilities matched the needs of NPSS. Where deficiencies in Schooner were
discovered, remedies are outlined; most have already been incorporated, while others are in the
implementation stage. Discussing how Schooner has evolved in this way not only documents the

-1-



evolution of the system, but also serves to highlight the practical problems that can be
encountered when dealing with heterogeneity and distribution in such applications.

This paper is organized as follows. In Section 2, we describe the NPSS project in more
detail, including its hardware and software aspects. The way in which heterogeneity is supported
in NPSS using Schooner is the topic of Section 3, while Section 4 outlines how Schooner has and
will change based on this experience. Finally, Section 5 offers some conclusions.

2. The NPSS Project

2.1. Overview

The NASA Numerical Propulsion System Simulation (NPSS) is designed to reduce the cost of
designing and implementing aircraft propulsion systems through the use of numerical
computation and simulation. Typically, one major difficulty in the design process lies in
understanding the interaction among engine components. In the past, these interactions could not
be studied until the engine components were built and tested, too often resulting in major re-
design at a fairly late stage in the development cycle. The goal of NPSS is to provide improved
component codes and a numerical testbed where these engine components can be tested together
and interactions between components identified at a much earlier stage.

The project has two aspects. One is the improvement of existing codes and the
development of new codes to model engine components. Existing codes are being improved to
take advantage of improvements in current hardware. New codes are being developed to make
use of new advances in massively parallel machines and clustered workstations. However, even
with these improved machines and algorithms, it will still prove too costly to simulate all the
components of an engine in complete detail. Thus, five levels of fidelity are being used; these
range from level 1, a steady-state thermodynamic model, to level 5, a three-dimensional time
accurate model.

The second aspect is development of a simulation executive that enables a user to select
from the available codes to construct a complete engine model. This is the computational
equivalent of an engine test cell, with a primary motivation being to simulate the interactions
between engine components by exchanging data values and boundary conditions between the
codes modeling different parts of the engine. The user will be able to model the entire engine or
a subset of the engine through the specific component codes selected. The model will typically
have most of the engine components at the same level of fidelity, although one or two
components of interest will often be modeled at a higher level. This strategy allows a reasonable
compromise between the need to model the entire engine to capture properly the interactions
among the components, and the need to keep the computational costs and time factors at
affordable levels.

2.2. Hardware

NPSS will use a variety of hardware architectures. Historically, vector machines have been used
in simulating engine components. NPSS intends to use these existing codes and the machines

-2-



they run on. Improvements in vector machines, particularly those improvements that result in
faster execution, will allow these codes to execute in less time and/or include additional physics
in the simulation.

A major goal of NPSS, however, is to bring parallel algorithms into more common use in
engine simulation. This effort seeks to achieve higher performance at lower cost than can be
achieved with sequential algorithms and platforms. Again, the performance improvements
gained can be used to speed the simulation, or traded to allow more detail. The effort includes
current machines such as the Intel i860 and the CM-5, as well as planning for future generations
of massively-parallel machines and clusters of workstations. In some cases, parallel machines
can also provide a more natural solution to a problem, i.e., being able to assign one processor to
each blade row when modeling an engine fan.

It is quite likely that all the component codes for an engine will not run optimally on the
same type of hardware. Thus, mechanisms must be incorporated into NPSS that will allow codes
to communicate across machine boundaries. In many cases, this will result in communication
across long distances, since not every site will have local access to all the types of machines
needed to run a complete engine simulation. Part of NPSS, then, is to explore methods for
efficiently running simulations in such a widely-dispersed, heterogeneous environment. The
intent here is to take advantage of advances in network hardware to improve the bandwidth
between nodes, and improvements in network software to reduce latency.

2.3. Software

The NPSS software effort is concentrating in three areas:

g Connecting codes that execute on different architectures and/or use different programming
models,

g Integrating component simulations at different levels of fidelity and incorporating various
software packages, such as graphics tools, into the system, and

g Improving user interaction with the simulation.

In the first area, the key problem is dealing with data exchange between a variety of different
machines. This facet involves not only solving the problems associated with differing data
formats, but also potentially the need to communicate between different computational models.
A parallel algorithm, for example, needs to be able to collect scattered values to pass on to a
sequential algorithm executing on a vector machine or workstation. As another example,
differences in the ability of machines to handle communications will need to be accommodated in
the design of the application and algorithms. Bottlenecks, such as occur when fast machines are
talking to slow machines, need to be addressed. In some cases, simple buffering to allow the
slow machine to catch up will be sufficient. In others, the slower machine may need to filter the
data selectively rather than attempt to use all of it.

In the second area, a major goal is zooming, that is, integrating codes that model at different
levels of fidelity into the same simulation. Achieving such a capability involves developing
techniques to extract, for example, the essential data from a higher-level computation for passing

-3-



to a lower-level analysis. Another goal is to take advantage of existing software when available.
This includes the incorporation of existing codes to model engine components and the use of such
tools as graphics packages for displaying results. Having the ability to handle multiple graphics
packages, for example, will allow a particular code to be incorporated without the need to convert
its output.

In the third area, the rationale is that the user is ultimately responsible for deciding the right
tradeoffs in applications such as NPSS. For example, it is the user who must decide on such
issues as whether a non-optimum local machine is better than an optimum remote machine, or on
what the best level of fidelity for each engine component should be. Thus, the system has to
provide reasonable default actions, while still allowing a high degree of user interaction. This
interaction extends not only to the selection of which engine components to model, but also to the
setting of parameters, both for the individual codes and for the simulation as a whole. The user
will also need the ability to monitor the simulation through selectively viewing graphical results
or monitoring particular values from selected component codes.

2.4. The Simulation Executive

The NPSS simulation executive is intended to bring together all the individual codes and to
coordinate them to simulate the entire engine. The overall goal is a system that allows the user to

g Bring up one of a choice of complete or partial engine simulations,

g Choose a set of operating conditions, i.e., high or low altitude, moist or dry air,

g Modify the engine model by substituting different codes for one or more engine
components,

g Set starting parameters for the engine, and modify them during a simulation run, and

g Build an engine from scratch by selecting engine components and linking them together.

Such capabilities allow the user to model a wide range of engines and to do so under a variety of
conditions. These would include being able to ‘‘start’’ the engine and ‘‘fly’’ it through a flight
profile, or to test operation of the engine in the presence of failures.

A prototype of such a simulation executive has been built using a combination of the AVS
scientific visualization system and Schooner. Along one dimension, AVS provides a state-of-the
art environment for viewing scientific data. In particular, it provides a large number of tools for
processing and displaying data. Another important feature of AVS—and the one that is actually
most important for the purposes of NPSS—is the ability to create, modify, and save programs
using its Network Editor. This editor allows the user to create programs by visually dragging
modules into a workspace and connecting them into a dataflow graph. In addition to the modules
supplied with AVS, the user is free to write additional AVS modules that can be integrated into a
network in the same way. In the context of NPSS, the Network Editor allows the user to
incorporate the specific codes needed for a simulation. The dataflow in this case models the flow
of air through the engine.

Interaction with the modules is possible through the setting of parameters associated with
each component. In AVS, this is realized using ‘‘widgets’’ that appear in control panels as dials,

-4-



sliders, type-in boxes, etc. Using the widgets, the user is able both to set initial values for each
module and also to modify values during execution, giving a great degree of control over each
engine component during a simulation run.

3. Supporting Heterogeneity using Schooner

As alluded to in the Introduction, the need to incorporate heterogeneous hardware and software
components follows naturally from the goals of NPSS. Heterogeneity is reflected in the nature of
jet engines and the different algorithms needed to simulate their various components. It is also
reflected in the variety of machine architectures and programming models being used in and
developed for the NPSS project. The need to deal with the distribution of these resources is also
inherent in NPSS, since different parts of the simulation may execute on different machines.
Indeed, given the special-purpose nature of these machines, it is not unreasonable to expect that
they may be separated by significant geographic distances.

These issues of heterogeneity and distribution are dealt with in the prototype NPSS
simulation executive by using Schooner, a heterogeneous RPC facility. This section presents an
overview of Schooner and describes the prototype executive formed by the combination of AVS
and Schooner.

3.1. Schooner Overview

Schooner is designed to be an application-level RPC facility that can be used by programmers to
invoke procedures on other machines in a straightforward manner despite the complications of
heterogeneity and distribution. As such, a Schooner program is designed in the same manner as a
normal procedural program, but with the significant advantage that the programmer is not
constrained to a single machine, architecture, programming model, or programming language.
Instead, procedures can be written that are tailored to the hardware and software combination
most suited to a given application. At runtime, the procedures are instantiated as processes, with
calls implemented using a message passing library. The Schooner system handles all data
conversions and message passing between processes, thereby preserving a familiar and easy
method for constructing programs from a collection of procedures.

Being procedure-oriented, the execution of a Schooner program is essentially sequential,
with control proceeding from one procedure to the next as shown in Figure 1. Note, however, that
this does not preclude the use of parallel algorithms where appropriate; to use such an algorithm,
it is only necessary to encapsulate it within a procedure as illustrated in the figure. This allows
the use of, for example, a particular hardware platform’s native parallel library, or the
incorporation of a computation in which a system such as PVM [Sunderam90] is used to achieve
parallel execution on a cluster of workstations.

To carry out its task of connecting components and masking heterogeneity, Schooner
provides three largely orthogonal services: the Universal Type System (UTS) [Hayes89], which
includes a type specification language and intermediate data format, a collection of stub
compilers, and a runtime system. The UTS type specification language uses a Pascal-like syntax
to describe the parameters that are expected for each procedure. It provides for the common

-5-



hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

= control & data flow

= procedure

Figure 1 — A Schooner program
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

simple types such as float, integer, byte, and string, as well as structured types such as arrays and
records. An export specification is written for each procedure that is to be publically available,
while a nearly identical import specification is written and associated with the invoking code.
UTS also provides a common data interchange format. This is implemented by library functions
that handle conversions between a machine’s native format and the common interchange format.

A stub compiler is provided for each supported language to read the specification files and
produce a stub for each imported and exported procedure. This stub acts as the interface between
the user’s code and the Schooner runtime. Specifically, it handles the marshaling and
unmarshaling of arguments through calls to the UTS library, and utilizes the Schooner library to
locate and communicate with the remote procedures. Schooner currently supports C and Fortran,
while the predecessor MLP system [Hayes87, Hayes89] also incorporated languages as diverse as
Pascal, Icon [Griswold90], and Emerald [Black87].

The Schooner runtime system consists of a communication library and two types of system
processes. The communication library is linked with every procedure to handle the sending and
receiving of messages implicit in RPC. The system processes are the Schooner Manager and
Schooner Servers, respectively. The Manager is responsible for startup and shutdown of
processes, maintaining a table of exported procedures and their locations, and performing runtime
type-checking of procedure calls based on the UTS specifications. There is one such process per
executing program. The Servers are used by Manager processes to start processes on remote
machines. There is one Server per machine involved in a given computation.

Systems such as PVM, p4 [Butler92], and APPL [Quealy92] also support heterogeneous
distributed processing. However, these systems are oriented primarily towards exploiting clusters
of workstations and/or parallel machines to achieve affordable parallel speedup, and as such,
support a general message passing paradigm. Schooner, on the other hand, is oriented primarily

-6-



towards connecting heterogeneous resources to increase the functionality available to the
programmer, a task for which RPC is sufficient. Given that RPC is closer to the standard
procedural paradigm familiar to most users and simpler to implement, it is a logical choice for the
type of problems addressed by Schooner. Also, as compared with these other systems, the
availability of UTS simplifies the task of generating the library calls needed to convert and
transmit data between machines.

Heterogeneity in scientific applications is also being addressed in several other research
projects [Chen93, Freund93, Khokhar93, Wang92]. These projects seek to exploit inherent
heterogeneity in the application by automatically partitioning the algorithm to run on a collection
of heterogeneous processors. This work includes research in the area of hardware design, as well
as low-level software support for communicating among the processors and compiler design to
detect heterogeneity. Schooner differs from this work primarily in the granularity of the
computation used as the unit of distribution and heterogeneity. Specifically, Schooner deals with
connecting together coarse-grained computations and exploiting long-distance networks, whereas
other efforts are focusing on detecting and exploiting fine-grain heterogeneity, and improving
communication among closely-coupled processors.

Schooner’s use of an external data representation, a specification language, and stub
compilers is similar to other RPC systems [Almes85, Birrell84, Sun90, Xerox81]. Several of
these systems also emphasize heterogeneity, including Matchmaker [Jones85], Horus
[Gibbons87], and HRPC (Heterogeneous RPC) [Bershad87]. Schooner differs from these
systems mainly in its orientation toward designing applications in a distributed environment,
rather than as a client-server operating system mechanism.

3.2. The Prototype Executive

A prototype NPSS executive has been constructed by combining the capabilities of the AVS
scientific visualization system and Schooner. AVS, executing on a workstation, provides
visualization capabilities and an execution framework through its dataflow graph of modules.
Schooner, in turn, provides the ability to perform the actual computation associated with a
module—that is, the simulation code itself—on a remote, potentially heterogeneous, machine.

The executive is being tested using the Turbofan Engine System Simulator (TESS)
[Reed93], a complete, one-dimensional engine simulation. TESS represents each of the principal
components of an engine as an AVS module. An engine is constructed in the AVS Network
Editor by connecting the modules to represent the airflow through the engine. Figure 2 shows an
AVS network for modeling an F100 engine using TESS. The control panel for the low speed
shaft, one of two instances of the shaft module in the F100 engine, is displayed at the left. Inputs
to each module can come from three sources: data passed through the dataflow network from
upstream modules, values passed through the widget mechanism, and data files read by the
module. The low speed shaft module receives data from the upstream low pressure compressor.
Its control panel has widgets that accept user inputs for the moment inertia, spool speed, and
spool speed-op parameters. On each execution of the shaft module, the data flow network and the
widgets pass values to the module. For modules that also read data files, AVS provides a browser

-7-



hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

mixing volume
shaft

mixing volume

mixing volume

turbine

shaft

mixing volume
turbine

mixing volumeduct

mixing volume

duct

bleed

bleed

bleed

SYSTEM END

environment

compressor

compressor

SYSTEM

grapher print to file

nozzle

combustor

Figure 2 — Prototype simulation executive
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

widget that allows the user to select the file name. In TESS, this method is used for the
compressor and turbine modules to select performance maps. For three of the engine
components—compressor, combustor, and nozzle—transient control schedules are provided to
allow the setting of the stator angles during the transient. These provide widgets that allow the
user the option of varying the stator angle by specifying angles at certain times during the
transient with TESS interpolating the angle at other times.

The system module provides widgets for selecting the solution methods for both the
steady-state and transient thermodynamic simulations supported by TESS, and provides overall
control of the simulation run. For steady state solutions, the user can choose from Newton-
Raphson and Fourth-order Runge-Kutta. For transient solutions, the user can choose from
Modified Euler, Fourth-order Runge-Kutta, Adams, and Gear. When execution is started, TESS
first attempts to balance the engine at the initial operating point through a steady-state
calculation. The engine transient begins once the engine is balanced and proceeds up to the
number of seconds specified by the user.

-8-



3.3. TESS and Schooner

Four of the engine modules have been modified so that their computations are executed remotely
using Schooner: the shaft, duct, combustor, and nozzle modules. The changes made in adapting
the shaft module are described below; the changes needed in the other three cases were similar.

In adapting an existing code to use Schooner, four tasks must be performed. The first is to
decide which procedure or procedures should be executed remotely. This requires evaluating
available architectures and programming languages to decide which would be most appropriate
for the given computation. In some cases, the decision may also take into account factors such as
the most convenient place to locate data files containing, for example, the computational grid.
Once a decision has been reached, the procedure, along with any supporting code, is separated
and moved to the remote machine. In the case of the shaft code, for example, the AVS module
makes calls to two procedures: setshaft and shaft. The setshaft procedure is called
once at the start of a steady-state computation, while the shaft procedure is called repeatedly
during both steady-state and transient computations. Both of these were selected to be a part of
the remote computation. The files npss-setshaft.f and npss-shaft.f contain the
setshaft and shaft procedures, respectively. Both files were moved to the destination
machine.

In the next step, two UTS specification files are written, one associated with the remote
procedure, and one with the AVS module. The two are nearly identical, differing only as to

whether they designate the procedures as imports or exports.1 For shaft, the relevant export
specification is as follows:

export setshaft prog(

"ecom" val array[4] of float, "incom" val integer,

"etur" val array[4] of float, "intur" val integer,

"ecorr" res float)

export shaft prog(

"ecom" val array[4] of float, "incom" val integer,

"etur" val array[4] of float, "intur" val integer,

"ecorr" val float, "xspool" val float,

"xmyi" val float, "dxspl" res float)

Note that in this example, all parameters are specified as either value or result parameters; UTS
supports var (value/result) parameters as well. This export specification is co-located with the
npss-setshaft.f and npss-shaft.f files on the remote machine, while the matching
import specification is co-located with the code for the invoking AVS module.

The final step involves modifying the AVS module slightly to add whatever interaction
facilities are desired and to coordinate startup with the Schooner Manager. In general, three short
pieces of code are needed to accomplish these tasks. The first is placed in the spec function of
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1UTS actually allows the import to be, in essence, a subset of the export, but this facility is not currently exploited in
NPSS.

-9-



the module, which specifies the AVS input and output data streams, and the widgets the module
will use. For the shaft module, two widgets were added to allow the user to specify the machine
on which to execute the remote procedure and its pathname, as follows:

iparm35=AVSADD_PARAMETER(’Remote Machine’, ’choice’, ’lace04’,

’convx1:hopper1:hopper2:lace04:lace06:

lercymp:renegade:schooner:vochelle:wirth’, ’:’)

call AVSCONNECT_WIDGET(iparm35, ’radio_buttons’)

iparm36 = AVSADD_PARAMETER(’path name’, ’string’,

’/usr/patrick/avsdemos/tess/remote/’, ’ ’, ’ ’)

call AVSCONNECT_WIDGET(iparm36, ’typein’)

The first two statements create the radio buttons that allow the selection of the remote machine.
The strings between colons represent machines at Lewis Research Center and The University of
Arizona that can be chosen interactively as the location to run the computation. The second two
statements create a type-in widget that allows the user to specify the pathname to the executable
that will correspond to the machine selected.

The second section of code is added at the beginning of the compute function in each
AVS module that is invoking a remote computation. This function is a standard routine that is
executed each time the module is scheduled for execution by AVS. The added code invokes a
Schooner library function that registers the AVS module with the Schooner Manager and asks the
Manager to start the remote process. This is done as follows:

character*(*) machine

character*(*) path

save first_time_shaft

logical first_time_shaft/.true./

if (first_time_shaft) then

CALL sch_start_component(machine, ’shaft’, path)

first_time_shaft = .false.

endif

The value of machine and path, which are passed as arguments to sch_contact_schx,
are set when the user makes the selection of a remote machine and types in the pathname using
the two widgets described above.

The final piece of additional code is placed in the AVS destroy function, which is
invoked when the module is removed from a network or the entire network is cleared. This code
is simply a call to the Schooner library function sch_i_quit, which notifies the Manager that
the AVS module is being destroyed. When this occurs, the Manager sends shutdown messages to
the remote procedures, instructing them to terminate.

As already mentioned, the steps followed for the other three adapted modules were
essentially the same. As with the shaft module, two remote procedures were involved: one that
was called once to initialize values, and one that was called repeatedly during steady-state and
transient calculations. It would be possible with Schooner to separate the two remote procedures,
executing each on a different remote machine, or executing one on the (local) AVS machine and

-10-



one on a remote machine. For TESS, however, the setup procedure for each of the selected
modules is called only once per simulation, so there is no real performance gain from separating
the two procedures.

3.4. Experiments

Each of the adapted AVS modules were tested separately on a variety of machine combinations
over both local and wide-area networks. These tests took place primarily at NASA Lewis
Research Center, with wide-area tests involving machines at The University of Arizona. Some of
the more interesting combinations are summarized in Table 1. Since TESS provides a complete
engine model, each adapted module could be tested to ensure that the steady-state and transient
calculations converged correctly.

Additional tests were performed combining two, three, and all four of the adapted modules.
An example of a four-module test is shown in Table 2. With repeated instances of two of the
adapted modules present in the simulation, there were a total of six modules with remote
computations. TESS was run through a steady-state computation using the Newton-Raphson
method to balance the engine and a one second transient simulation using the Improved Euler
method. To verify that the adapted modules were working correctly, the results were compared
with the same computation using the original local-compute-only versions of the four modules.

4. The Evolution of Schooner

A primary reason for constructing and testing the prototype executive was to determine how well
Schooner’s capabilities matched the needs of scientific applications like NPSS. Although
Schooner fared well in general, deficiencies were found that led to the evolution of the system. In
this section, we first document the incremental changes that were made to Schooner as minor
deficiencies were inevitably uncovered during our experimentation with an early version of the

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
AVS Machine Remote Machine Connecting Networkiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Sun Sparc 10 SGI 4D/480 local Ethernetiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Sun Sparc 10 Convex C220 same building, multiple gatewaysiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SGI 4D/480 Cray YMP same building, multiple gatewaysiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SGI 4D/480 Sun Sparc 10 via Internet
Lewis Research Center The University of Arizonaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Sun Sparc 10 IBM RS6000 via Internet
The University of Arizona Lewis Research Centeriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

Table 1—TESS and Schooner individual module tests
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

-11-



hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
AVS Machine Module # of Instances Remote Machineiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

combustor 1 SGI 4D/340 U. of Arizonaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
duct 2 Cray YMP Lewis Research Centeriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
nozzle 1 SGI 4D/420 Lewis Research Centeriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
shaft 2 IBM RS6000 Lewis Research Center

TESS Simulation
executed on
Sun Sparc 10 at
U. of Arizona

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

cc
c
c
c
c
c
c

Table 2—TESS and Schooner combined test
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NPSS prototype. These modifications were designed to overcome specific and relatively small
problems, or to extend the functionality of the system. We then turn to describing the one more
significant extension that we found desirable based on our experience with NPSS. This extension
involved modifying Schooner’s programming model to support more dynamic configuration of
remote procedures into the overall computation. The incremental changes were made as work
with the early version of the prototype executive progressed. The modifications needed to realize
the programming model extension were recently completed and used in the TESS experiments
described in the previous section.

4.1. Incremental Changes

Incremental changes to Schooner included the addition of the Cray YMP and IBM RS6000 to the
list of supported machines, the addition of a new floating point type to UTS, and a change in the
Schooner startup protocol. We describe here the work involved with incorporating the Cray
YMP; the work for the IBM RS6000 was similar. Adding the Cray was straightforward and
involved work in two areas. The first was writing UTS conversion routines for the Cray data
types, especially the ones for integer and floating point values, which are used heavily in NPSS.
Such routines are easily written since they simply involve converting the Cray’s internal data
representations to and from the UTS intermediate representation. The only problem was that the
Cray’s integer and float representations support larger magnitudes than the IEEE standard used by
UTS. Two remedies were considered: treating such out-of-range Cray values as an error, or
converting them to the IEEE ‘‘infinity’’ value. After consultation with researchers involved in
developing NPSS code, the first option was chosen.

The other area where work was needed to incorporate the Cray was modifying the Schooner
runtime system to support communications with the machine. In general, this was no more
difficult than for other machines, requiring only a few changes to include files and type
declarations. The one area where an unexpected problem did arise was in the naming of Fortran
procedures. On most machines, procedure names are converted to lower case by their respective
Fortran compilers, while the compiler on the Cray uses upper case. This inconsistency caused a

-12-



surprising number of naming problems, both for the writer of Schooner programs and for the
Schooner implementation itself. For example, if this inconsistency had been retained, a user
writing a program that calls a remote Fortran procedure would need to know beforehand whether
it would be run on a Cray or some other machine. Moreover, having Schooner standardize all
procedure names to, for example, lower case is not satisfactory because that would interfere with
common naming conventions in other languages such as C. In the end, the choice was made to
accept both upper and lower case names for Fortran procedures, and then treat them as synonyms
within Schooner. This was done primarily by changing the Manager so that it stored both the
upper and lower case alternatives in its mapping tables.

The second incremental change was expanding the UTS type system to include both single-
and double-precision floating point types instead of just double-precision. The original decision
to include only double-precision was in keeping with the Kernighan and Ritchie C specification
[Kernighan88], which requires that values of both float and double types passed as arguments be
coerced to double for the call. With the addition of Fortran to Schooner and the development of
the ANSI C specification, this practice is no longer adequate. Additionally, having both types is
an advantage since it allows the user to specify more precisely the size of the argument value to
be passed.

To support both sizes of float values, two changes were required. The first was to add both
float and double to the UTS specification language, with the corresponding changes to the parsers
for the stub compilers. The second change involved adding the the appropriate encode and
decode functions to the UTS library for each of the supported architectures.

The third area where changes to Schooner were needed involved the startup protocol.
Previously, Schooner programs were started by executing the Manager as a command and
specifying the various files containing Schooner procedures and the appropriate machines as its
arguments. Once started, the Manager would create processes to execute all the remote
procedures on the appropriate machines, and then invoke the program’s main routine. Since the
Manager controlled everything, it could easily collect the mapping information needed to resolve
subsequent remote invocations. When AVS is involved, however, the Manager is no longer in
control. Specifically, it now has no way of inferring when or where a process should be
instantiated for a remote procedure, since this now occurs when a module is configured into an
AVS network rather than when the Manager is started. To solve this problem, a new protocol
was devised that allows a newly-configured module to establish initial contact the Manager and
to send requests for a remote procedure to be started on a specific machine.

4.2. Extended Schooner Model

As mentioned above, the original Schooner model of how a program would be executed was
oriented around the traditional command line paradigm where everything is specified a priori.
Unfortunately, this model has proved too restrictive for NPSS, where the pieces of the overall
application are configured dynamically at runtime using the Network Editor. In fact, this would
be the case for any application written using AVS or similar systems.

-13-



One easy change that extended this model to a degree was the new startup protocol
described above. This allows remote procedures to be initiated only when needed, thereby
facilitating such features as interactive user placement of a remote computation using a widget.
However, this change did not solve all the problems, largely because certain simplifying
assumptions had been made in the implementation; while these assumptions were valid given the
original orientation, they became less so as the orientation changed.

As a prime example, an original assumption in Schooner was that only one procedure of a
given name would be present in a program. This assumption was implicit in the procedure call
paradigm. A traditional sequential program only has one instance of each named procedure and
adding the ability to call remote procedures did not change this assumption. While reasonable,
such an assumption is too restrictive for NPSS. In this environment, there may well be multiple
instances of the same module in the network, and therefore, multiple remote procedures with the
same name. This scenario, in fact, appears in the TESS F100 simulation (see Figure 2) where the
network contains multiple instances each of the bleed, compressor, duct, mixing volume, shaft,
and turbine modules.

A number of additional problems were discovered, most of which were also related to the
sequential execution model. A (non-exhaustive) list of these included:

g The Schooner runtime was written assuming no concurrent execution of remote
procedures; with the dataflow model of AVS, this may not be true.

g The original Schooner shutdown procedure terminated the entire program when any part
executes sch_i_quit or an error occurs; deleting an individual module in AVS should,
in fact, result only in the termination of those remote computations associated with the
module.

g Remote procedures cannot be moved once instantiated as processes; given the potentially
long-running nature of codes in NPSS, moving the computation should be an option so
that, for example, scheduled downtimes can be avoided.

All these problems forced a rethinking of the Schooner model and corresponding changes to the
implementation. Our goals in doing so were first, to retain an intuitive, easy to use, and general
programming model for the user, and second, to minimize implementation effort.

One option for an extended model that was considered and quickly discarded was to treat
each module in an AVS network and its associated remote computations as a separate Schooner
program. In this model, each module would have its own Manager process to handle remote
startup, name mapping, etc. While workable, this strategy would put an undue burden on the user,
who becomes responsible for managing which AVS module is associated with which Manager. It
would also preclude sharing remote procedures between modules, something that is desirable in
certain situations.

The option that was, in the end, chosen involves extending the model of a Schooner

-14-



program to include multiple threads of control, which we call lines.2 Each line is equivalent to the
previous notion of a Schooner program; that is, it is a sequential execution of procedures, some of
which may be located on remote machines and/or written in various programming languages.
Any procedure in a line can request the initiation of other remote procedures by using the
appropriate Schooner library function; such newly started procedures are considered part of the
requesting procedure’s line and are callable only from other procedures in that line. As before,
there is a single Manager, but it now handles the initiation and name mapping chores for multiple
control threads. Given the more dynamic nature of the computation, the Manager also becomes a
persistent process that must be explicitly initiated and terminated by the user.

The extension of the model to include multiple lines solves many of the problems
associated with the original model without unduly complicating either the user’s task or the
implementation. For example, concurrency is possible, but controlled; each line is sequential and
executes independently of the others with no synchronization. Similarly, no duplicate procedure
names are permitted within a line, but multiple lines can contain remote procedures with the same
name; in this case, each line will have its own instance. Reasonable shutdown semantics are also
supported easily in this extended model. The shutdown protocol now involves only the
procedures in a single line. Thus, when an AVS module is removed from the network or an error
occurs, the Manager terminates only the remote procedures within the affected line.

Implementing lines within Schooner primarily involved changes to the Manager. Where
the Manager had previously maintained a single procedure name database, it now maintains a
separate database for each line. When a mapping request is received by the Manager, only the
line from which the request is originated is searched. In a similar fashion, when a procedure
stops, either through an error or a call to sch_i_quit, the Manager sends shutdown messages
only to those procedures in the same line. The persistent nature of the Manager process in this
new model also allows multiple runs of a simulation to be handled, including re-loading the same
or a different engine model into AVS.

Another feature supported by the new model is the ability to move a remote procedure from
one machine to another during execution. This is useful when a machine is approaching a
scheduled down time, or when the load on the current machine grows too large and a more lightly
loaded machine is available. To carry out a move, a Schooner library function is invoked in
which the procedure to be moved and the target machine are specified as arguments. This results
in the Manager first sending a shutdown message to the original procedure, and then starting a
new copy on the specified machine. The Manager then updates the procedure name mapping
information for the line, so that future calls go to the new location. Procedure name caches
within each procedure in the line are updated when the next call to the procedure is attempted.
The call to the old location fails, resulting in an automatic call to the Manager for the new
information. It should be noted that this kind of procedure migration is currently feasible only if
the procedure is stateless. This condition is satisfied by many of the codes in the TESS prototype
and by many other scientific codes. A planned addition to Schooner will utilize an extension to
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
2Line is the nautical term for rope.

-15-



the UTS interface description language to describe a list of state variables whose values are to be
transferred when the procedure is moved.

Shared procedures are also planned for Schooner as a result of the addition of lines. A
procedure will be designated as shared at startup time, indicating that it is not part of the line
from which the startup request originated, but is available for use by any line. The Manager will
maintain a separate database for shared procedures. Mapping requests to the Manager will be
checked first against procedures in the line from which the request is received, and then against a
list of shared procedures. When a shared procedure is terminated or moved, the mapping
database is updated for all lines.

This addition of lines to the Schooner model represents, we believe, a good compromise
between the overly restrictive model used previously and the complexity that results from a
complete generalization. With this scheme, the user can manipulate an NPSS network from
within AVS in such a way that the remote computations behave reasonably, while still retaining
simplicity of use.

5. Conclusions

Developing a suitable simulation executive is undoubtedly one of the most important and
challenging aspects of the NPSS project due to the myriad of responsibilities assigned to the
software. Not only must it provide features that can be used to control and interact with the
computation, but it must also mask from the user the effects of heterogeneity and distribution.
Here, we have described a prototype executive that takes a step towards meeting these needs by
combining the strengths of AVS and Schooner. Specifically, AVS provides the ability to
compose and control a simulation using a high-level network editor and associated widgets, while
Schooner provides transparent access to heterogeneous and distributed resources. In evaluating
the capabilities of Schooner in this regard, we concluded that, although the system was a
reasonable match when the project started, some modifications were needed to provide stronger
support for the requirements of NPSS and similar scientific projects.

Acknowledgements

The NPSS project is managed by the Interdisciplinary Technology Office (ITO) at NASA Lewis
Research Center (LeRC). Thanks to A. Afjeh and J. Reed of the U. of Toledo and C. Putt, B.
Perry, and B. Armstead of LeRC, who provided assistance with understanding the software and
hardware requirements of NPSS. Special thanks also to G. Follen for his support and advice.
This work was performed in part on computing resources at the Advanced Computing Concepts
Laboratory and the Computer Services Division at LeRC.

References
[Almes85] Almes, G.T., Black, A.P., Lazowska, E.D., and Noe, J.D. The Eden system: A technical

review. IEEE Trans. on Softw. Eng. SE-11, 1 (Jan. 1985), 43-59.

[AVS92] Advanced Visual Systems Inc. AVS Developer’s Guide (Release 4.0), Part number: 320-
0013-02, Rev B, Advanced Visual Systems Inc., Waltham, Mass., May 1992.

-16-



[Bershad87] Bershad, B.N., Ching, D.T., Lazowska, E.D., Sanislo, J., and Schwartz, M. A remote
procedure call facility for interconnecting heterogeneous computer systems. IEEE Trans.
on Softw. Eng. SE-13, 8 (Aug. 1987), 880-894.

[Birrell84] Birrell, A. D. and Nelson, B. J. Implementing remote procedure calls. ACM Trans. on
Computer Systems 2, 1 (Feb. 1984), 39-59.

[Black87] Black, A., Hutchinson, N., Jul, E., Levy, H. and Carter, L. Distribution and abstract types
in Emerald. IEEE Trans. on Softw. Eng. SE-13, 1 (Jan. 87), 65-76.

[Butler92] Butler, R. and Lusk, E. User’s guide to the p4 parallel programming system, Argonne
National Laboratory, Argonne, IL, August 1992.

[Chen93] Chen, S., Eshaghian, M., Khokhar, A., and Shaaban, M. A selection theory and
methodology for heterogeneous supercomputing. Proc. Workshop on Heterogeneous
Processing, Newport Beach, CA (Apr. 1993), 15-22.

[Claus92] Claus, R.W., Evans, A.L., and Follen, G.J. Multidisciplinary propulsion simulation using
NPSS. 4th AIAA/USAF/NASA/OAI Symposium on Multi-disciplinary Analysis and
Optimization, Cleveland, Ohio, September 21-23, 1992.

[Claus91] Claus, R.W., Evans, A.L., Lylte, J.K., and Nichols, L.D. Numerical Propulsion System
Simulation. Computing Systems in Engineering 2, 4 (Apr. 1991), 357-364.

[Freund93] Freund, R. F., and Siegel, H. J. Heterogeneous processing. Computer 26, 6 (June 1993),
13-17.

[Gibbons87] Gibbons, P.B. A stub generator for multi-language RPC in heterogeneous environments.
IEEE Trans. on Softw. Eng. SE-13, 1 (Jan. 1987), 77-87.

[Griswold90] Griswold, R. and Griswold, M. The Icon Programming Language, Prentice Hall,
Englewood Cliffs, New Jersey, 1990.

[Hayes87] Hayes, R. and Schlichting, R.D. Facilitating mixed language programming in distributed
systems. IEEE Trans. on Softw. Eng. SE-13, 12 (December 1987), 1254-1264.

[Hayes88] Hayes, R., Manweiler, S., and Schlichting, R.D. A simple system for constructing
distributed, mixed-language programs. Software—Practice and Experience 18, 7 (July
1988), 641-660.

[Hayes89] Hayes, R. UTS: A Type System for Facilitating Data Communication, Ph.D. Dissertation,
Dept. of Computer Science, Univ. of Arizona, August 1989.

[Hayes90] Hayes, R., Hutchinson, N.C., and Schlichting, R.D. Integrating Emerald into a system for
mixed-language programming. Computer Languages 15, 2 (1990), 95-108.

[Homer92a] Homer, P.T., and Schlichting, R.D. Adapting AVS to support scientific applications as
heterogeneous, distributed programs (extended abstract). Proc. Workshop on
Heterogeneous Processing, Beverly Hills, CA (Mar. 1992), 50-53.

[Homer92b] Homer, P.T., and Schlichting, R.D. A software platform for constructing scientific
applications from heterogeneous resources. Tech. Report 92-30, Dept. of Computer
Science, Univ. of Arizona, Nov. 1992.

[Jones85] Jones, M.B., Rashid, R.F., Thompson, M.R. Matchmaker: An interface specification
language for distributed processing. Proc. 12th Symp. on Prin. of Prog. Lang, New
Orleans, LA (Jan. 1985), 225-235.

[Kernighan88] Kernighan, B.W., and Ritchie, D.M. The C Programming Language, second edition,
Prentice Hall, Englewood Cliffs, NJ, 1988.

[Khokhar93] Khokhar, A. A., Prasanna, V. K., Shaaban, M. E., and Wang, C. Heterogeneous
computing: Challenges and opportunities. Computer 26, 6 (Jun. 1993), 18-27.

[Mercurio92] Mercurio, P.J. Khoros. Pixel 3, 2 (Mar./Apr. 1992), 28-33.

[Quealy92] Quealy, A., Cole, J., and Blech, R. Portable programming on parallel/networked
computers using the Application Portable Parallel Library (APPL), NASA Technical
Manual, 1992.

-17-



[Rasure91] Rasure, J. and Williams, C. An integrated visual language and software development
environment. Jour. of Visual Languages and Computing 2 (1991), 217-246.

[Reed93] Reed, John A. Development of an interactive graphical aircraft propulsion system
simulator. Master of Science Thesis, University of Toledo, August 1993.

[Sun90] Sun Microsystems, Inc. Network Programming Guide (Revision A), Part number 800-
3850-10, Sun Microsystems, Inc., Mountain View, CA, March 1990.

[Sunderam90] Sunderam, V. S. PVM: A framework for parallel distributed computing. Concurrency—
Practice and Experience 2 (Dec. 1990), 315-339.

[Wang92] Wang, M., Kim, S., Nichols, M., Freund, R., Seigel, H., and Nation, W. Augmenting the
optimal selection theory for superconcurrency. Proc. Workshop on Heterogeneous
Processing, Beverly Hills, CA (Mar. 1992), 13-22.

[Xerox81] Xerox Corp. Courier: The Remote Procedure Call Protocol. Xerox System Integration
Standard XSIS 038112, Xerox Corp., Stamford, Conn., Dec. 1981.

-18-


