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Abstract

Data parallel languages are gaining interest as it becomes clear that they support a wider range of
computation than previously believed. With improved network technology, it is now feasible to build data
parallel supercomputers using traditional RISC-based workstations connected by a high-speed network.
This paper presents an in-depth look at the communication behavior of nine C programs. It also compares
the performance of these programs on both a cluster of 8 HP 720 workstations and a 32 node (128 Vector
Unit) CM-5. The result is that under some conditions, the cluster is faster on an absolute scale, and that
on a relative, per-node scale, the cluster delivers superior performance in all cases.
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1 Introduction

This paper considers the question of whether data parallel programs can be effectively executed on a cluster of
workstations connected by a high-speed local area network. Both aspects of this question are widely recognized
as having intrinsic merit in their own right: the data parallel model offers a high potential for concurrency and is
generally considered easy to program [6], and loosely-coupled workstationclusters offer an attractive cost-performance
alternative to tightly-coupled multiprocessors [3, 2]. Addressing the intersection of these two topics, therefore, has a
high potential for payoff.

The problem, of course, is that the fine-grained parallelism common in data parallel programs is assumed to
be inappropriate for workstation clusters because of the associated high latency and low bandwidth of the network.
Three factors lead us to believe that this assumption is flawed. First, recent advances in network technology have
yielded nearly an order of magnitude improvement in both latency and throughput, meaning that the performance gap
between loosely-coupled and tightly-coupled multiprocessors is not as dramatic as it once was. Second, analysis of a
collection of data parallel programs indicates that although fine-grained, they still have well-bounded communication
requirements. Third, it is possible to design an architecture that minimizes the remaining communication and control
overhead by leveraging the predictable lexical and execution behavior of data parallel programs.

To test this hypothesis, we have implemented an environment for C [4]—a data parallel language developed
by Thinking Machines Corporation (TMC) for the Connection Machine family of parallel processors—on a cluster
of Hewlett Packard 720 workstations connected by an FDDI network. Each workstation includes an experimental
network adapter board designed for low latency, and runs a minimal OS kernel. We then experimented with a
comprehensive set of test programs characteristic of operational image understanding systems. These algorithms are
generally interesting because they are adaptive to diverse data inputs, span multiple processing levels (e.g., numeric,
pixel-based, object-based), utilize all available C communication operators, and are scalable to handle increasing
sensor collection capabilities.

After giving an overview of C ’s communication needs and briefly describing the communication substrate that
underlies our implementation of C on a workstation cluster, this paper presents the results of a comprehensive
study of the performance of the C test suite running on both an HP workstation cluster and a more tightly-coupled
multiprocessor architecture, the CM-5 [6]. From this study we are able to draw several conclusions about the
appropriateness of loosely-coupled systems as execution platforms for data parallel programs.

2 Background

This section provides an overview of the C language, a detailed description of the major communication operators
provided by the language, and a discussion of the communication properties of the C language and application
programs.

2.1 C Overview

C adds parallelism to sequential C by extending the language to support declaration of, and operations on, parallel
vector data. The fundamental unit of computation in a data parallel program is the element. The basic data elements
of each problem serve as the building blocks for all higher-level structures: pixels of an image, nodes and arcs of a
graph, and so on. Elements are organized into aggregates—homogeneous structures called shapes—which define the
rank and dimensions of a collection of elements. Shapes may be declared either statically or dynamically, with the
latter method being necessary for efficient processing of data-dependent problems.

Associated with each shape, a program may allocate parallel variables (pvars), based on standard C types. Pvars
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can be allocated statically, as automatic variables, or dynamically as part of a pvar heap. Corresponding elements of
pvars can be combined using parallel versions of standard C operators; given two integer pvars, and , of the same
shape, computes the sum of the elements of and at each location in the shape. Image processing programs
frequently utilize multiple shapes of varying configurations, switching between shapes as processing demands. All
variables in the sequential portions of a C programs are called scalar variables.

To maximize the expression of parallelism available within a problem, processing is introduced at the finest
granularity possible—the element at every location of a shape. Processing is expressed using the concept of a virtual
processor (vp), to abstract away any limits in the number of available physical processors. The ratio of virtual to
physical processors is called the vp ratio. For each C operation, each physical processor iterates sequentially over
its local virtual processors. Activity of the virtual processors can be manipulated during execution with the use of
the where statement, which sets the context for the duration of the block. C retains C’s single thread semantics; it is
not possible for two different nodes in the cluster to execute different control flows during program execution. For
example, all processors execute the same branch of each conditional.

2.2 C Communication Operators

C supports a wide range of communication patterns through a small set of structured operators. These operators are
invoked using C language constructs and library functions. This is in contrast to lower-level approaches requiring
the user to explicitly package and transmit blocks of data. C operators support various scalar-pvar and pvar-pvar
communication operations. Both implicit and explicit addressing are supported: implicit for regular, neighborhood
operations, and explicit for global or application-specified transformations. C shapes provide a global address space
for all parallel variables, allowing any element of a shape to address any other element regardless of physical location.
Additionally, most operators support some form of computation in combination with the communication operation.
The operations are summarized as follows:

Reduction. Computes a single scalar value from the application of a binary associative operator to the active elements
of a pvar. C supports the reductions minimum, maximum, sum, product, bitwise logical or, logical and, and
logical xor. Reductions are typically used to compute global statistics or to propagate vp state up to the sequential
control flow of the program.

Grid-Send. Also called NEWS send (north, east, west, south), it supports regular movement of data between neigh-
boring elements along one axis of an dimensional Cartesian grid. Grid communication is more efficient to
implement than general communication because it uses implicit addressing and has a regularity that eliminates
all congestion at the element level (i.e., no collisions). Grid-sends are used by neighborhood or window-based
algorithms.

General Send. Also called the permutation operator, it utilizes the global address space of C to provide communi-
cation between any two pvar elements within the same or different shapes. All source and destination addresses
are specified on a per-element basis, allowing the permutation pattern to be constructed dynamically, by the
application. Values sent to the same destination element can be combined using add, multiply, min, max, or
overwrite. For example, the statement value accum is a convenient way to implement a histogram.

Scan. Also called the parallel prefix operator, it is derived from an operator of the same name first introduced in the
APL language. C supports scan for the binary associative operators minimum, maximum, sum, copy, bitwise
logical or, logical and, and logical xor. When applied to a pvar, the scan operator computes all partial products
of that operator, moving along one dimension of the shape, with optional segment masking.
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Note that most previous work involving data parallel languages has focused on Fortran D [7]. This is significant
because C emphasizes a much richer interconnection of parallel data. This is best illustrated by the varied applications
of interest to the two communities: Fortran users are primarily interested in grid-based, numerical computation,
characterized by algorithms such as Jacobi and SOR, while C* is often the language of choice for computer vision
programs because of the need for general sends and scans.

2.3 Communication Behavior

Whether or not a workstation cluster is appropriate for data parallel program execution is primarily dependent on
the communication behavior of the programs. It is frequently assumed that fine-grained expression of parallelism
necessarily implies a higher level of physical communication. We have examined a suite of data parallel programs and
found that they have restricted use of communication operators in proportion to computational operations. Using static
instruction frequency, the programs vary from 4 to 13% communication instructions. Dynamic instruction frequency
shows an average of 8.5% communication.

Because the communication operators are part of the C language (and libraries), it is possible to examine the
source of a C program and predict more about its dynamic communication behavior than would be possible for a
similar program that uses unstructured, untyped, manual message passing. The four communication operators have
different susceptibility to latency and bandwidth limitations. This is because the semantics of the operators require
different amounts of local computation prior to physical communication. For example, a reduction (e.g., summation)
of a float pvar, requires that each node computes the sum of all its locally allocated elements, but broadcasts only a
single 32-bit result. This operation has limited bandwidth requirements, and is relatively insensitive to latency due to
the many local floating point additions required.

C operator 1K 256K 1M 32x32 512x512 1Kx1K
reduce 4 4 4 4 4 4

grid-send 8 8 8 128 2K 4K
scan 4 4 4 128 2K 4K
send 8K 2M 8M 8K 2M 8M

Table 1: Communication Operator Payload Sizes by Problem Size and Shape

Problem size is important in determining the significance of latencies caused by software and communication
overheads. If the overall problem size and physical communication requirements grow at different rates, then the ratio
of communication to computation will vary, making the networking component more or less significant. Sources of
fixed overhead include all of the sequential portions of the C program, the communication operation invocation and
setup, and physical communication latency. If the number of virtual processors being emulated is too small, then fixed
overheads can dominate overall execution time. On the other hand, when problem sizes are large, fixed overheads
become less significant. If absolute latency is small then it will only be significant to small problems. The cluster
architecture employs a number of optimizations to both reduce sources of latency, as well as techniques for hiding any
remaining latency.

The bandwidth requirements of each communication operator also depend on program size and shape. Each
communication operation requires a mixture of local and physical communication. The extent of the non-local
or physical communication is determined by the shape of the computation and the way the shape is mapped onto
the physical processors. Cluster-C uses block decomposition, which allocates consecutive elements to each
processor. Table 1 shows the physical communication requirements for each communication operator under a variety
of 1 and 2D shape sizes. One would expect that operators with small payload sizes would be more sensitive to
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latency, while large payload operators would stress the bandwidth limits of the network. The ratio of local to non-local
communication can be further altered by the send patterns specified by the application program. The more locality in
a send operation, the less the need for raw communication bandwidth. For example, local windowing operations have
lower physical communication requirements than global transformations like matrix transpose.

3 System Architecture

Cluster-C consists of eight HP 9000/720 workstations (PA-RISC at 50 MHz). Each machine is equipped with 32 MB
RAM and a Medusa FDDI controller [1]. We have measured this hardware’s host-to-host throughput and latency to
be 98.3Mbps and 47.8 sec, respectively. A minimal OS runs on this platform. It provides a framework for running
the three key pieces of the system: the network layer, the C run-time system (RTS), and the application programs.
We use the TMC C translator to convert C code into C/Paris—C code with calls to our parallel computation and
communication libraries.

The key observation about C is that it exhibits a highly regular and predictable pattern of communication and
synchronization. With information about shape and communication operator behavior, we have defined a model of
computation and communication cost, and based on this model, have designed and implemented a highly tuned runtime
system and communication protocols. Our design involves five main ideas, which we now summarize; more detail
can be found in a companion paper [8].

First, all nodes in the cluster execute a copy of the same program, maintaining duplicate copies of all scalar variables
and equal portions of all parallel variables in a manner similar to [5, 7]. This is in contrast to other multiprocessor-
based implementations of C —including both the CM-2 and CM-5—in which a single front-end control processor is
connected by a communication tree to an array of processing elements. These systems execute all sequential code
on the front-end, broadcasting an instruction stream (on the CM-2) or a stream of instruction block identifiers (on the
CM-5) to the processing array. In other words, on the cluster-based implementation, all processors in the cluster act
as both the front-end and a processing array member; the only form of synchronization used between nodes is for
one to block waiting to receive a data message from another. No explicit synchronization primitives (e.g., barriers)
are used between the nodes of the cluster. While this introduces redundant sequential computation, the cost is less
than the alternative communication costs. In a cluster environment, any non-uniform identification of such a front-end
processor introduces load imbalances and added communication overheads.

Second, we have structured the C communication operators to support the overlap of communication and com-
putation through message pipelining [7]. Each communication operator is decomposed into two distinct phases: a
sending phase, during which local results are computed and sent to the other cluster nodes, and a receiving phase,
during which the local processor receives intermediate results or messages from the other cluster nodes. Because C
control flow is identical to that of sequential C, and all references and updates to parallel variables are performed in
a well behaved manner, it is possible to perform data-flow analysis on the parallel variables and determine when the
variables are defined, and where subsequent use occurs. The extent to which these two points are separated within the
program defines the maximum possible separation of send and receive phases, and therefore the maximum possible
overlap of communication and computation. This allows the send phase to be placed immediately after the variable
is defined, and the receive phase to be placed immediately before the first possible use of the variable. After a sender
initiates a transfer, it can return to computation while the network layer transmits the data, delaying its receive phase
until the time when the data is actually required for computation. By separating send and receive portions of the C
communication operations, it is possible to reduce the impact of the network latency.

Third, our system uses a highly optimized (specialized) protocol to transmit messages between physical processors.
All C communication operators are based on asynchronous broadcast and point-to-point send functions. A key
observation is that while the number and type of messages sent during the execution of a particular C program cannot
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be determined a priori, the C language does guarantee that messages sent during a single execution of the program will
be identical for all nodes in the cluster. We exploit this regularity to define a message indexing scheme that is highly
efficient for both the network interface and the language runtime system. This is in contrast to using a general-purpose
communication substrate like PVM [2]. We use message vectorization [7] to aggregate multiple virtual processor
messages destined for the same physical processor. The network protocols also implement implicit and explicit ACKs
and eager retransmission.

Fourth, we use several low-level optimizations to minimize the latency of the communication operations. One
optimization is similar to active messages [9], in that as much work as possible is done at interrupt time, thereby
minimizing context switch overhead. Interactions between the interrupt handler and the main C* thread are all
accomplished without the aid of heavy-weight semaphores. A second optimization is to use a sophisticated buffer
management scheme that minimizes how often data has to be copied from one buffer to another.

Finally, the many virtual processors that run on each physical processor are implemented by a single thread; we
do not associate a thread with each vp. Thus, the only context switches involved are between the main thread running
the application and RTS code, and the interrupt handler that places each incoming message in the appropriate memory
location.

4 Test Suite

Our tests come primarily from the disciplines of image processing and computer vision. This area is appealing because
it has a wide range of frequently used algorithms ranging from grid-based, numeric algorithms to dynamic, irregular
graph-based algorithms. Such diversity requires flexible shape creation and usage, and significant transformations
between shapes. The test programs were selected for their representative nature; together they cover all of the C
communication operators in different mixtures. The nine programs are summarized as follows:

amp. Locates all pixels in a 2D input image that are significantly brighter than the average of a surrounding
neighborhood. All neighborhood summations are computed with 2D horizontal and vertical 32-bit floating
point plus-scans and grid-sends. The number of pixels which pass the threshold test are computed with a
plus-reduction.

col. Simple mathematical algorithm that demonstrates convergence to zero of a 1D vector of randomly generated
initial values. This algorithm provides an example of minimal computation within a reduction-controlledwhile
loop, performing a small number of math operations and a plus-reduction within each iteration of the loop.

dens. Computes the local density of a set of selected points in a 2D plane. The initial point locations, specified as
a vector of pairs, are projected to 1D, where a parallel range sweep algorithm is used to compute all
necessary distances. During each iteration, points adjacent in 1D realign themselves for the next comparison
using a 1D grid-send. The algorithm terminates when no more points have any neighbors remaining within the
maximum distance.

fft. Computes the discrete fast fourier transform of a 1D complex input vector. Different spectral components are
computed in iterations, each iteration employing a different general send pattern.

hist. Histograms an 8-bit 2D input image into 256 accumulator bins using a general send with an additive combination
at the destination. Each vp in the source image sends the constant 1, using its image value as the index into the
accumulator array. Values in the input image are uniformly distributed to assure an even distribution of message
destinations. A histogram’s single communication operation generates multi-fragment messages sent
from all processors, resulting in total messages on the network.
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hyp. Uses the kmeans algorithm to perform unsupervised classification of multi- or hyper-spectral imagery. Using
2D images (where each of the images contains a different 8-bit spectral band), the algorithm classifies the input
image into classes. Beginning with initial class centroids, each image pixel computes a -dimensional
Euclidean distance from itself to each of the current means, assuming the class of the closest centroid. During
each iteration, new centroids are computed. Since the class centroids are maintained as sequential structures,
they are computed in each iteration using integer and floating point plus-reductions.

jac. The second non-image-oriented algorithm, provided for comparison purposes, Jacobi is an iterative algorithm
to find an approximate solution to Laplace’s heat equation, finding the steady-state temperature on a surface.
During each iteration, every vp in a 2D grid computes the average of its four immediate neighbors. Jacobi uses
only horizontal and vertical 2D grid-sends, and integer addition and division.

mat. Matches a set of input points to a library of templates, attempting to recognize structured objects within a 2D
image. Input points are represented as a 1D vector of pairs. The Legrange multiplier method is used to
obtain the best match of the templates to each subset of candidate image points. Processing requires significant
trigonometric and floating point calculation, but absolutely no communication.

obj. Extracts a set of detected objects from a 2D input image, transforming them into a more compact 1D representation,
where feature and summary data is computed. Objects are moved from the sparse 2D shape using a general send
of all fields of an object structure. Once in 1D, several reduction operators are used to compute global statistics
of objects attributes.

5 Experimental Results

Each of the test programs described in the previous section was originally developed for the CM-2; the code was
moved from the CM-2 to the cluster and CM-5 with no subsequent optimizations performed for either platform. All
floating point computations were performed in 32 bits on both platforms. The cluster programs were compiled with
gcc2 using the optimizer. The C code was compiled with TMC’s 7.1 C compiler that supports optimization of
sequential code only. All execution times were measured with either the PA-RISC 20 nanosecond cycle counter on the
cluster, or the CM timer facility on the CM-5.

The CM-5 architecture [6] consists of a front-end SPARC2 that runs all sequential portions of a C program,
and controls a back-end processing array consisting of 32 SPARC2 processors, each equipped with four vector units
(VUs), for a total of 128 VU’s. The array of SPARC2/4-VU groups are connected by two high-speed communication
networks—a fat-tree data network for point-to-point and grid-based communication, and a control network used to
synchronize computation and support global reductions, broadcasts, and scans.

5.1 Absolute Execution Speed

Figure 1 is a summary graph comparing the results of running each of the nine benchmarks on Cluster-C and the
CM-5. The graph shows the ratio of execution speeds, measured in elements (virtual processors) per second, for the
cluster and CM-5 for three different sizes per program. For the purposes of this comparison, a 1K element problem
size was selected to represent small, resulting in a vp ratio of 8 for the 128 VU CM-5 and 128 for the cluster; large
was the largest configuration capable of running on the 8-node cluster (depending on the problem, from 32K to 1M
elements), and medium was the problem size mid-way between these two for each application. The data is plotted on

TMC notice: These results are based upon a beta version of the software and, consequently, is [sic] not necessarily representative of the
performance of the full version of this software.
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Figure 1: Ratio of Execution Speed (elements/sec) of 8-node Cluster-C to 128 VU CM-5. Test programs compared
for three problem sizes: small, medium, and large.

a scale so that cases where the cluster are faster appear above the horizontal center line at 1.0 and cases where
the CM-5 is faster appear below the line.

Where the ratio is greater than one, the 8-node cluster was faster than the 128 VU CM-5 in absolute performance;
this occurs in 6 out of 27 test cases (22%). The average ratio of all test programs across the three problem sizes was
0.63, indicating that the 128 VU CM-5 was less than twice as fast as an 8-node cluster on average. Only one of the 27
tests showed a case where the cluster was worse than 1/10th the speed of the CM-5 (11.76).

Overall, the cluster performed best in comparison to the CM-5 for small problems and problems that contain a
proportionally higher percentage of communication. Amp, dens, and jac all use grid-oriented communication (either
1 or 2D) in the form of grid-sends and scans, and are faster on the cluster for small sizes. As the problem size grows,
however, the ratio of computation to communication increases and the CM-5’s vector units become more effective,
with the CM-5 becoming 1.6 to 5.0 times faster. For those applications with a limited amount of communication
relative to computation, the CM-5’s 128 vector units were faster than the eight HP720s.

Applications where communication dominates tend to have better relative performance on the cluster throughout
the range of problem sizes. For hist, which performs one general send with additive combination of all colliding
messages, the CM-5 is only 1.25 times faster than the cluster for all problem sizes. Obj, which extracts sparse
information for transmission and performs a series of sends followed by a series of global reductions, is faster on the
cluster in all cases.

Figure 2 provides the full data summarized by the ratios of Figure 1. It gives the execution speed, measured in
elements (virtual processors) per second, obtained by the full configuration on both platforms. Execution speed takes
into account CPU performance, communication speed, and software overheads. Plotted as a function of problem size,
execution speed provides better insight into performance over a wider range of sizes than does elapsed time.

Figure 2 reconfirms the superior performance of the cluster for jac, dens, and amp on small to medium problem
sizes, as well as obj for all sizes. The cluster gets relatively good performance on hist over a range of problem
sizes. The CM-5 can be seen to delivers superior performance on col, fft, mat, and hyp—the floating point-intensive
problems.

Looking in more detail, we observe that the cluster reaches its peak performance at a much smaller problem size
than the CM-5, indicating a lower amount of absolute overhead in control and communication. The cluster also has
less absolute variation than the CM-5, indicating a smaller absolute overhead. Finally, the sparse sends of obj show
no signs of saturating the FDDI ring during the general sends.
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Figure 2: Absolute Execution Speed (elements/sec) graphs for all nine application programs, comparing an 8-node
cluster of HP720s, to a 32-node, 128 vector unit CM-5.

5.2 Relative Execution Speed

Figure 3 illustrates the execution speed of the two platforms at a per-processor level for the nine application programs
over a range of problem sizes. This compares two different absolute sizes, but the same number of virtual processors
allocated either to one of the HP720s or to one of the CM-5 vector units. The main conclusion we draw is that at
the per-node level, Cluster-C is capable of delivering superior performance for all test programs, under all problem
sizes, regardless of what amount and mixture of communication is used. Moreover, the rate of growth of the CM-5’s
execution speed is much slower than that of the cluster, indicating higher fixed overheads and poorer individual vector
unit performance. For our problem set, a standard RISC processor with a good floating point unit performs better than
a custom designed multi-vp vector unit.

We make three additional observations about Figure 3. First, the steep initial curves of the cluster indicate a well-
behaved communication system where the overheads grow more slowly than the computational components of the
tests. After reaching peak performance, a noticeable falloff in speed is apparent in several of the applications—amp,
col, hyp, jac, and mat. This falloff occurs at the very top end of the problem sizes supported by an 8-node cluster,
when all 32 Mbytes of physical memory are in use. At this operating point, these applications have significantly poorer
cache behavior than do smaller applications. Looking at the changes in execution speed for jac, for example, it appears
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Figure 3: Relative Execution Speed (elements/sec) graphs for all nine application programs, comparing 1 node of an
8-node cluster of HP720s, to 1 vector unit of a 32-node, 128 VU CM-5.

that networking overhead is comparable to the overhead incurred by going to main memory for problem elements that
would otherwise remain in the local cache.

Second, the cluster version of the mat test program has no communication. This is reflected in the almost level
execution speed curve, with less of the typical initial increase. The CM-5 still has the characteristic increase of fixed
overhead of communication and control. This is a reflection of the CM-5’s use of a front-end processor and on-board
SPARC2s.

Third, at a per-node level, the CM-5 has near-constant performance across all problems sizes for those applications
that rely primarily on general sends—hist and obj. No benefits are observed by moving to larger problem sizes. This
could indicate a limitation in the CM-5’s general send capability.

In summary, the graphs for the Cluster-C (Figure 3), demonstrate an optimal sub-problem size that would produce
the best overall cluster performance. As problems increase size, there is a rapid increase of performance as computation
costs outweigh either fixed or slower growing communication costs. At some point the problems become large enough
that bad cache behavior begins to dominate, and the performance curves begin to fall. This is not caused by either new
overhead or increasing communication costs.
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Figure 4: Speedup curves for Cluster-C from one to 8 nodes. The left graph shows speedup for 9 test programs run
with a large input size. The right graph shows speedup for one application, obj, for three problem sizes.

5.3 Cluster-C Speedup

Figure 4a shows the scaled speedup of all nine test programs for a large problem size, running on 1, 2, 4, and 8 nodes.
Scaled speedup is an appropriate measure for the algorithms and problem sizes characteristic of image understanding
systems. In scaling all test inputs, we fixed the input for the single processor instance, and then increased the data in
proportion to the number of nodes, so that the problem size per node remained constant across the full range of tests.
For each program, the single node case was obtained from a one processor version of the C program with all physical
communication calls removed.

Computation-oriented programs can be expected to perform well under such conditions. The tests with little or
no communication (mat, hyp, and col) have almost perfect speedup. Tests that use grid-sends or scans (amp, dens,
and jac) acheive near-linear speedup. Communication-centric applications behave differently under processor scaling.
While the local sub-problem size remains fixed, it represents a smaller fraction of the total problem and therefore a
smaller portion of the global address space. For uniformly distributed destination addresses, the fraction of information
sent off-processor by each node is , for a node cluster. Given that off-node sends average 12 times the
cost of a memory-to-memory move, it is not surprising to see poor speedup for hist and obj, both of which make
significant use of general sends. Hist actually has no speedup because the program consists of a single send operation.
Figure 4b further illustrates the effects of heavy communication within the obj program, where speedup gets worse
with increasing problem size.

Figure 4a shows, at least through eight nodes, that the cluster of workstations scales well for most problems. We
can make the following three observations. First, applications that rely heavily on general sends will have difficulty
scaling on a workstation cluster. Second, applications that use grid-based communication, either send or scan, or
reductions, scale well. Third, all applications that perform a substantial amount of computation scale well.

Figure 5 reinforces the speedup results of Figure 4, showing the percentage of time each test program spent
performing physical communication. Physical communication includes all time spent by the network substrate during
send, receive, and interrupt handling, but not the time spent performing computation or local memory moves during
the C communication instructions. The graph includes error bars at one standard deviation around the mean across the
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C operator 1K 256K 1M 32x32 512x512 1Kx1K
reduce 763 70.1 17.6 17.5K 170.5 17.5

grid-send 340 26.1 6.5 18.3K 34.9K 17.5K
scan 1.7K 8.1 3.0 26.2K 3.3K 1.2K
send 1.5M 2.9M 2.9M 2.9M 2.9M 2.9M

Table 2: Communication Operator Execution Speed by Problem Size and Shape (bytes/sec)
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Figure 5: Percent physical communication for 8-node Cluster-C

eight nodes in the cluster; variation in runtimes is possible under our loosely-coupled execution model. Test programs
with good speedup have small amounts of physical communication (e.g. col, hyp, mat) for medium and large problems
sizes. Grid-based applications like amp, dens and jac have slightly higher percentages of communication and also
fall off slightly from linear in the speedup curves. The test with the highest percentage of communication—obj, at 32,
20 and 10%—had one of the worst speedups.

The average percent communication across the nine test programs was 19% for small problems, 5% for medium
sized problems and 3.4% for large problems. Overall, communication costs grew sub-linearly relative to the linear
growth in problem sizes. The fact that the amount of time spent on communication decreased with problem size leads
us to be optimistic about running larger problems on larger cluster configurations.

Finally, we offer a micro benchmark that further supports our belief that many C programs will scale well to larger
cluster configurations before network saturation becomes a problem. Table 2 contains the maximum transmission
speeds for a single HP720 across the C -to-network interface for each C communication operator. The maximum
speed at which C is capable of transmitting network data is 2.9 MB/sec for general send—approximately one quarter
the bandwidth obtainable by the network substrate. All other C operators perform more computation or local data
movement than the general send with correspondingly lower effective transmission rates.

6 Related Work

There has been considerable research in recent years focusing on the implementation of parallel programs for
distributed-memory multiprocessors. We broadly classify the most relevant of this work into two general categories.

First, the compiler community has focused attention on the problem of implementing data parallel programs on
tightly-coupled, distributed-memory multiprocessors [?, 5, ?, ?, ?]. Our work differs from this in several respects. For
example, we are considering loosely-coupled workstation clusters, which means we have to look even harder at the
assumptions underlying the latency-related implementation strategies. Also, we are working at the communication
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subsystem level rather than at the compiler level. Finally, most of this work has focused on Fortran D rather than
C . This is significant because C permits a much richer interconnection of parallel data than does Fortran D. This
is best illustrated by the varied applications of interest to the two communities: Fortran users are primarily interested
in grid-based, numerical computation, characterized by algorithms such as Jacobi and SOR, while C* is often the
language of choice for image processing programs because of the need for general sends and scans.

Second, the systems community has recently started to consider the problem of implementing control parallel
programs on loosely-coupled workstation clusters. Most of this work has centered around the idea of provided
distributed shared memory [3, 2]. This work is similar to ours in that the focus is on the underlying consistency
protocols required by the parallel program, the obvious difference being that we consider data parallel rather than
control parallel programs. Another way to say this is that we attempting to define C -specific, rather than general-
purpose, protocols for distributed-memory architectures.

7 Concluding Remarks

This paper describes an architecture for implementing the C programming language on a cluster of workstations,
and shows for a suite of image understanding programs, how the cluster compares to a CM-5. The data shows that
for certain small and medium problem sizes, an 8-node cluster out-performs a 128-VU CM-5 on an absolute scale,
and that on a relative scale, the cluster delivers superior per-node performance in all cases. Further analysis of the
communication demands of this test suite indicate that the cluster should be able to scale to much larger configurations.
We are currently working on a model that should predict more accurately the extent to which Cluster-C scales.
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