
OPERATING SYSTEM SUPPORT FOR

HIGH-SPEED NETWORKING

(Ph.D. Dissertation)

Peter Druschel

94-24

August 1994

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

This research was supported by National Science Foundation Grant CCR-9102040, DARPA Contract

DABT63-91-C-0030, and Sun Microsystems Inc.

OPERATING SYSTEM SUPPORT FOR HIGH-SPEED

NETWORKING

by

Peter Druschel

Copyright c Peter Druschel 1994

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Ful�llment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

1 9 9 4

OPERATING SYSTEM SUPPORT FOR HIGH-SPEED

NETWORKING

Peter Druschel, Ph.D.

The University of Arizona, 1994

Director: Larry L. Peterson

The advent of high-speed networks may soon increase the network bandwidth available

to workstation class computers by two orders of magnitude. Combined with the dramatic

increase in microprocessor speed, these technological advances make possible new kinds of

applications, such as multimedia and parallel computing on networks of workstations.

At the same time, the operating system, in its role as mediator and multiplexor of

computing resources, is threatening to become a bottleneck. The underlying cause is

that main memory performance has not kept up with the growth of CPU and I/O speed,

thus opening a bandwidth gap between CPU and main memory, while closing the old

gap between main memory and I/O. Current operating systems fail to properly take into

account the performance characteristics of the memory subsystem. The trend towards

server-based operating systems exacerbates this problem, since a modular OS structure

tends to increase pressure on the memory system.

This dissertation is concerned with the I/O bottleneck in operating systems, with

particular focus on high-speed networking. We start by identifying the causes of this

bottleneck, which are rooted in a mismatch of operating system behavior with the per-

formance characteristics of modern computer hardware. Then, traditional approaches to

supporting I/O in operating systems are re-evaluated in light of current hardware perfor-

mance tradeo�s. This re-evaluation gives rise to a set of novel techniques that eliminate

the I/O bottleneck.

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial ful�llment of requirements for an ad-

vanced degree at The University of Arizona and is deposited in the University Library to

be made available to borrowers under the rules of the Library.

Brief quotations from this dissertation are allowable without special permission, pro-

vided that accurate acknowledgment of source is made. Requests for permission for ex-

tended quotation from or reproduction of this manuscript in whole or in part may be

granted by the copyright holder.

SIGNED:

4

5

ACKNOWLEDGMENTS

First and foremost, I wish to thank Larry Peterson. He has been the ideal advisor,

one who allowed me to pursue my own directions, while providing me with the optimism,

experience and insight I often lacked. I owe thanks to Norm Hutchinson for his support

and the many exciting debates we had during and after his time at Arizona. Thanks also

to my other committee members, Rick Schlichting and Greg Andrews, for their support

and encouragement.

The entire Computer Science department at Arizona deserves credit for creating and

maintaining a superb environment in which to work and be productive. Special thanks

to Cara Wallace and Margaret Newman for their patience, to Jana Ze� for getting me

into the program six years ago, and to Wendy Swartz for helping me get out. I will miss

the many enlightening discussions and Kippy's luncheons with Mark Abbott, Lawrence

Brakmo, David Mosberger, Erich Nahum, Sean O'Malley, Michael Pagels, and Charlie

Turner.

I am thankful to Bruce Davie and Bellcore for making the Osiris boards available

to me, and for the opportunity to engage in a fruitful and pleasant research cooperation.

Special thanks to Bruce for his support and all the fun we had.

As the real brain behind this work, my cat Nene deserves special consideration. His

help with GigaMetrics was indispensable.

This work was supported by the National Science Foundation under Grant CCR-

9102040, by ARPA under Contract DABT63-91-C-0030, and by Sun Microsystems, Inc.

6

7

TABLE OF CONTENTS

LIST OF FIGURES : 11

ABSTRACT : 13

CHAPTER 1: Introduction : 15

1.1 The Memory Bandwidth Bottleneck : 15

1.2 Server-Based Operating System Structure : : : : : : : : : : : : : : : : : : : 17

1.3 Thesis Statement and Contributions : 18

1.4 Dissertation Overview : 19

CHAPTER 2: The Operating System I/O Bottleneck : : : : : : : : : : : : : : : : : 21

2.1 Memory Performance : 21

2.2 E�ectiveness of Cache Memories : 23

2.3 Avoiding Main Memory Tra�c : 25

2.3.1 Device{Memory Transfers : 25

2.3.2 Cross-Domain Data Transfers : 26

2.3.3 Data Manipulations : 27

2.3.4 Bu�er Management : 28

2.3.5 Application Programming Interface : : : : : : : : : : : : : : : : : : 28

2.4 End-to-End Design : 29

2.4.1 Hardware Streaming : 30

2.4.2 DMA{DMA Streaming : 31

2.4.3 OS Kernel Streaming : 31

2.4.4 User-Level Streaming : 32

2.4.5 Need for Integration : 32

2.5 A Bu�er Abstraction for an Integrated Data Path : : : : : : : : : : : : : : 33

2.5.1 The IOData Abstract Data Type : : : : : : : : : : : : : : : : : : : 34

2.5.2 Implementation : 35

2.6 Concluding Remarks : 36

CHAPTER 3: OS Support for a High-Speed Network Adaptor : : : : : : : : : : : : 37

3.1 Experimental Hardware and Software : 37

3.2 Host/Board Communication : 39

3.2.1 Shared Data Structure : 39

3.2.2 Interrupts : 41

3.3 Physical Bu�er Fragmentation : 41

3.4 Cache Coherence : 43

3.5 Page Wiring : 44

3.6 DMA Length : 44

8

3.7 DMA versus PIO : 45

3.8 New OS Mechanisms : 46

3.8.1 Fast Bu�ers : 46

3.8.2 Application Device Channels : 47

3.9 Performance : 48

3.10 Concluding Remarks : 51

CHAPTER 4: Decoupling Modularity and Protection : : : : : : : : : : : : : : : : : 53

4.1 Motivation : 53

4.1.1 Why Separate Modularity and Protection? : : : : : : : : : : : : : : 54

4.1.2 How To Separate Modularity and Protection : : : : : : : : : : : : : 55

4.2 Architectural Model : 56

4.3 Object Invocation Mechanism : 57

4.3.1 Design Issues : 57

4.3.2 Object References and Local Invocation : : : : : : : : : : : : : : : 60

4.3.3 Non-Local Invocation : 60

4.4 Performance : 63

4.5 Discussion : 65

4.5.1 Modularity and Protection : 65

4.5.2 Interface design : 67

4.5.3 Object Systems : 69

4.6 Related work : 69

4.7 Concluding Remarks : 70

CHAPTER 5: High-Bandwidth Cross-Domain Data Transfer : : : : : : : : : : : : : 71

5.1 Motivation : 71

5.2 Characterizing Network I/O : 72

5.2.1 Networks and Bu�ers : 72

5.2.2 Allocating Bu�ers : 73

5.2.3 Accessing Bu�ers : 73

5.2.4 Summary of Requirements : 74

5.3 Related Work : 75

5.3.1 Page Remapping : 75

5.3.2 Shared Memory : 76

5.4 Design : 77

5.4.1 Basic Mechanism : 77

5.4.2 Optimizations : 79

5.5 Implementation : 81

5.5.1 Allocation : 81

5.5.2 Transfer : 82

5.5.3 Deallocation : 82

5.5.4 Domain Termination : 83

5.5.5 Exceptional Cases : 83

5.6 Performance : 83

5.7 Discussion : 89

9

5.7.1 How Many Domains? : 89

5.7.2 Characteristics of Network I/O Revisited : : : : : : : : : : : : : : : 89

5.7.3 Architectural Considerations : 90

5.7.4 Relationship to Other VM Systems : : : : : : : : : : : : : : : : : : 91

5.8 Concluding Remarks : 91

CHAPTER 6: Application Device Channels : 93

6.1 Motivation : 93

6.2 Design : 94

6.3 Implementation : 96

6.4 Related Work : 97

6.5 Performance : 97

6.6 Summary : 98

CHAPTER 7: Conclusion : 99

7.1 Contributions and Limitations : 99

7.2 Future Directions : 100

REFERENCES : 101

10

11

LIST OF FIGURES

1.1 Block Diagram of a DEC 3000/600 AXP : 16

2.1 Implementation of Messages in the x-kernel : : : : : : : : : : : : : : : : : : 28

2.2 Various Forms of Data Streaming : 30

2.3 Dependencies among copy-avoiding techniques : : : : : : : : : : : : : : : : 34

3.1 Architectural Overview of Osiris : 38

3.2 PDU Bu�er Fragmentation : 42

3.3 DEC 5000/200 UDP/IP/Osiris Receive Side Throughput : : : : : : : : : : 49

3.4 DEC 3000/600 UDP/IP/Osiris Receive Side Throughput : : : : : : : : : : 50

3.5 UDP/IP/Osiris Transmit Side Throughput : : : : : : : : : : : : : : : : : : 51

4.1 Lipto Architecture : 56

4.2 Proxy Objects and RPC : 61

5.1 Layers Distributed over Multiple Protection Domains : : : : : : : : : : : : : 72

5.2 Aggregate Object : 78

5.3 Throughput of a single domain boundary crossing : : : : : : : : : : : : : : 85

5.4 Throughput of a UDP/IP local loopback test : : : : : : : : : : : : : : : : : 86

5.5 UDP/IP end-to-end throughput using cached, volatile fbufs : : : : : : : : : 87

5.6 UDP/IP end-to-end throughput using uncached, non-volatile fbufs : : : : : 88

6.1 Application{OS{Hardware Interaction : 93

6.2 Application Device Channel : 95

12

13

ABSTRACT

The advent of high-speed networks may soon increase the network bandwidth available

to workstation class computers by two orders of magnitude. Combined with the dramatic

increase in microprocessor speed, these technological advances make possible new kinds of

applications, such as multimedia and parallel computing on networks of workstations.

At the same time, the operating system, in its role as mediator and multiplexor of

computing resources, is threatening to become a bottleneck. The underlying cause is

that main memory performance has not kept up with the growth of CPU and I/O speed,

thus opening a bandwidth gap between CPU and main memory, while closing the old

gap between main memory and I/O. Current operating systems fail to properly take into

account the performance characteristics of the memory subsystem. The trend towards

server-based operating systems exacerbates this problem, since a modular OS structure

tends to increase pressure on the memory system.

This dissertation is concerned with the I/O bottleneck in operating systems, with

particular focus on high-speed networking. We start by identifying the causes of this

bottleneck, which are rooted in a mismatch of operating system behavior with the per-

formance characteristics of modern computer hardware. Then, traditional approaches to

supporting I/O in operating systems are re-evaluated in light of current hardware perfor-

mance tradeo�s. This re-evaluation gives rise to a set of novel techniques that eliminate

the I/O bottleneck.

14

15

CHAPTER 1

Introduction

Emerging network technologies such as �ber-optic transmission facilities and Asyn-

chronous Transfer Mode (ATM) hold the promise of delivering data rates approaching 1

Gb/s between individual workstations on local and wide-area networks1 [IEE90, C+93b].

This order-of-magnitude increase in network capacity, combined with the explosive growth

in microprocessor performance, will enable a range of innovative new applications of dis-

tributed computing. Distributed multimedia, including real-time audio and video, and

supercomputing on clusters of workstations are examples of such emerging applications.

One important factor that could dramatically inuence the success of these new tech-

nologies is the degree to which operating systems can make these networking resources

available to application programs.

The role of an operating system (OS) is to mediate and multiplex the access of mul-

tiple application programs to the computing resources provided by the underlying hard-

ware. Ideally, the operating system should not itself consume a signi�cant share of these

resources. Unfortunately, current operating systems are threatening to become the bottle-

neck in delivering input/output (I/O) data streams to application programs at high rates

[CT90, DWB+93, ST93, Ram93]. In particular, data streams between applications on

hosts connected by high speed networks su�er bandwidth degradation and added latency

due to the operating system running on the hosts.

This dissertation is concerned with the I/O bottleneck in operating systems, with

particular focus on high-speed networking. We start by identifying the causes of this

bottleneck, which are rooted in a mismatch of operating system behavior with the per-

formance characteristics of modern computer hardware. Then, traditional approaches to

supporting I/O in operating systems are re-evaluated in light of current hardware perfor-

mance tradeo�s. This re-evaluation gives rise to a set of novel techniques that eliminate

the I/O bottleneck.

1.1 The Memory Bandwidth Bottleneck

The root cause of the OS I/O bottleneck is that speed improvements of main memory

have lagged behind those of the central processing unit (CPU) and I/O devices during

the past decade [CW92, HP90]. In state-of-the-art computer systems, the bandwidth of

main memory is orders of magnitude lower than the bandwidth of the CPU, and the

bandwidths of the fastest I/O devices approach that of main memory2. The previously

1Throughout this work, we use the convention that 1 Gb and 1 Mb equals 109 and 106 bits, respectively,

and 1 MB = 220 bytes.
2We de�ne CPU bandwidth as the maximal sustained rate, in bytes per second, at which the CPU

can absorb data; memory bandwidth as the sustained rate at which the CPU can read data from main

memory; and the I/O bandwidth as the sustained rate at which data can be transferred to and from I/O

16

CPU

Crossbar

 Main
Memory

I/O Bus

91 MB/s

 L2
Cache

 L1
Cache

560 MB/s

114 MB/s

2000 MB/s

Figure 1.1: Block Diagram of a DEC 3000/600 AXP

existing gap between memory and I/O bandwidth has almost closed, and a wide gap has

opened between CPU and memory bandwidth, leaving memory as a potential bottleneck.

To bridge the gap between CPU and memory speed in modern computers, system

designers employ sophisticated cache systems. A cache exploits locality of reference in

memory accesses to reduce main memory tra�c. Locality of reference is the property of

a sequence of memory accesses to reference preferentially those memory locations that

were either accessed recently (temporal locality), or that are close to recently accessed

locations in the address space (spatial locality). A cache is a high-speed memory that

holds a recently accessed subset of the data stored in main memory. When the CPU

accesses a main memory location for which the cache holds a copy, no main memory access

is necessary, and the operation can complete at the speed of the cache memory. A cache

reduces main memory tra�c and lowers the average memory access latency experienced by

the CPU. The e�ectiveness of the cache in bridging the CPU/memory speed gap depends

on the degree of locality in the memory accesses of the executed program.

Figure 1.1 depicts the block diagram of a DEC 3000/600 AXP system. The perfor-

mance characteristics of this machine are typical of currently available high-end desktop

workstations. Observe that the available bandwidth on the path between CPU and main

memory is less than twice the bandwidth of the I/O bus. Thus, in order to deliver the

bandwidth of a high speed I/O device to an application that consumes the data, care must

be taken to ensure that the data does not travel the data path between the cache and

main memory more than once. Stated di�erently, a desirable scenario is one in which the

data received from a fast input device is brought into the cache once and remains there

until it is consumed. The cache system can achieve this scenario, as long as the set of

CPU accesses to the data have su�cient locality, relative to the size and associativity of

the cache.

Unfortunately, in most current systems the accesses to I/O data bu�ers generated by

devices.

17

operating system and applications do not have su�cient locality to allow the cache system

to minimize memory tra�c. As a result, excess memory tra�c is causing a substantial

drop in I/O performance, i.e., throughput and latency. This poor locality is caused by

� data movements (copying),

� inappropriate scheduling of the various I/O processing steps, and

� a system structure that requires OS kernel involvement in all I/O activity.

Moving or copying data from one main memory location to another causes poor access

locality and thus increased memory tra�c. Unnecessary data copying occurs in current

systems due to a lack of integration in the design of I/O adaptors, bu�er management

schemes, interfaces, and mechanisms for the transfer of data across protection domain

boundaries.

Locality can su�er further because various I/O processing steps and their associated

data accesses occur in the context of multiple, separately scheduled threads of control

(e.g., interrupt handlers, kernel threads, application processes). In a multiprogrammed

environment, these processing steps may not be scheduled to execute in strict succession.

That is, the processing steps of a data unit may be interleaved with the execution of

unrelated tasks, with their own and distinct set of memory references. Thus, accesses to a

particular I/O data unit are temporally separated, resulting in poor data access locality3.

Finally, current systems require that the operating system kernel be involved in each

individual I/O operation that an application initiates. Thus, I/O requires a processor

reallocation to switch between application and operating system, and the transfer of data

across the user/kernel protection boundary. Both entail a drop in memory access locality,

which can limit I/O bandwidth and signi�cantly contribute to I/O latency.

In summary, limited memory bandwidth in modern computer systems is a potential

source of performance problems. Cache systems can hide the slow speed of main memory

only when the memory accesses generated by a program have good locality of reference.

Accesses to I/O data generated by operating systems and applications tend to have poor

locality, rendering the cache ine�ective in avoiding the memory bottleneck in processing

network I/O.

1.2 Server-Based Operating System Structure

The problem of poor memory access locality during I/O operations is aggravated by the

recent trend in operating system design towards a modular structure, where di�erent parts

of the operating system reside in separate protection domains [ABB+86, RAA+88, Hil92].

In these systems, I/O requests and associated data may have to cross additional protection

boundaries and scheduling points between application programs and I/O devices. Studies

have shown that reduced memory access locality in theses systems has a negative im-

pact on overall system performance [CB93], and can have a strong impact on networking

performance [MB93b].

3An additional problem can occur on shared memory multiprocessors, when not all processing steps

are scheduled to run on the same processor.

18

Thus, operating system designers are facing a dilemma. Growing concern for ease of

distribution, validation, con�guration, and maintenance in the face of increasingly com-

plex operating systems strongly suggests more modular architectures, such as microkernel-

based (server based) systems. On the other hand, server-based operating systems appear

to make it even more di�cult to achieve high-performance I/O than the traditional, mono-

lithically structured systems.

1.3 Thesis Statement and Contributions

The hypothesis of this dissertation is that the I/O bottleneck in current operating systems

is caused by the lack of a coordinated design of OS software and device adaptor hardware

that minimizes main memory tra�c. This coordinated design must encompass the entire

I/O data path, from application programming interfaces (API), to OS architecture, OS

facilities for bu�er management and data transfer across protection boundaries, to I/O

device adaptors.

The goal of this dissertation is to remove the I/O bottleneck, without sacri�cing mod-

ularity in the structure of operating system and applications. Towards this goal, the

contributions here are a set of novel techniques that are part of a coordinated design to

minimize main memory tra�c:

� A new structuring approach for operating systems that allows �ne-grained modular-

ity without the performance penalty of an equally �ne-grained protection structure;

� a new OS facility for the management and transfer of I/O data bu�ers across pro-

tection domain boundaries;

� a new OS facility that allows applications to bypass the OS kernel in common I/O

operations, while leaving control over the device in the hands of the operating system;

and

� a set of techniques that reduce host processing overhead and achieve high perfor-

mance in driving a high-speed network adaptor.

These new techniques result from a re-evaluation of traditional approaches to sup-

porting I/O in operating systems. In particular, they are based on the following key

observations.

Memory bandwidth is a scarce resource. The traditional approach to performance-

oriented system design is to focus on minimizing the number of CPU instructions

executed during an operation. The characteristics of modern computer systems with

their fast CPUs, limited memory bandwidth, and fast I/O devices make it necessary

to focus instead on minimizing main memory tra�c.

Communication is a common operation. Current operating system designs require

OS kernel involvement in each I/O operation. This approach is well suited for appli-

cations that spend most of their time operating on data stored in main memory, and

that perform occasional, coarse-grained I/O operations. The kinds of distributed ap-

plications that are enabled by high-speed networking are likely to perform frequent,

19

�ne-grained I/O, making communication a common operation. Thus, operating sys-

tems should be optimized accordingly and should implement common I/O operations

without requiring kernel involvement.

This dissertation focuses on the primary problem of preserving the bandwidth and

latency of high-speed networks at the application level. The advent of high-speed net-

working and the applications that it enables also pose a number of secondary problems.

For example, live audio and video applications require that the operating system schedules

resources in such a way that the real-time constraints of continuous media are met. This

issue is not addressed here, but is receiving attention by a host of other researchers [AH91,

JH93, Jef92, RR93, LKG92].

1.4 Dissertation Overview

Chapter 2 reviews the relevant performance characteristics of modern computer systems

(i.e., memory and cache behavior) in more detail. It describes the various causes of excess

memory tra�c in current systems and discusses techniques found in the literature to avoid

these ine�ciencies. We show that theses techniques, when applied naively, can fail to

reduce memory tra�c signi�cantly. Instead, it is necessary to coordinate their application

as part of an end-to-end design. The chapter concludes by proposing an abstract data

type that encapsulates I/O data bu�ers along the entire data path through a host system.

This abstract data type can serve as the centerpiece of a coordinated design for an e�cient

I/O data path.

We begin Chapter 3 by describing the experimental hardware and software platforms

used in the research that led to this dissertation. Then, we report on a number of low-

level performance problems that were encountered in driving a very high speed network

adaptor connected to a modern workstation, and we present novel techniques to deal

with the problems. The chapter concludes with a detailed performance study of network

performance achieved between pairs of workstations connected by an experimental 622

Mb/s �ber-optic network.

Chapter 4 presents a new approach to structuring an operating systems that a�ords

�ne-grained modularity without the performance cost of an equally �ne-grained protec-

tion structure. In particular, this approach avoids the tradeo� between a modular OS ar-

chitecture and high-performance I/O, which governs conventional server-based operating

systems. The implementation of a prototype kernel based on this approach is described,

and a performance study is presented.

In Chapter 5 we present a novel OS facility, called fast bu�ers (fbufs), for the man-

agement and transfer of I/O data bu�ers across protection domains boundaries, both in

monolithic and server-based operating systems. The design and implementation of this

facility is described in detail. A performance study shows that fbufs allow the transfer

of large network messages across multiple protection domain boundaries without a loss in

throughput.

Chapter 6 introduces an innovative OS facility that takes advantage of user-level net-

work protocols and limited support from the network adaptor. It gives applications direct

but controlled access to the network adaptor, which signi�cantly reduces network message

20

latency. This facility, called application device channels (ADCs), leaves control of the

network adaptor in the hands of the operating system, thus allowing transparent sharing

of the device among multiple, non-privileged application programs.

Finally, Chapter 7 summarizes the contributions, points out limitations, and identi�es

future directions of research.

21

CHAPTER 2

The Operating System I/O Bottleneck

This chapter presents an overview of the hardware and software issues relevant to

I/O performance in operating systems. We show that the memory bandwidth of modern,

general-purpose computer systems is within the same order of magnitude as the bandwidth

of emerging high-speed networks. Furthermore, we present evidence that this situation

will persist for the foreseeable future, because cost considerations prevent the use of dra-

matically faster main memory and interconnect technology in this class of machine. As a

consequence, operating systems must be designed to minimize main memory tra�c that

results from network and other I/O activity. Speci�cally, the number of trips that net-

work data takes across the CPU{memory data path must be minimized in order to avoid

a bottleneck.

We proceed to survey several techniques from the literature that can be applied to

this problem. An important lesson we learn from this survey is that naively applying

these techniques is not su�cient for achieving good application-to-application throughput.

Instead, it is necessary to integrate the entire data path, from a source device, through

the operating system, application programs, and possibly to a sink device. The chapter

concludes by outlining a fully integrated data path that optimizes end-to-end throughput.

Throughout this chapter, we include in our analysis the most general case of a micro-

kernel-based system, where device drivers, network protocols, and application software

all potentially reside in di�erent protection domains. This consideration is well justi�ed

in light of the advantages of server-based systems (e.g., con�gurability, distributability,

portability, and so on), as well as the recent trend towards such systems in commercial

o�erings.

2.1 Memory Performance

This section analyzes the performance of main memory in modern, general-purpose com-

puter systems. We present measurements of main memory bandwidth in several com-

mercially available desktop workstations, and discuss the constraints for designer of main

memory subsystems. The conclusion is that main memory bandwidth is likely to remain

within the same order of magnitude as I/O bandwidth for the foreseeable future.

Table 2.1 shows, for each of four desktop workstations, the results of several memory

bandwidth measurements described below. The CPU/Memory bandwidth numbers re-

ported were obtained using a simple benchmark that measures the sustained bandwidth

during a series of read, write, and copy operations. The benchmark was coded in C. No

attempt was made to tune the program for a particular machine. The C code was compiled

in each case with two di�erent compilers; the vendor's compiler, and the GNU project's

gcc compiler [Sta93]. All appropriate compiler optimizations were turned on.

22

MB/s, sustained

Copy Read Write

IBM RS/6000 340 51 81 73

Sun SS10/41 26 42 39

HP 9000/735 31 71 52

DEC 3000/600 52 109 111

Table 2.1: CPU{Memory Bandwidth of several Workstations

The read and write columns were measured by reading (writing) each element of an

array. The copy column was measured using two methods: Element-wise assignment of

two arrays, and invoking the bcopy() library function. The benchmark used arrays of

type int (32bits) and double (64bits). The numbers reported are the best that could be

achieved in each case; i.e., GNU compiler versus vendor's compiler, int versus double for

the read and write columns, and int versus double versus bcopy() for the copy column.

Finally, the size and alignment of the arrays was chosen to eliminate e�ects of the data

cache.

The main result is that the measured memory bandwidths of current workstation is

on the order of 100 MB/s. Note that somewhat better results could likely be obtained

using machine-speci�c, hand-optimized machine code, since the compiler-generated ma-

chine code, and the vendor-provided implementation of the bcopy() function may be less

than optimal for the intended task of the benchmark program. We have deliberately not

tried to eliminate this factor, since it equally a�ects real programs. An inspection of the

generated code for some of the machines convinced us that bandwidth improvements with

hand-optimized costs would not exceed 50%.

An experimental ATM high-speed network adaptor described in Chapter 3 can simul-

taneously transmit and receive on a pair of 622 Mb/s �ber-optic links. Adjusting for ATM

cell overhead, the adaptor can generate an aggregate I/O bandwidth of 134 MB/s. Clearly,

the memory bandwidth of current workstation is within the same order of magnitude as

the bandwidth of this network adaptor.

Network adaptors with such high bandwidth are not yet commercially available. One

could conjecture that by the time such networks are on the market, main memory band-

width will have improved to the point where it is no longer a bottleneck. In the following,

we argue that main memory bandwidth in next generation workstations is not likely to

enjoy order-of-magnitude increases in bandwidth.

Cost and density make Dynamic Random Access Memory (DRAM) the technology of

choice for the main memory system in general-purpose computer systems. DRAM perfor-

mance is mainly characterized by its access latency, i.e., the time it takes, once an address

is presented to a DRAM chip, for the corresponding data to become available. While

DRAM density has improved dramatically in recent years, access latency has improved at

a rate of only 7% per year [HP90].

Data is transferred between cache and main memory using �xed sized cache blocks.

The main memory bandwidth available to the CPU is bounded by the ratio of the cache

block size and the time it takes to read or write a cache block. This time consists of the

23

memory access latency, plus the transfer time for a cache block. No dramatic improvements

in memory access latency can be expected in the near future, due to the slow speed

improvements of DRAMs. Techniques exist to increase the transfer rate, but an increase

in transfer rate alone cannot deliver major increases in memory bandwidth because latency

would increasingly dominate the transfer time for a �xed sized cache block. Increases in

data transfer rate must be combined with an increase in cache block size to be e�ective.

Unfortunately, the cache block size cannot be increased arbitrarily without a�ecting the

hit rate of the cache systems [Prz90].

Several recently announced components integrate some form of a cache with a dynamic

RAM to reduce the average access latency [CW92]. These integrated second level caches

use large cache lines and are connected to the DRAM using wide data paths. As for

any cache, the hit rate of these components depends on locality of reference. As we shall

discuss in Section 2.2, accesses to I/O data exhibit poor locality. Furthermore, it is unclear

whether the industry will accept the higher cost of these components.

While substantial improvements in main memory bandwidth can be expected in general-

purpose computer systems, it is unlikely that these improvements will out-pace the in-

creases in I/O bandwidth by an order of magnitude. Thus, we conclude that main memory

bandwidth in this class of machines will remain within the same order of magnitude as

network bandwidth for the foreseeable future.

2.2 E�ectiveness of Cache Memories

Modern computer systems employ caches to bridge the gap between CPU and main mem-

ory speeds. The idea is to keep a recently accessed portion of the main memory's data in

a fast memory. Whenever a data item referenced by the CPU is found in the cache, no

main memory access is necessary and the operation can complete at the speed of the cache

memory. A cache increases system performance by reducing the average access latency

for data and instructions. It also reduces contention for main memory access between

processor(s) and DMA-based I/O devices. The e�ectiveness of a cache depends on the

size and organization of the cache, and on locality in the CPU's memory accesses.

In general, an application program that processes I/O data causes the CPU to load

from|and possibly store to|memory every word of a data unit, potentially multiple

times. (The next section identi�es reasons why these data accesses might occur.) This

section argues that data caches are not e�ective in eliminating the corresponding main

memory accesses. For the sake of this argument, we limit our attention to accesses of

the actual I/O data, and ignore references to CPU instructions and other data that occur

during an application's processing. For emerging high-bandwidth applications such as

continuous media, accesses to I/O data arguably account for a signi�cant portion of total

execution time. In any case, we have already shown that unless care is taken, the I/O

data accesses alone can cause a bottleneck. Consider the following factors, ordered roughly

according to importance.

Processor Scheduling: CPU scheduling may cause the execution of other programs

to be interleaved with the processing of a data unit. By the time processing resumes,

cached portions of the data unit have most likely been replaced. On a multiprocessor,

24

the processing may even be resumed by a di�erent CPU with its own data cache. There

are a number of situations where scheduling occurs during the processing of a data unit.

When the data unit is passed on to another thread (i.e., queued), a processor must be

scheduled to run that thread. Queuing typically occurs at the user/kernel boundary, in

certain protocols, and between the device driver's interrupt handler and the top half of

the driver. In the worst case, additional queuing may occur between protocol layers.

Moreover, hardware interrupts and the events they signal trigger processor rescheduling.

Cache Size: Cache memories, particularly fast on-chip caches, are limited in size. In

practice, their e�ective size is further reduced due to the limited associativity of direct-

mapped and set-associative organizations [Prz90]. For data to remain cached during a data

operation that involves loading every word and storing it in a di�erent location, the cache

must be at least twice the size of the data unit. In practice, cache size requirements are

further increased by accesses to program variables during and between data manipulations.

Cache Organization: Caches that are virtually indexed and tagged do not require a

virtual-to-physical address translation to access cached data. With this approach, cached

data from virtually shared pages cannot remain valid across protection domain boundaries.

In other words, data must be re-loaded after a switch into a di�erent protection domain,

even if the data bu�ers are shared between the domains. Physically tagged caches do not

have this problem. They require, however, that a Translation Lookaside Bu�er (TLB)

entry be active for the page that contains the referenced data. Network data bu�ers tend

to be scattered across memory pages, which increases the demand for TLB entries. The

resulting contention for TLB entries can add substantial costs to the access of cached data

[PDP93].

Cache Write Policy: Uniprocessor data caches often employ a write-through policy,

meaning that every store operation requires a write to main memory. Write bu�ers are

typically used with write-through caches to decouple the CPU from the timing of memory

writes. However, many consecutive writes|such as would occur when reading and writing

every word of a data unit|can cause the CPU to stall on store instructions.

To quantify the e�ectiveness of the data cache in handling network data, Pagels

[PDP93] conducted experiments that measure the amount of network data resident in

the cache after OS processing. This cache residency value is a measure of the potential

bene�t obtained by a user process due to the caching of network data, thereby avoiding

CPU/memory transfers. It provides an upper bound on the e�ectiveness of the cache

when network data is processed without copying. Both monolithic and microkernel-based

operating systems are included in this study. The results obtained in these measurements

con�rm that caches are not e�ective in eliminating main memory tra�c associated with

the accesses of network data.

In summary, we have shown that the main memory bandwidth in modern, general-

purpose computer systems is within the same order of magnitude as the bandwidth of

emerging high-speed I/O devices such as ATM network adaptors. In order to sustain the

bandwidth of these I/O devices, it is critical to minimize the main memory tra�c caused

by the processing of I/O data. Furthermore, the cache systems used in modern computers

to bridge the gap between CPU and memory speed are not e�ective in eliminating main

memory tra�c caused by accesses to network data.

25

2.3 Avoiding Main Memory Tra�c

The two previous sections document our argument that the CPU{memory bandwidth of

workstations is within the same order of magnitude as the network bandwidth, and that

data caches cannot eliminate main memory tra�c caused by the processing of network

I/O. It follows, therefore, that in order to preserve the bandwidth on the data path from

a network device through the OS and application, and possibly to a sink device (e.g.,

display), multiple accesses of the data stored in main memory must be avoided.

Each of the following subsections identi�es a potential main memory access along this

path, briey describes one or more technique for e�ciently handling or avoiding it, and

discusses the assumptions and limitations of these techniques.

2.3.1 Device{Memory Transfers

Data must be moved between main memory and network/device adaptors. The techniques

most commonly used are Direct Memory Access (DMA) and Programmed Input/Output

(PIO). DMA allows an I/O adaptor to transfer data directly from/to main memory, with-

out involving the CPU. PIO requires the processor to transfer individual data words

(typically 32 bits) between main memory and I/O adaptor in a programmed loop.

With DMA, it is generally possible to transfer large blocks of data in a single bus

transaction, thereby achieving transfer rates close to the limits of main memory and

I/O bus. The data transfer can proceed concurrently with activity by the processor(s),

although contention for main memory access may induce processor stalls during periods

of heavy DMA tra�c. On the downside, DMA requires some complexity in the device

adaptors. In many machines, data caches and main memory may not be coherent with

respect to DMA transfers. That is, after a DMA transfer from an I/O adaptor to main

memory (DMA write), the cache may contain stale data. Consequently, the appropriate

portions of the data cache must be invalidated by system software. Conversely, a write-

back cache may have to be explicitly ushed prior to a a DMA read operation.

With PIO, the CPU is occupied during transfers from/to a device. Only a small

fraction of the peak I/O bandwidth is often achieved, for the following reasons. The

adaptor's control and data ports can either be mapped as cacheable or non-cacheable

memory locations. In the non-cacheable case, each load/store instruction results in a short

(i.e., one machine word) I/O bus transaction, resulting in poor sustained bandwidth. In

the cacheable case, I/O bus transfers occur at cache line length. The resulting bandwidth

is improved, but may still be far below the peak I/O bandwidth. Moreover, it is again

necessary to ush the data cache to maintain consistency with the adaptor's ports.

Nevertheless, there are situations where PIO can be preferable over DMA. First, com-

putations on the data that occur in the kernel, such as checksum calculations, can some-

times be integrated with the PIO data movement, saving a main memory access. Second,

after a programmed data movement from an I/O adaptor to main memory, the data is in

the cache. This can result in reduced memory tra�c if the data is accessed again while it

remains in the cache.

A scatter-gather capability in DMA-based I/O adaptors is important for reducing

memory tra�c. Scattering allows an incoming data unit to be placed into multiple, non-

26

contiguous portions of main memory. Gathering allows an outgoing data unit to be col-

lected from multiple, non-contiguous bu�ers. Scatter-gather allows DMA transfer from/to

non-contiguous physical page frames, which greatly simpli�es physical memory manage-

ment in the operating system, and helps avoid copying data into contiguous storage. With

PIO, scatter-gather can be trivially implemented in software.

Network adaptors may support packet demultiplexing prior to data transfer to main

memory, allowing �ltering and selective placement of data units in memory. In the simplest

case, the adaptor allows the host to peek at a network packet's header. The host makes

the demultiplexing decision and initiates the data transfer to the appropriate location in

main memory, using DMA or PIO. More elaborate adaptors such as the ones described

in Chapter 3 and in [KC88, BPP92] can be programmed by the host CPU to recognize

network packets by their headers, and place them into appropriate memory locations

using DMA without host intervention. This feature proves to be very useful in enabling

OS facilities that can reduce main memory tra�c (see Chapters 5 and 6).

2.3.2 Cross-Domain Data Transfers

Protection in operating systems necessitates the transfer of data across protection domain

(address space) boundaries. In the simplest case, an I/O data stream is used by a single

application process running on top of a conventional monolithic operating system kernel.

Here, I/O data must cross a single user/kernel boundary. In general, additional user

processes, such as window managers and multimedia servers, and the OS servers of micro-

kernel-based operating systems, may introduce additional domain boundary crossings into

the I/O data path.

Software data copying as a means of transferring data across domain boundaries ex-

acerbates the memory bottleneck problem. A number of techniques exist that rely on

the virtual memory system to provide copy-free cross-domain data transfer. Virtual page

remapping [Che88, TA91] unmaps the pages containing data units from the sending do-

main and maps them into the receiving domain. With Virtual copying (copy on write)

[FR86], the sending and receiving domain share a single copy of the transferred pages,

and physical copying occurs only when one of the domains attempts to modify the shared

data unit. Shared virtual memory [SB90] employs bu�ers that are statically shared among

two or more domains to avoid data transfers.

Virtual page remapping has move rather than copy semantics, which limits its utility

to situations where the sender needs no further access to the transferred data. Virtual

copying has copy semantics, but it can only avoid physical copying when the data is not

written by either the sender or the receiver after the transfer. Both techniques require

careful implementation to achieve low latency. The time it takes to switch to supervisor

mode, acquire necessary locks to VM data structures, change VM mappings|perhaps

at several levels|for each page, perform TLB/cache consistency actions, and return to

user mode poses a limit to the achievable performance. Measurements we performed on

a DecStation 5000/200 suggest that page remapping is not fast enough to sustain the

bandwidth of a high-speed network adaptor (see Section 5.3.1).

Another complication arises from the fact that both techniques work at the granularity

of the VM page size. A mismatch between data unit size and VM page size implies that

27

a portion of the last page overlapped by the data unit will remain unused. For reasons of

data privacy, the kernel must clear (e.g., �ll with zeroes) this portion of a newly allocated

bu�er page, which can incur a substantial cost, relative to the overall overhead of bu�er

management and cross-domain data transfer. A similar problem occurs if headers at

the front of a received network packet contain sensitive data that must be hidden from

user processes. The partial use of memory pages also requires more pages per amount of

network data, resulting in increased physical memory consumption, page allocation and

remap overhead, and demand for TLB entries.

Shared virtual memory avoids data transfer and its associated costs altogether. How-

ever, its use may compromise protection and security between the sharing protection

domains. Since sharing is static|a particular page is always accessible in the same set

of domains|a priori knowledge of all the recipients of a data unit is required. A novel

technique, called fbufs (introduced in Chapter 5), combines page remapping with shared

virtual memory, and exploits locality in network tra�c to overcome some of the short-

comings of either technique.

2.3.3 Data Manipulations

Data manipulations are computations that inspect and possibly modify every word of

data in a network data unit. Examples include encryption, compression, error detec-

tion/correction, presentation conversion, and application-speci�c computations. Data

manipulations can be performed in hardware or software. Hardware support for data ma-

nipulations can reduce CPU load, and when properly integrated, reduce memory tra�c.

For certain manipulations like video (de)compression, hardware support may be necessary

in the short term, due to the computational complexity of the task. To rely on hardware

for all data manipulations, however, seems too constraining for innovative high-bandwidth

applications.

Software data manipulations typically access the data independently from each other

since they are generally part of distinct programmodules that reside in separate protection

domains (OS kernel, servers, application). The resulting memory references have poor

locality, and thus require that data be loaded from (and possibly stored back to) main

memory. The slow main memory accesses contribute signi�cantly to the time required to

complete the data manipulation, and thus limit the bandwidth.

Memory references resulting from data manipulations can be minimized through Inte-

grated Layer Processing (ILP) [CT90, AP93]. ILP is a technique for implementing commu-

nication software that avoids repeated memory reference when several data manipulations

are performed. The data manipulation steps from di�erent protocol implementations are

combined into a pipeline. A word of data is loaded into a register, then manipulated by

multiple data manipulation stages while it remains in a register, then �nally stored|all

before the next word of data is processed. In this way, a combined series of data manip-

ulations only references memory once, instead of potentially accessing memory once per

distinct layer.

A detailed performance study demonstrates that integration can have a signi�cant

impact on performance [AP93]. On the other hand, a major limitation of ILP is that data

manipulations performed by program modules in di�erent protection domains cannot be

28

Figure 2.1: Implementation of Messages in the x-kernel

easily integrated.

2.3.4 Bu�er Management

Bu�er editing|which we distinguish from data manipulations that require the inspection

and/or modi�cation of each word of data|can be expressed as a combination of operations

to create, share, clip, split, concatenate, and destroy bu�ers. When naively implemented,

these operations may require physical copying of the bu�ers.

A bu�er manager that employs lazy evaluation of bu�ers to implement the aforemen-

tioned primitives can facilitate copy-free bu�er editing. The manager provides an abstract

data type that represents the abstraction of a single, contiguous bu�er. An instance of

this abstract bu�er type might be stored in memory as a sequence of not necessarily con-

tiguous fragments. For example, the x-kernel [HP91] represents messages by a directed

acyclic graph (DAG), where the leaves correspond to bu�ers, and the leftmost leaf can have

information (e.g., headers) prepended to the front. Figure 2.1 depicts x-kernel messages.

Since bu�er editing occurs frequently in network protocol implementations, bu�er

managers are used in the network subsystem of many operating systems. The scope of

these managers is restricted to a single protection domain, typically the kernel. In most

systems, a software copy into a contiguous bu�er is necessary when a data unit crosses a

protection domain boundary.

2.3.5 Application Programming Interface

The application programming interface (API) de�nes the services and operations that an

operating system provides to application programs. In particular, it de�nes the syntax and

semantics of the operations (system calls) exported by the OS. I/O data bu�ers appear in

this de�nition as arguments to I/O operations. The argument passing semantics for the

I/O operations de�ned by this interface can have a signi�cant impact on the e�ciency of

I/O data transfers between OS kernel and applications.

29

Consider, for example, the UNIX read() and write() system calls [UNI89]. These

operations specify a pointer argument that refers to the address of a contiguous bu�er in

the application's address space, and an integer argument that represents the size of the

bu�er. Application programs may choose an address anywhere within their populated

address space, with no restrictions on the size and alignment of the bu�er. The semantics

of these operations specify that data is copied from and to the application bu�er during

the operation. That is, during a read system call, the application bu�er is overwritten

with the input data. After a write operation completes, it is assumed that output data

has been copied from the application bu�er, and the application is free to reuse (modify)

the bu�er.

The low-level representation of data bu�ers and the semantics of the read and write

operations make it di�cult for an implementation to avoid physical copying of data.

First, all virtual memory (VM) based techniques for cross-domain data transfer operate

at the granularity of a VM page. If the user bu�er's �rst and last addresses are not page

aligned, the system must copy portions of the �rst and last page overlapped by the bu�er.

Depending on the length of the user bu�er, the portion of a bu�er that must be copied

can be signi�cant. Second, the semantics of the write system call permit the user process

to modify (reuse) the user bu�er immediately after the call returns. If this happens, the

system must either copy the a�ected page after all, or block the user process until the

operating system is done with the output data. The latter approach may degrade the

application's e�ective I/O bandwidth even though it avoids copying, because it prevents

overlapping of I/O and application processing. Third, the read and write system calls

specify a single, contiguous data bu�er. Data that arrives from a network device is often

scattered in main memory, due to the reassembly of fragmented network packets. If a

read operation speci�es an amount of data that spans several fragments, copying of data

is unavoidable.

In summary, there are three problems with the UNIX read and write system calls, as

they relate to avoiding data copying. They allow data bu�ers with arbitrary alignment and

length, they require contiguous data bu�ers, and they have copy semantics. A proposal

for an API that lends itself to e�cient data transfer is presented in Section 2.5.

2.4 End-to-End Design

This section gives an overview of the design space for an I/O subsystem that minimizes

main memory tra�c along the entire data path from source to sink device. We focus

on several representative sample points in the design space. For each sample point, we

discuss tradeo�s, determine the optimal data path, and select appropriate implementation

techniques to achieve the optimal data path.

Throughout this section, we refer to the block diagrams in Figure 2.2 to depict the data

ow from source to sink device. In the architectural model underlying these diagrams,

CPU and cache are connected to main memory using a dedicated memory bus. A bus

converter ties the memory bus to a separate I/O bus, to which all devices are attached.

30

CPU

Cache

Main

Memory

Memory Bus

I/O Bus

Device 1 Device 2

CPU

Cache

Main

Memory

Memory Bus

I/O Bus

Device 1 Device 2

CPU

Cache

Main

Memory

Memory Bus

I/O Bus

Device 1 Device 2

(a) (b) (c)

Figure 2.2: Various Forms of Data Streaming

2.4.1 Hardware Streaming

One approach to avoiding the main memory bottleneck is to remove both the CPU and

main memory from the data path. The data path is set up and controlled by software,

but the data itself is transferred directly from source to sink device, bypassing main

memory (Figure 2.2, (a)). Both device adaptors and the I/O bus must support peer-to-

peer transfers, and the adaptors must be able to perform demultiplexing and any necessary

data format conversions.

This method can be characterized by a lack of integration with the host computer

system. Since application programs have no access to the data, they are constrained

by the functionality provided by the adaptor boards. The result is a tradeo� between

complexity in the device adaptors on one hand, and exibility and functionality on the

other.

Adaptors that support a �xed set of capabilities o�er little room for innovation to appli-

cations. An alternative is for the adaptor to provide components that can be programmed

by applications. This can take the form of special-purpose processors, or programmable

circuitry. Unfortunately, this approach has problems of its own. First, it is di�cult for

applications to use programmable device adaptors in a portable way. Second, at any given

point in time, the technology used in I/O adaptor hardware tends to lag behind that of

the main computer system, due to economics. Consequently, applications that rely on

out-board processing may not be able to exploit performance gains resulting from an up-

grade of the host computer system. An exception are computations whose performance is

bound by the characteristics of the device, e.g., network link speed. Performing such com-

putations in the adaptor seems appropriate, since they cannot take advantage of increased

host processing speed [BPP92].

With hardware streaming, no speci�c techniques are required for data transfer in the

I/O subsystem. However, many of the issues discussed in this chapter may apply to the

internal design of the adaptor boards.

31

2.4.2 DMA{DMA Streaming

A second approach is for data to be transferred using DMA from a source device to bu�ers

in main memory, where some bu�er editing may occur under control of the operating

system, and then, the data is transferred to a sink device using DMA (Figure 2.2, (b)).

The CPU controls data transfers, may change the size of the data units and control

information (headers), but remains removed from the data path. Unlike the previous

approach, DMA{DMA streaming requires no special hardware other than DMA support

on both the source and sink device adaptors. Consequently, generic devices (e.g., disks)

can be used.

Two DMA I/O bus trips are required by this approach. It follows that the throughput

is bounded by one half of the I/O bus bandwidth. In practice, the sustainable throughput

is lower, since main memory accesses caused by concurrent CPU activity compete with

the DMA transfers for main memory access, even if the I/O bus and memory bus are

separated.

Two key techniques are required to keep the CPU removed from the data path in this

approach: scatter-gather DMA support in the device adaptors, and an OS bu�er manager

that supports copy-free bu�er editing. Support for gather DMA in the sink device adaptor

is critical. Recall that a lazily evaluating bu�er manager may cause a bu�er to consist of

multiple discontiguous fragments. In the absence of a gather capability, it is necessary to

copy data units into contiguous space prior to a transfer to the sink device.

2.4.3 OS Kernel Streaming

Now consider systems where software data manipulations are performed, but all the ma-

nipulations are executed within the privileged kernel protection domain; no user-level

programs are involved. Clearly, the data must pass through the CPU/data cache (Fig-

ure 2.2, (c)), implying that the achievable throughput is bounded by the system's copy

bandwidth. The goal is to keep the resulting CPU{memory data tra�c to the mini-

mum, namely two transfers. The solution is to integrate data manipulations|if there is

more than one|using, for example, ILP. Note that data manipulations may include data

movement from and to devices via PIO.

If a device supports both DMA and PIO, it may be bene�cial to use PIO in this

type of system, since programmed data movement can be integrated with other data

manipulations. That is, instead of �rst using DMA and then loading/storing data to/from

main memory, the CPU could directly load data from the source I/O adaptor, and store

data to the sink I/O adaptor, bypassing main memory. This approach saves two DMA

bus trips, which would otherwise compete with the CPU for memory access. However, it

also trades memory accesses for potentially much slower load and store operations across

the I/O bus. Which approach results in a more e�cient data path depends on the relative

performance of memory accesses and DMA transfers, versus PIO on the target hardware.

Unlike the previous methods, OS kernel streaming o�ers full programmability of the

data path. However, all data manipulations must be performed in the kernel of the

operating system. Applications and user-level servers are restricted to the set of data

manipulations implemented by the kernel.

32

2.4.4 User-Level Streaming

Finally, consider systems where data passes through the kernel, plus one or more user-level

protection domains. These user-level domains could be part of a microkernel-based oper-

ating system, implement third-party servers for windowing, or be part of an application.

In addition to the issues discussed in the previous subsections, the I/O subsystem designer

is faced with protection domain boundaries. Protection boundaries are an obstacle to the

integration of data manipulations. We conclude, therefore, that designers should make

every e�ort to locate all data manipulation functions in the same domain. Protection also

requires an e�cient method for transferring data between domains.

Section 2.3.2 discussed several VM techniques for cross-domain data transfer. The use

of such a facility is critical for data transfer between two user-level protection domains.

Otherwise, two software copies are required for a user-to-user transfers on most systems|

from the source user domain to a kernel bu�er and from the kernel bu�er to the target

user domain. Chapter 5 introduces a novel facility for cross-domain data transfer that

performs better than existing techniques, and achieves an e�cient end-to-end data path,

both in monolithic and server-based operating systems.

As a special case, it is possible to transfer data between a user domain and the operating

system kernel without extra cost if the transfer is combined with the data movement

between I/O adaptor and main memory. That is, data is transferred directly between

the I/O adaptor and the user bu�er [Jac90, DWB+93]. However, with this approach, a

potentially huge amount of bu�er memory is required in a high-speed network adaptor. On

the receiving end, the data be bu�ered in the adaptor until the receiving application asks

for the data. On the transmitting side, transmitted data must be bu�ered in the network

adaptor for potential retransmission, since no intermediate copy of the data exists in main

memory. Due to the large bandwidth-delay product of high-speed networks, large amounts

of data must be bu�ered for retransmission. Finally, this approach does not generalize to

I/O data streams that are accessed in more than one user-level protection domain.

2.4.5 Need for Integration

The API, cross-domain data transfer facility, and bu�er manager must be integrated in a

manner that takes into account their subtle interactions. Consider, for example, a system

where the bu�er manager is restricted to the kernel domain, a virtual copy facility is used

for cross-domain data transfer, and the OS supports a UNIX-style API.

In this case, data units from the source device are placed in main memory bu�ers,

and some bu�er editing occurs as part of the in-kernel I/O processing; e.g., reassembly

of network packets. When a data unit represented by a lazily evaluated bu�er reaches

the user/kernel boundary, it must be evaluated (copied into contiguous storage), despite

the use of a virtual copy facility. The reason is that the interface de�nes data bu�ers

to be contiguous. Since the API allows applications to specify an arbitrarily aligned

bu�er address and length, the bu�er's �rst and last address may not be aligned with page

boundaries. Consequently, the data transfer facility may be forced to copy the portion of

the �rst and last page that is overlapped by the bu�er.

Once in the application domain, more bu�er editing may need to be performed. Since

33

the bu�er management tool is not available at user-level, the application must either

perform data copying, or perform its own lazily evaluating bu�er management. In the

latter case, another copy is required when data crosses the next domain boundary. After

data is transferred back to the kernel, the semantics of the API allow the user program

to reuse the data bu�er instantly, which is likely to force the virtual copy facility to copy

parts of the bu�er. We conclude that despite the use of copy-avoiding techniques, multiple

copies occur along the data path and these copies are an artifact of the poor integration

of these techniques.

One problem is that the implementation of the bu�er manager is local to the kernel

domain; a global implementation is necessary to maintain the lazily evaluated represen-

tation of data bu�ers along the entire data path. A global abstract bu�er type has the

additional bene�t that all domains (including applications) can perform copy-free bu�er

editing. A second problem is the API, which commonly does not permit a non-contiguous

representation of bu�ers, and as a consequence, stands in the way of e�cient data transfer.

A potential third problem is the cross-domain data transfer facility's inability to e�ciently

support the transfer of non-contiguous bu�er fragments.

Figure 2.3 depicts some of the dependencies among the copy-avoiding techniques. The

boxes represent situations where copies may occur along the data path, and the bubbles

correspond to the appropriate copy-avoiding techniques. Edges indicate dependencies

among the techniques that must be satis�ed to achieve an e�cient data path. For example,

VM techniques for data transfer, the API's data passing semantics, and the bu�er manager

must agree on a common bu�er representation. The dashed lines indicate that it is unclear

how to e�ectively integrate ILP with API and data transfer facility, to permit integration

of data manipulations across protection domain boundaries.

In conclusion, in the interest of minimizing main memory tra�c, it is necessary to

maintain a lazily evaluated representation of data bu�ers along the entire data path. This

implies that all programs must deal with this representation of bu�ers. Consequently, a

global bu�er manager is needed that is integrated with the API and cross-domain transfer

facility. The choice of a cross-domain data transfer method may further inuence the

design of a network adaptor. For example, shared virtual memory requires demultiplexing

prior to the data transfer from adaptor to main memory.

2.5 A Bu�er Abstraction for an Integrated Data Path

This section proposes an API that permits the integration of the API, bu�er manager,

and cross-domain data transfer facility to achieve an e�cient end-to-end data path. The

approach hinges on an abstract data type for data bu�ers called IOData. This section

gives an overview of the IOData type design, discusses its use, and briey sketches how

it can be implemented using di�erent bu�er management schemes and cross-domain data

transfer facilities.

In Section 2.3.5 we argued that the UNIX API has three problems with regard to the

e�cient transfer of I/O data. Its read and write system calls allow applications to specify

data bu�ers with arbitrary alignment and length, they require contiguous data bu�ers,

and they have copy semantics. These problems can be solved by adding a set of new

34

Cross−domain
data transfer

data transfer
I/O−memory

Buffer
editing

API

VM
techniques

DMA
PIO

buffer
manager

data placement

buffer representation scatter−gather

how?

how?

semantics

manipulations
Data ILP

data passing

Figure 2.3: Dependencies among copy-avoiding techniques

I/O operations to the API. These I/O operations take as arguments an abstract data type

(ADT) that represents data bu�ers (instead of pointers), and these arguments are passed

with hando� rather than copy semantics. The standard read and write systems calls can

be maintained for backward compatibility, and the new operations can be used by new

applications that require high-performance I/O.

2.5.1 The IOData Abstract Data Type

An instance of the IOData abstract data type represents a data bu�er of arbitrary length.

It encapsulates one or more physical bu�ers that contain the data. At any given time,

the physical bu�ers may not be contiguous, mapped in the current domain, or even in

main memory. The IOData type is immutable, i.e., once an instance is created with an

initial data content, the content cannot be subsequently changed. IOData instances can

be manipulated using a well-de�ned set of operations. An implementation of this abstract

type|i.e., code that implements its operations|is included as part of a library in each

protection domain. The exact form and syntax of IOData's operations depends on the

programming language used, which may vary from domain to domain.

The use of the IOData type for data bu�ers has important advantages. First, it en-

35

sures that a single bu�er representation can be maintained along the entire data path,

permitting lazy bu�er evaluation. Second, it isolates applications, user-level servers, and

large parts of the kernel from details of bu�er management and cross-domain data trans-

fer. This increases portability of both applications and operating system, and permits the

use of the most e�cient bu�er management and data transfer techniques on di�erent plat-

forms. Third, the IOData type gives applications access to e�cient bu�er manipulation

operations, and eliminates the need for separate application-level bu�er management.

The IOData type supports the following operations. An allocate operation creates a

new instance of the requested size and allocates an appropriate number of physical bu�ers.

During an initialization phase, the client is provided with a list of pointers to these physi-

cal bu�ers, for the purpose of initialization. A share operation creates a logical copy of an

IOData instance; it does not actually copy the physical bu�ers. Clip, split, and concate-

nate operations implement the necessary bu�er editing operations. A retrieve operation

generates a list of pointers to the physical data bu�er fragments, thereby allowing the

client to access the data. A mutate operation is a combination of retrieve and allocate. It

allows a client to read the data from an IOData instance, and store the perhaps modi�ed

data into a new IOData instance. The operation generates a list of pointer pairs, one

referring to a fragment of the source, the other pointing to a physical bu�er of the target.

Finally, a deallocate operation destroys an IOData instance, and deallocates the physical

bu�ers if no logical copies of the data remain.

2.5.2 Implementation

Consider an implementation of the IOData type. One key feature is that the implemen-

tation has complete control over the size, location, and alignment of physical bu�ers.

Consequently, a variety of bu�er management schemes are feasible. All bu�ers may be

part of a system-wide pool, allocated autonomously by each domain, located in a shared

VM region, or they may reside outside of main memory in an I/O adaptor. Physical

bu�ers can be of a �xed size to simplify and speed allocation. The other key feature of

the IOData type is its immutability. It allows the transparent use of page remapping,

shared virtual memory, and other VM techniques for the cross-domain transfer of IOData

instances. Virtual copying can be used with increased e�ciency since physical bu�ers are

guaranteed not to be written after a transfer. The implementation of the IOData abstract

data type can also be based on fbufs, the I/O bu�er management and cross-domain data

transfer facility described in Chapter 5.

It is possible to extend an existing API (such as that of UNIX) to include input/output

operations based on the IOData type. New applications that depend on high bandwidth

(such as multimedia) can use the new interface. The conventional interface can be main-

tained for backward compatibility, at the cost of copying the data into contiguous storage.

Applications that use the new interface, and consume/modify input data|rather than

merely perform bu�er editing|must be able to deal with the non-contiguous storage of

IOData instances. For the large class of applications that access input data sequentially,

the additional program complexity and runtime cost are negligible. Typically, the array-

indexing loop used to read data from a contiguous bu�er must be nested in an additional

loop that iterates over a list of bu�ers. Applications that require contiguous storage of

36

data for e�ciency must explicitly perform the copy (or use the old interface), thereby

trading the copying cost for fast random access.

2.6 Concluding Remarks

This chapter shows that the bandwidth of the CPU{memory data path in modern, general-

purpose computer systems is within the same order of magnitude as the bandwidth of

emerging high-speed I/O devices, and that this state of a�airs is likely to persist for the

foreseeable future. This makes it essential to minimize main memory tra�c during the

processing of I/O operations, in order to avoid a bottleneck in delivering high-speed net-

work tra�c to application programs. Moreover, cache memories do not signi�cantly reduce

main memory tra�c during I/O operations, due to the poor locality of the corresponding

memory accesses in current operating systems.

We identify the main causes of main memory tra�c during network I/O operations,

namely data transfer between I/O device and main memory, data transfer across protection

domain boundaries, data manipulations, bu�er management, and interfaces. Techniques

are presented that can help eliminate or reduce memory tra�c in each case. From this

discussion, we draw a number of conclusions.

First, protection domain boundaries are a major obstacle in delivering high-speed I/O

to applications. Techniques for cross-domain data transfer described in the literature

and in current use are not e�cient enough to satisfy the needs of high-speed I/O. And,

protection boundaries prevent the integration of data manipulations, which results in poor

locality of access and increased main memory tra�c. Lastly, the techniques for avoiding

main memory tra�c during I/O processing need to be carefully integrated to be e�ective.

The chapter concludes by proposing an abstract data type for I/O data bu�ers that

permits an e�cient and integrated design of application programming interface, bu�er

management, and cross-domain data transfer facility. The IOData abstract data type is

complemented by the fbuf facility for bu�er management and cross-domain data transfer

introduced in Chapter 5. The IOData bu�er abstraction implemented on top of the fbuf

facility can eliminate main memory tra�c caused by protection domain boundaries.

Chapters 4 and 6 introduce complementary techniques that can remove protection

domain boundaries from the I/O data path. Removing protection boundaries has the

additional bene�t of reducing I/O latency, and of allowing the integration of data manip-

ulations, which results in better memory access locality.

37

CHAPTER 3

OS Support for a High-Speed Network Adaptor

This chapter describes our experiences in providing low-level operating system support

for a high-speed network adaptor. We begin by describing the experimental hardware and

software platform used throughout this work. Then, we describe a number of problems that

were encountered while attempting to integrate a high-speed network device e�ciently into

a standard operating system environment, and we present novel techniques to solve these

problems. Next, we highlight certain features provided by the Osiris adaptor that we were

able to exploit in the OS; features that facilitated new techniques (covered in detail in

later chapters) for making the OS more e�ective in delivering network data to application

programs. We close with a detailed study of the network performance achieved between a

pair of commercial workstations connected by an experimental high-speed network link.

Note that this chapter does not address the problem of delivering high-speed network-

ing services to application programs. Instead, it focuses on the e�cient transport of data

between the OS kernels running on hosts connected by a high-speed network. The issue

of achieving application-to-application networking performance is treated in subsequent

chapters.

3.1 Experimental Hardware and Software

With the emergence of high-speed network facilities, several research e�orts are focusing on

the design and implementation of network adaptors [C+91, BP93, B+93, Ram93, TS93].

We have used one of these adaptors in our research|the Osiris ATM board built for

the Aurora Gigabit Testbed [C+93b, Dav93]. We consider this network adaptor from

a software perspective, identifying the subtle interactions between the adaptor and the

operating system software that drives it. The exibility built into the Osiris board makes

this interaction an especially interesting one to study.

TheOsiris network adaptor was designed speci�cally to support software experimenta-

tion. Therefore, only the most critical, high-speed functions are implemented in hardware,

and even these are primarily implemented in programmable logic. The architecture of the

interface is depicted in Figure 3.1. It consists of two mostly independent halves|send

and receive|each controlled by an Intel 80960 microprocessor.

The adaptor board attaches to a turbochannel option slot provided by DEC work-

stations. We used two generations of DEC workstations in this work: the DECstation

5000/200 (25 MHz MIPS R3000), and the DEC 3000/600 (175 MHz Alpha). From the

host's perspective, the adaptor looks like a 128KB region of memory. A combination of

host software and software executing in the on-board microprocessors determine the de-

tailed structure of this memory. In general, the memory is used to pass bu�er descriptors

between the host and the adaptor. Network data is not normally bu�ered in the dual-port

38

Header

Parser FIFO
STS-3c

Framer

Header

Formatter FIFO
STS-3c

Framer

ROM

Xmit
Dual-Port

Rcv
Dual-Port Rcv

Microprocessor

Xmit
Microprocessor

DMA
Controller

DMA
Controller

Host I/O Bus

To/From
Network

Figure 3.1: Architectural Overview of Osiris

memory; it is transferred directly from/to main memory bu�ers using DMA.

In the transmit direction, the software running on the microprocessor writes commands

to a DMA controller and an ATM cell generator. The general paradigm is that the

host passes bu�er descriptors to the microprocessor through the dual-port RAM, and the

microprocessor executes a segmentation algorithm to determine the order in which cells are

sent. For example, the host could queue a number of packets and the microprocessor could

transmit one cell from each in turn. The microprocessor has the capability to interrupt

the host.

In the receive direction, the microprocessor reads from a FIFO the virtual circuit

identi�er (VCI) and ATM adaptation layer (AAL) information [Bel92] that is stripped

from cells as they are received. By examining this information, and using other information

from the host (such as a list of reassembly bu�ers), the microprocessor determines the

appropriate host memory address at which the payload of each received cell is to be

stored. It then issues commands to another DMA controller; typically one command is

issued for each ATM cell received. As part of the reassembly algorithm, the microprocessor

decides when it is necessary to interrupt the host.

The important point to understand from this brief description is that software running

on the two 80960s controls the send/receive functionality of the adaptor, and perhaps just

as importantly, this code e�ectively de�nes the software interface between the host and

the adaptor. That is, the data structures, protocols, and events used for communication

between host CPU and network adaptor are de�ned entirely by software.

The other relevant piece of software, of course, is the OS running on the host. On the

DECstation 5000/200, we used the Mach 3.0 operating system [ABB+86], retro�tted with

a network subsystem based on the x-kernel [DAPP93, HP91]. On the DEC 3000/600,

we used a version of the x-kernel that runs as a stand-alone (native) operating system

39

kernel. There are two relevant things to note about the OS. First, because the x-kernel

supports arbitrary protocols, our approach is protocol-independent; it is not tailored to

TCP/IP. Second, because Mach is a microkernel-based system and the x-kernel allows the

protocol graph to span multiple protection domains, our approach has to allow for the

possibility that network data traverses multiple protection domains; it is not restricted to

kernel-resident protocols.

The following sections describe our experiences using the Osiris board, highlighting

the problems it imposed on the software, and how we addressed them. For the most part,

this discussion is limited to how we implemented the basic host-to-host functionality, both

correctly, and with the highest possible performance; Section 3.8 describes how certain

features of the board were exploited to implement novel OS techniques that turn this

host-to-host performance into equally good user-to-user performance.

3.2 Host/Board Communication

We begin by de�ning the software interface between the host's device driver and the pro-

cessors on the Osiris board. The host CPU communicates with the on-board processors

through shared data structures in the dual-port memory. In addition, each on-board pro-

cessor can assert an interrupt to alert the host CPU of asynchronous events. The design of

the shared data structures and the discipline for using interrupts was guided by the goals

of minimizing packet delivery latency and host CPU load, and of achieving host-to-host

throughput close to the capacity of the network link. Particular attention was paid to

(1) minimizing the number of load and store operations required to communicate with

the on-board processors (accesses to the dual port-memory across the turbochannel are

expensive), (2) avoiding delays due to lock contention while accessing shared data struc-

tures in the dual-port memory, and (3) minimizing the number of interrupts, which place

a signi�cant load on the host CPU.

3.2.1 Shared Data Structure

As with any shared data structure, measures must be taken to ensure consistency in the

presence of concurrent accesses. The dual-port memory itself guarantees atomicity of

individual 32 bit load and store operations only. Each half of the board provides a test-

and-set register that can be used to implement a simple spin-lock. The intended use is to

enforce mutually exclusive access to the dual-port memory by mandating that a processor

must �rst acquire the corresponding lock. This approach allows arbitrarily complex shared

data structures, but it restricts concurrency between host CPU and on-board processors.

As a result, both packet delivery latency and CPU load can su�er due to lock contention.

To avoid this problem, we use simple lock-free data structures that rely only on the

atomicity of load and store instructions. The basic data structure used in the dual-port

memory is a simple, one-reader-one-writer FIFO queue used to pass bu�ers between the

host and the adaptor. The queue consists of an array of bu�er descriptors, a head pointer,

and a tail pointer. The head pointer is only modi�ed by the writer and the tail pointer

is only modi�ed by the reader. The processors determine the status of the queue by

comparing the head and tail pointers, as follows:

40

head = tail, queue is empty

(head+ 1) mod size = tail, queue is full

The simplicity of these lock-free queues maximizes concurrent access to the dual-port

memory, and minimizes the number of load and store operations required to communicate.

A single queue is used for communication between the host CPU and the transmit

processor. Each queue element describes a single bu�er in main memory by its physical

address and length. To queue a bu�er for transmission, the host CPU performs the

following actions (xmitQueue[head] refers to the bu�er descriptor referred to by the head

pointer).

� wait until the transmit queue is not full

� de-allocate any previous bu�er described by xmitQueue[head]

� queue the bu�er using xmitQueue[head]

� increment the head pointer (modulo array size)

The transmit processor continuously performs the following actions.

� wait until the transmit queue is not empty

� read the descriptor at xmitQueue[tail]

� transmit the bu�er

� increment the tail pointer (modulo array size)

Two queues are required for communication between the host and the receive processor.

The �rst queue is used to supply bu�ers to the receive processor for storage of incoming

PDUs;1 the second queue holds �lled bu�ers waiting for processing by the host. Initially,

the host �lls the free bu�er queue. When a PDU arrives, the receive processor removes

a bu�er from this queue, and stores incoming data into the bu�er. When the bu�er is

�lled, or the end of the incoming PDU is encountered, the processor adds the bu�er to the

receive queue. If the receive queue was previously empty, an interrupt is asserted to notify

the host of the transition of the receive queue from the empty state to a non-empty state.

The host's interrupt handler schedules a thread that repeatedly performs the following

steps until the receive queue is found empty:

� remove a bu�er from the receive queue

� add a free bu�er to the free queue

� initiate processing of the received data

1We use the term protocol data unit (PDU) to denote a packet processed by a protocol, where the

protocol in question is generally given by the context. In this case, the PDU corresponds to the unit of

data sent between device drivers.

41

3.2.2 Interrupts

Handling a host interrupt asserted by the Osiris board takes approximately 75�s in Mach

on a DecStation 5000/200. For comparison, the service time for a received UDP/IP PDU

is 200�s; this number includes protocol processing and driver overhead, but not interrupt

handling. Given this high cost, minimizing the number of host interrupts during network

communication is important to overall system performance.

In our scheme, the completion of a PDU transmission, which is traditionally signalled

to the host using an interrupt, is instead indicated by the advance of the transmit queue's

tail pointer. The driver checks for this condition as part of other driver activity|for

example, while queuing another PDU|and takes the appropriate action. Interrupts are

used only in the relatively infrequent event of a full transmit queue. In this case, the host

suspends its transmit activity, and the transmit processor asserts an interrupt as soon as

the queue reaches the half empty state.

In the receiving direction, an interrupt is only asserted once for a burst of incoming

PDUs. More speci�cally, whenever a bu�er is queued before the host has dequeued the

previous bu�er, no interrupt is asserted. This approach achieves both low packet delivery

latency for individually arriving packets, and high throughput for incoming packet trains.

Note that in situations where high throughput is required (i.e. when packets arrive closely

spaced), the number of interrupts is much lower than the traditional one-per-PDU.

3.3 Physical Bu�er Fragmentation

The Osiris board relies on direct memory access (DMA) for the actual transfer of network

data between main memory and network adaptor. The unit of data exchanged between

host driver software and on-board processors is a physical bu�er|a set of memory loca-

tions with contiguous physical addresses. The descriptors used in the transmit and receive

queues contain the physical address and the length of a bu�er. The on-board processors

initiate DMA transfers based on the physical address of the bu�ers.

The per-PDU processing cost in the host driver increases with the number of physical

bu�ers used to hold the PDU. Thus, one would like to minimize the number of physical

bu�ers occupied by a single PDU. However, this is made di�cult by the fact that the

contiguous virtual memory pages used to store a PDU are generally not contiguous in the

physical address space. The reason for this lies at the heart of any page-based virtual

memory system|the ability to map non-contiguous physical pages to contiguous virtual

memory addresses, in order to avoid main memory fragmentation.

Figure 3.2 depicts a PDU passed to the Osiris driver for transmission. The PDU

consists of two parts|a header portion, which contains protocol headers, and the data

portion. The header portion usually contributes one physical bu�er. The data portion is

typically not aligned with page boundaries, and may thus occupy d(message data size�

1)=page sizee + 1 pages. When the physical pages occupied by the data portion are

not contiguous, each page contributes a physical bu�er. In practice, a PDU with a data

portion of length n pages usually occupies n+ 2 physical bu�ers.

Message fragmentation at the protocol level can aggravate this proliferation of physical

bu�ers. The problem is that unless the fragment boundaries in the original message

42

Virtual
Address Space

Address Space
Physical

Header Body

Figure 3.2: PDU Bu�er Fragmentation

coincide with page boundaries, each fragment may generate excess physical bu�ers in the

driver. As an example of an extreme case, assume that a contiguous 16KB application

message is transmitted using UDP/IP with a maximal transfer unit (MTU) of 4KB,2

which is also the system's page size. The inclusion of the IP header reduces the data space

available in each fragment to slightly less than 4KB. Consequently, the data portions of

most fragments are not page-aligned, and occupy two physical pages. In addition, the IP

header attached to each fragment occupies a separate page. As a result, the transmission of

a single, 16KB application message can result in the processing of up to 14 physical bu�ers

in the driver. This compounding e�ect of IP fragmentation and bu�er fragmentation can

be avoided by ensuring page alignment of application messages, and by choosing an MTU

size that is a multiple of the page size, plus the IP header size. This ensures that fragment

boundaries align with page boundaries.

A similar problem exists on the receive side. Recall that the host driver allocates

receive bu�ers, and queues these bu�ers for use by the receive processor. Most operating

systems do not support the dynamic allocation of physically contiguous pages. In this

case, the size of the receive bu�ers is restricted to the system's memory page size, since it

represents the largest unit of physically contiguous memory that the driver can allocate.

This limit on the size of receive bu�ers causes the fragmentation of all incoming network

packets larger than the page size.

The proliferation of physical bu�ers is a potential source of performance loss in the

Osiris driver. A general solution to this problem would require the use of physically

contiguous memory for the storage of network data. In traditional operating systems,

where network data is copied between application memory and kernel bu�ers, this can

be achieved by statically allocating contiguous physical pages to the �xed set of kernel

bu�ers. Unfortunately, this approach does not readily generalize to a copy-free data path

(as outlined in Chapter 2, and detailed in Chapter 5), since applications generally cannot

be allowed to hold bu�ers from a statically allocated pool.

Several modern workstations, such as the IBM RISC System/6000 and DEC 3000

2Keep in mind that the Osiris driver, not the hardware, de�nes the MTU. We are just using 4KB as

an example.

43

AXP Systems provide support for virtual address DMA through the use of a hardware

virtual-to-physical translation bu�er (scatter/gather map) [IBM90, D+92]. Host driver

software must set up the map to contain appropriate mappings for all the fragments of a

bu�er before a DMA transfer. When data is transferred directly from and to application

bu�ers, it may be necessary to update the map for each individual message. As a result,

physical bu�er fragmentation is a potential performance concern even when virtual DMA

is available.

3.4 Cache Coherence

The cache subsystem of the host we were originally using|the DECstation 5000/200|

does not guarantee a coherent view of memory contents after a DMA transfer into main

memory. That is, CPU reads from cached main memory locations that were overwritten

by a DMA transfer may return stale data. To avoid this problem, the operating system

normally executes explicit instructions to invalidate any cached contents of memory loca-

tions that were just overwritten by a DMA transfer. Unfortunately, partial invalidations

of the data cache take approximately one CPU cycle per memory word (32bits), plus the

cost of subsequent cache misses caused by the invalidation of unrelated cached data.3 This

cost has a signi�cant impact on the attainable host-to-host throughput, as quanti�ed in

Section 3.9 (Figure 3.3).

The key idea for avoiding this cost is to take a lazy approach to cache invalidation, and

to rely on network transmission error handling mechanisms for detecting errors caused by

stale cache data. When a data error is detected at some stage during the processing of

a received message, the corresponding cache locations are invalidated, and the message is

re-evaluated before it is considered in error. The feasibility of this approach depends on

the following conditions.

1. The underlying network is not reliable, and therefore mechanisms for detecting or

tolerating transmission errors are already in place.

2. The rate of errors introduced by stale cache data is low enough for the lazy approach

to be e�ective.

3. Revealing stale data does not pose a security problem.

While the �rst condition is true for most networks, the second condition deserves some

careful consideration. The Osiris driver employs a free bu�er queue and a receive queue

with a length of 64 bu�ers each, and a bu�er size of 16KB. This implies that once a

receive bu�er is allocated and queued on the free bu�er queue, normally 63 other bu�ers

are processed by the host until that bu�ers re-appears at the top of the received bu�er

queue. In order to become stale, a cached data word from a particular bu�er has to remain

in the cache while 63 other receive bu�ers are being processed. During this time, the CPU

typically reads the portion of the input bu�ers occupied by received data, as well as other

3The DECstation also supports a fast instruction that swaps the data and instruction cache, which

amounts to an invalidation of the entire cache contents. However, the high cost of subsequent cache misses

makes this an unattractive solution.

44

data relating to protocol processing, application processing and other activities unrelated

to the reception of data. These accesses are likely to evict all previously cached data from

the DECstation's 64KB data cache.

Experimentally, we have seen no evidence of stale data at all while running our test

applications. This suggests that the error rate should be low enough for this optimization

to be very e�ective. It should be noted that lazy cache invalidation is not likely to scale to

machines with much larger caches. Fortunately, hardware designers have recognized the

high cost of software cache invalidation, and tend to provide support for cache coherence

on these machines. For example, the DEC 3000 AXP workstation data cache is updated

during DMA transfers into main memory.

The third condition is satis�ed whenever reliable protocols are used that detect data

errors before the data is passed to an unprivileged application. However, with unreliable

protocols, an application could access stale data from a previous use of the receive bu�er,

potentially violating the operating system's security policy. This problem can be solved

by ensuring the reuse of receive bu�ers on the same data stream. In this way, stale data

read by an application is guaranteed to originate from an earlier message received by that

application, thus eliminating security problems. The reuse of receive bu�ers on the same

data stream has other advantages, as described in Section 3.8.1.

3.5 Page Wiring

Whenever the address of a bu�er is passed to the Osiris on-board processors for use

in DMA transfers, the corresponding pages must be wired. Wiring, also referred to as

pinning, refers to the marking of a page as being non-eligible for replacement by the

operating system's paging daemon. Since changing the wiring status of a page occurs in

the driver's critical path, the performance of this operation is of concern.

Our initial use of the Mach kernel's standard service for page wiring resulted in surpris-

ingly high overhead. One problem is that Mach's implementation of page wiring provides

stronger guarantees than are actually needed for DMA transfers. In particular, it prevents

not only replacement of the page itself, but also of any pages containing page table entries

that might be needed during an address translation for that page. We now use low-level

functionality provided by the Mach kernel to prevent replacement of pages with acceptable

performance.

3.6 DMA Length

The length of DMA transactions has a signi�cant e�ect on performance. As mentioned

above, DMA usually takes place one ATM cell at a time. This provides maximum exibility

in the transmit direction (e.g. to interleave several outgoing PDUs) and avoids the need for

a reassembly bu�er in the receive direction. The maximum data transfer speed that can

be sustained with 44 byte transfers over the turbochannel on a DECstation 5000/200 is

367 Mbps in the transmit direction and 463 Mbps in the receive direction. These �gures,

which have been measured for brief periods on the actual hardware, can be derived simply

by considering the minimal overhead for DMA transactions in each direction|8 cycles for

45

writes, 13 cycles for reads. Thus, for example, the maximum throughput for transmission

is 11/(11+13)�800 = 367 Mbps.

Clearly, it would be advantageous to increase the length of DMA transfers. In the

transmit direction, the only penalty for increasing DMA length is an increase in the gran-

ularity of multiplexing. It has been argued that �ne-grained multiplexing is advantageous

for latency and switch performance reasons [Dav91]. However, when the adaptor is used

in a mode where the goal is to maximize throughput to a single application, neither of

these reasons is relevant. It is therefore reasonable, and straightforward, to perform DMA

transactions longer than one ATM cell. Note that with transfers of 88 bytes at a time,

the maximum rate that data could be moved across the bus would be 22/(22+13)�800

= 503 Mbps. This is close to the 516 Mbps data bandwidth available in a 622 Mbps

SONET/ATM link [BC89] when 44 byte cell payloads are used.

In the receive direction, the primary advantage in doing single-cell DMAs is that it

removes the need for a reassembly bu�er on the adaptor; cells can be placed directly in

host memory as they arrive. Not only does this reduce the hardware complexity of the

interface, but it also reduces the likelihood that inadequate reassembly space is available.

In some circumstances, however, it is possible to preserve the advantages of not having

a reassembly bu�er on the adaptor while performing DMAs longer than one cell. The

quantity that we really wish to optimize is the user-to-user throughput for a single appli-

cation. In this case, as long as cells arrive in order, most successively received cells will

contain data that is to be stored in contiguous regions of host memory, the only exception

being at the end of a bu�er. Since there is a small amount of FIFO bu�ering of cells on

the adaptor, the microprocessor can look at two cell headers before deciding what to do

with their associated payloads. If the header information suggests that the two payloads

should be stored contiguously, then a single, 88-byte DMA can be initiated.

Note that the biggest gain is achieved just by going to double-cell DMAs, since we

have already driven the overhead down from 42% to 26%. With any further increase in

DMA length the returns diminish. The measured performance of doing 88-byte DMAs is

reported in Section 3.9.

3.7 DMA versus PIO

One of the most lively debates in network adaptor design is over the relative merits of

DMA and programmed I/O (PIO) for data movement between the host and the adaptor.

Both the literature on the subject (e.g. [Ram93, BP93, DWB+93]) and our own experience

have led us to the conclusion that the preferable technique is highly machine-dependent.

In the case of the DEC workstations we used, the low throughput achievable using PIO

across the turbochannel ensures that, with well designed software (i.e. no unnecessary

copies) DMA is preferable.

We argue that the best way to compare DMA performance versus PIO is to determine

how fast an application program can access the data in each case. For example, when

data is DMAed into memory on a DECstation 5000/200, it will not be in the cache;

an additional read of the main memory is necessary when the application accesses the

data. On the DECstation, reading data into the cache causes a dramatic decrease in

46

throughput from the pure DMA results, but the throughput remains above that which

can be achieved by PIO simply because of the high performance penalty for word-sized

reads across the turbochannel. On DEC's Alpha-based machines, a greatly improved

memory system with a crossbar switch that connects turbochannel, main memory and

cache allows cache/memory transactions to occur concurrently with DMA transfers on the

turbochannel. In addition, DMA writes to main memory update the second level cache.

On these machines, applications are able to access the data at the rate of and concurrent

with its DMA transfer into main memory (see Section 3.9).

In the PIO case, with carefully designed software, data can be read from the adaptor

and written directly to the application's bu�er in main memory, leaving the data in the

cache [Jac90, DWB+93]. If the application reads the data soon after the PIO transfer,

the data may still be in the cache. According to one study, the PIO transfer from adaptor

to application bu�er must be delayed until the application is scheduled for execution, in

order to ensure su�cient proximity of data accesses for the data to remain cached under

realistic system load conditions [PDP93]. Loading data into the cache too early is not

only ine�ective, but can actually decrease overall system performance by evicting live

data from the cache. Unfortunately, delaying the transfer of data from adaptor to main

memory until the receiving application is scheduled for execution requires a substantial

amount of bu�er space in the adaptor. With DMA, instead of using dedicated memory

resources on the adaptor, incoming data can be bu�ered in main memory. Using main

memory to bu�er network data has the advantage that a single pool of memory resources

is dynamically shared among applications, operating system, and network subsystem.

3.8 New OS Mechanisms

This section sketches two novel OS mechanisms|fast bu�ers (fbufs) and application device

channels (ADCs)|and highlights those features of the Osiris board that facilitated these

mechanisms. The mechanisms themselves are described in detail in later chapters.

3.8.1 Fast Bu�ers

One of the key problems faced by the operating system, especially a microkernel-based sys-

tem in which device drivers, network protocols, and application software might all reside

in di�erent protection domains, is how to move data across domain boundaries without

sacri�cing the bandwidth delivered by the network. The fbuf mechanism is designed to ad-

dress this problem|it is a high-bandwidth cross-domain bu�er transfer and management

facility.

The fbuf mechanism combines two well-known techniques for transferring data across

protection domains: page remapping and shared memory. It is equally correct to view

fbufs as using shared memory (where page remapping is used to dynamically change the

set of pages shared among a set of domains), or using page remapping (where pages that

have been mapped into a set of domains are cached for use by future transfers). Since

fbufs are described in detail in Chapter 5, this section concentrates on the Osiris features

that we were able to exploit.

47

The e�ectiveness of fbufs depends on the ability of the adaptor to make an early

demultiplexing decision. That is, the \data path" through the system that the incoming

packet is going to traverse must be determined by the adaptor so that it can be stored in

an appropriate bu�er; one that is mapped into the right set of domains. We say that an

fbuf that is already mapped into a particular set of domains is cached. Being able to use

a cached fbuf, as opposed to an uncached fbuf that is not mapped into any domains, can

mean an order of magnitude di�erence in how fast the data can be transferred across a

domain boundary.

In the case of the Osiris adaptor, the device driver employs the following strategy. It

maintains queues of preallocated cached fbufs for the 16 most recently used data paths,

plus a single queue of preallocated uncached fbufs. The adaptor performs reassembly of

incoming packets by storing the ATM cell payloads into a bu�er in main memory using

DMA. When the adaptor needs a new reassembly bu�er, it checks to see if there is a

preallocated fbuf for the virtual circuit identi�er (VCI) of the incoming packet. If not, it

uses a bu�er from the queue of uncached fbufs.

One of the interesting aspects of this scheme is how we use VCIs. The x-kernel provides

a mechanism for establishing a path through the protocol graph, where a path is given by

the sequence of sessions that will process incoming and outgoing messages on behalf of a

particular application-level connection. Each path is is then bound to an unused VCI by

the device driver. This means that we treat VCIs as a fairly abundant resource; each of

the potentially hundreds of paths (connections) on a given host is bound to a VCI for the

duration of the path (connection). This approach is not compatible with a regime that

treats VCIs as a scarce resource, and in particular, a resource that the network charges

for.

The early demultiplexing capability, which facilitates fbufs, has advantages beyond

that of enabling e�cient delivery of data to applications. It is also the basis for the

appropriate processing of prioritized network tra�c under high receiver load [Fel90]. The

threads that de-queue bu�ers from the various receive queues may be assigned priorities

corresponding to the tra�c priorities of the network stream they handle. During phases of

receiver overload, lower-priority receive queues will become full before higher priority ones,

allowing the adaptor board to drop the lower priority packets before they have consumed

any processing resources on the host.

3.8.2 Application Device Channels

Fbufs take advantage of the Osiris demultiplexing capability to avoid costs associated

with the transfer of data across protection domain boundaries on the end host. These

costs would otherwise limit the attainable application-to-application throughput. Appli-

cation device channels (ADCs) take the on-board demultiplexing approach a signi�cant

step further. An ADC gives an application program restricted but direct access to the

Osiris network adaptor, bypassing the operating system kernel. This approach removes

protection domain boundaries from both the control and data path between application

and network adaptor, resulting in minimal application-to-application message latencies.

While ADCs give application programs direct access to the network adaptor, several

unprivileged applications can share the adaptor. The operating system remains in control

48

of the network device, ensuring protection, security and fairness. The is accomplished by

moving the protection boundaries e�ectively into the network adaptor. Application device

channels are described in more detail in Chapter 6.

To support ADCs, the network adaptor must be able to support, in addition to packet

demultiplexing, multiple transmit and receive bu�er queues. Furthermore, it must be pos-

sible to map pairs of transmit/receive queues directly into application's address spaces.

With Osiris, the transmit and receive processor each share 64 KB of dual-ported memory

with the host. Assuming a 4 KB virtual memory page size, the adaptor can support up

to 16 transmit/receive queues, which can be mapped into di�erent address spaces, includ-

ing applications. Other functionality required for ADCs, namely validation of transmit

requests and application bu�er addresses, was implemented by programing the Osiris on-

board processors accordingly. In summary, the Osiris features that facilitated ADCs are

its dual-ported memory that spans multiple VM pages, and its programmable on-board

processors.

3.9 Performance

This section reports on several experiments designed to evaluate the network performance

achieved with the Osiris board, and the impact of various optimizations described in

earlier sections. All presented results refer to message exchanges between test programs

linked into the OS kernel. Each data point is the average of 10 trials, where each trial

consists of sending 100,000 messages, after an initial warm-up period. In all cases, the

90% con�dence intervals where within 1% of the average. The workstations were running

in single-user mode.

Machine Protocol Message size (bytes)

DEC model 1 1024 2048 4096

5000/200 ATM 353 417 486 778

UDP/IP 598 659 725 1011

3000/600 ATM 154 215 283 449

UDP/IP 316 376 446 619

Table 3.1: Round-Trip Latencies (�s)

Throughout this section, we report results obtained on two generations of workstations:

the DECStation 5000/200 (25Mhz MIPS R3000 CPU, 64/64 KB I/D caches, 16 MB of

main memory), and the DEC 3000/600 (175MHz Alpha CPU, 8/8 KB I/D caches, 2 MB

second level cache, 64 MB of main memory). Table 3.1 shows the round-trip latencies

achieved between a pair of workstations connected by a pair of Osiris boards linked back-

to-back. The rows labeled \ATM" refer to the round-trip latency of PDUs exchanged

between test programs con�gured directly on top of the Osiris device driver. In the

\UDP/IP" case, round-trip latency was measured between two test programs con�gured

on top of the UDP/IP protocol stack4. IP was con�gured to use an MTU of 16KB, and

4Our otherwise standard implementations of IP and UDP were modi�ed to support message sizes larger

49

UDP checksumming was turned o�. The measured latency numbers for 1 byte messages are

comparable to|and in fact, a bit better than|those obtained when using the machines'

Ethernet adaptors under otherwise identical conditions. This is a reassuring result, since

it demonstrates that the greater complexity of the Osiris adaptor did not degrade the

latency of short messages.

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64 128 256

Throughput in Mbps

Message size in KBytes

double cell DMA 3

3

3

3

3

3
3

3 3
3

single cell DMA +

+

+

+

+

+ +
+ + +

single cell DMA, cache invalidated 2
2

2

2

2

2

2 2
2

2

Figure 3.3: DEC 5000/200 UDP/IP/Osiris Receive Side Throughput

The next set of measurements was designed to evaluate the network performance of

the receiving host in isolation. For this purpose, the receiver processor of the Osiris board

was programmed to generate �ctitious PDUs as fast as the receiving host could absorb

them. Figure 3.3 shows the measured data throughput achieved on a DEC 5000/200 with

the UDP/IP protocol stack, where the IP MTU was set to 16 KB. The graphs depict

results measured with DMA transfer sizes of one and two ATM cell payloads, and with

cache invalidation in the Osiris driver.

We make the following observations. First, the maximal throughput achieved is 379

Mbps with double cell DMA, 340 Mbps with single cell DMA, and 250 Mbps with single

cell DMA when the data cache is pessimistically invalidated after each DMA transfer. The

last number shows the signi�cant impact of cache invalidations on throughput.

In the DECStation 5000/200, all memory transactions occupy the turbochannel and

no part of a DMA transaction can overlap with the CPU accessing main memory. Thus,

memory writes and cache �lls that result from CPU activity reduce DMA performance.

Conversely, DMA tra�c increases the average memory access latency experienced by the

CPU. The combined e�ect of DMA overhead and main memory contention result in a

than 64KB.

50

0

100

200

300

400

500

1 2 4 8 16 32 64 128 256

Throughput in Mbps

Message size in KBytes

double cell DMA 3

3

3

3

3

3 3 3 3 3

double cell DMA, UDP-CS +

+

+

+

+

+
+ + + +

single cell DMA 2

2

2

2

2 2 2 2 2 2

single cell DMA, UDP-CS ��

�

�

�
� � � � �

Figure 3.4: DEC 3000/600 UDP/IP/Osiris Receive Side Throughput

maximum throughput rate of 340 Mbps in the receive direction. Note that in this experi-

ment, network data is never accessed by the CPU. In the case where the data is read by

the CPU (e.g., to compute the UDP checksum), the maximal throughput decreases to 80

Mbps, due to the limited memory bandwidth on this machine.

Figure 3.4 shows the corresponding results obtained using DEC 3000/600 worksta-

tions. This machine has a greatly improved memory system. A bu�ered crossbar allows

DMA transactions and cache �lls/cache write-backs to proceed concurrently, and hard-

ware ensures cache coherence with respect to DMA. The experiment was run with single

and double DMA transfers, and with UDP checksumming turned on and o�. With double

cell length DMA, the throughput now approaches the full link bandwidth of 516 Mbps for

message sizes of 16KB and larger. With UDP checksumming turned on, the throughput

decreases slightly to 438 Mbps. This is an important result; it implies that the network

data can be read and checksummed at close to 90% of the network link speed. Also, the

throughput for small messages has improved greatly, thanks to the reduced per-packet

software latencies on this faster machine.

The �nal set of measurements evaluates the network performance on the transmit side.

The results for both the DEC 5000/200 and the 3000/600 are shown in Figure 3.5. The

maximal throughput achieved on the transmit side is currently 325 Mbps. This number is

limited entirely by turbochannel contention due to the high overhead of single ATM cell

payload sized DMA transfers. A hardware change to allow longer DMA transfers in this

direction is underway, but was not completed at the time of this writing. With double cell

DMA transfers on the transmit side, the host-to-host throughput attained is expected to

fall between the graphs for single cell DMA and that for double cell DMA on the receive

51

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128 256

Throughput in Mbps

Message size in KBytes

3000/600 3

3

3

3
3 3 3 3 3 3

3000/600, UDP-CS +

+

+

+
+ + + + + +

5000/200 2

2

2

2

2
2 2 2 2

2

Figure 3.5: UDP/IP/Osiris Transmit Side Throughput

side (Figure 3.4).

3.10 Concluding Remarks

The material presented in this chapter demonstrates that high-speed networking tra�c

can be e�ciently processed at the level of the operating system on current, general-purpose

workstations. It identi�es the main issues that must be addressed to support high-speed

network I/O tra�c in the OS. That is, minimizing host/adaptor communication costs,

including interrupt overheads, and streamlining data transfer between main memory and

adaptor, which includes issues such as cache coherence, bu�er fragmentation, and virtual

memory page wiring. The following chapters address the related issue of delivering high-

speed networking tra�c to application programs without loss of performance.

Finally, given that the Osiris adaptor was designed to provided maximal exibility,

it contains many more features than one would include in a production board. Based

on our experience, we have found the following two features to be important, and would

recommend that they be considered in future board designs.

� The ability to make an early demultiplexing decision; treating VCIs as an abundant

resource that represents end-to-end connections is a reasonable way to do this on an

ATM network. This is used by both the fbuf and ADC mechanisms.

� The ability to support multiple transmit and receive queues, and map each of them

directly into user-level protection domains. It was this feature that facilitated the

ADC mechanism.

52

53

CHAPTER 4

Decoupling Modularity and Protection

This is the �rst of a series of three chapters that present novel techniques that help

deliver the performance of high-speed networks to application programs. In Chapter 2,

we have seen that the protection domain boundaries that occur between operating system

kernel and application programs present an obstacle for high-performance I/O operations.

I/O data must be transferred across domain boundaries at a potential loss in bandwidth

and added latency. Furthermore, protection boundaries destroy memory access locality,

thus exposing the main memory bandwidth bottleneck.

The problem is a particularly pressing one in microkernel-based operating systems.

In these systems, I/O data may have to cross multiple protection domain boundaries,

and several server processes may have to be scheduled for execution during each I/O

operation. This chapter presents a new approach for structuring an operating system

that a�ords all the bene�ts of a modular OS structure, without the performance cost of

additional protection boundaries and server processes.

4.1 Motivation

The bene�ts of a modular operating system design are well-known: The system is more

easily con�gured, scaled, extended, ported, maintained, veri�ed, and distributed across

multiple processors. Growing support for modular OS design has recently popularized the

idea of microkernel-based systems [ABB+86, RAA+88, Hil92]|a kernel that implements

the most basic abstractions, and a small number of user-level servers that provide the

functionality of a speci�c abstract machine. While microkernel-based systems are an

improvement over monolithic operating systems like UNIX, they fall short of satisfying a

number of demands placed on modern operating systems.

The problem with microkernel-based systems is that they tightly couple modular-

ity and protection|servers are implemented in separate protection domains, and conse-

quently, the communication mechanisms are designed for the cross-domain case. A number

of limitations arise as a result of this coupling. First, the modularity supported by these

systems is very coarse-grained. Since each module is implemented in a separate domain,

concern for cross-domain communication costs prevents a �ne-grained decomposition of

the system1. For the same reason, it is di�cult to extend the system vertically|i.e.,

through stackable services|because each layer adds communication overhead that de-

grades performance. Second, the partitioning of functionality into servers|and in partic-

ular determining what functionality should be provided by the kernel|is static and part

of an early design decision. Consequently, it is di�cult to recon�gure functionality among

servers and between kernel and servers. Such recon�gurations are desirable to satisfy the

1Note that even light-weight RPC is an order of magnitude more costly than local procedure calls.

54

needs of applications, to match the characteristics of a variety of hardware architectures,

and to integrate new technology as the system evolves.

The solution we propose is to provide architectural support for modules that is inde-

pendent of protection domains. The key is a location transparent invocation mechanism

that (1) has semantics similar to a local procedure call, (2) delivers performance close to

that of an ordinary procedure call when the invocation is between modules in the same

domain, and (3) allows the use of the most appropriate IPC mechanism in the cases of

cross-domain and cross-machine invocations. Given such support, the decomposition of

a system into modules can be guided by sound software engineering principles, with the

modules distributed across protection domains and machines at con�guration time based

on criteria such as trust, security, fault-tolerance and performance. Put another way,

protection and modularity are decoupled.

4.1.1 Why Separate Modularity and Protection?

The fundamental reasons for providing support for modularity that is independent of

protection are that (1) it allows modular decomposition without concern for cross-domain

communication costs, and (2) the partitioning of functions into protection domains becomes

a matter of con�guration rather than design. These two facts have several important

consequences, which are explored below.

First, while con�guring a given system, the granularity of protection can be adjusted

from one resembling a capability-system [WCC+74] (with each module in a separate do-

main), through the granularity found in microkernel-based systems, up to no protection

at all (with all modules in a single domain). The partitioning of modules into domains

can be adjusted according to their stage in the software life-cycle, and/or the require-

ments in a particular installation of the system. For instance, a subsystem consisting of a

set of modules can be con�gured with each of its modules in a separate domain for ease

of fault detection and debugging during its testing phase, and later, in the post-release

phase, combined into a single domain (or even the kernel domain) for performance. In

other words, during the validation phase, the chosen granularity of protection is such that

encapsulation is enforced. Once in the post-release phase, the granularity of protection is

reduced to the point where only modules with di�erent levels of trust are separated by

domain boundaries.

Second, determining the set of functions to be included in the kernel domain|the

subject of an ongoing debate in the microkernel-based OS community|becomes a matter

of con�guration. The kernel module, which we call the nugget, can be reduced to include

only functionality that must be provided in the privileged domain|management of hard-

ware resources. All other services are implemented in separate modules which may or may

not be con�gured into the kernel domain. This is important because new kinds of servers

built on top of the kernel, new hardware platforms, and new OS technology will continue

to shift the \right" set of functions to be included in the kernel domain.

Third, a system built in this manner can be extended vertically through layered services

[GHM+90, HP91] without imposing cross-domain invocation costs at each layer. Moreover,

since interfaces are provided at module boundaries rather than domain boundaries, a

layered service can be accessed at each level. That is, applications can access a layered

55

system service at the level of abstraction most appropriate to their needs. This eliminates

the need for unstructured, extensible interfaces like the UNIX ioctl call, which are used

to allow the access of low-level services through an abstract, high-level interface provided

at the domain boundary.

Note that most of the advantages of microkernel-based systems (when compared to

monolithic systems) are a result of the modularity, the dynamic binding of clients and

servers, and the location transparent communication mechanism. Most of the overhead

associated with microkernel-based design, on the other hand, is a result of the more �ne-

grained protection. The proposed approach o�ers the advantages of �ne-grained modu-

larity, dynamic binding and location transparency without the cost of equally �ne-grained

protection. Decoupling modularity and protection turns the tradeo� between modularity

and performance (which governs microkernel design) into a tradeo� between protection

and performance.

4.1.2 How To Separate Modularity and Protection

An architecture that decouples modularity and protection must provide location trans-

parency and dynamic binding between modules instead of merely between protection do-

mains. Moreover, the module invocation mechanisms must be designed both for e�cient

intra-domain invocation, and cross-domain communication.

The requirements for a suitable location transparent invocation mechanism are some-

what di�erent from those found in microkernel-based systems. The key di�erence is that

many more interfaces exist (because the system is decomposed at a �ner grain), and as a

consequence, the most common case is an invocation between modules in the same domain.

A suitable invocation mechanism should provide semantics similar to a local procedure

call and deliver performance similar to a local procedure call when the invocation is local.

This is necessary in order to encourage and permit a �ne-grained decomposition of the

system.

One key issue is how object references are implemented. Most location transpar-

ent invocation systems, including those found in microkernel-based systems, use global

identi�ers|such as ports or capabilities|to refer to all objects. With this approach, lo-

cal invocations require the translation of a global identi�er into a local object pointer.

This design is pessimistic; it assumes that most object invocations are non-local. In the

proposed architecture, most object references are to local objects. Consequently, an op-

timistic design that uses local pointers to refer to all objects is more appropriate, where

the local pointer is translated in the case of a non-local invocation.

Another important issue is how to approximate the semantics of a local procedure

call. The general approach is to shield the client and server from the complex issues

of remote invocation. For example, binding and authentication are performed implicitly

during object reference creation. Our design, which is discussed in detail in Section 4.3,

employs the technique of proxy objects [Sha86] to provide local object references and to

shield client and server from the complexity of remote invocation. Finally, an appropriate

invocation facility must o�er a set of parameter passing modes that provide the e�ciency of

pass-by-reference in the case of a local (same domain) invocation, yet can be implemented

in a straightforward and e�cient way in the case of non-local invocations.

56

Nugget

. . .

Kernel

MOI

User UserUser

Domain

Module

"depends on"

MOIMOIMOI MOI

MOI

Figure 4.1: Lipto Architecture

4.2 Architectural Model

We have implemented and evaluated our proposed architecture in the context of an ex-

perimental operating system called Lipto. We focus here on those features of Lipto that

pertain to the subject of this chapter. A more comprehensive description of Lipto's design

and motivation can be found elsewhere [Dru93, DHP91, DPH91].

The components of Lipto's architecture are a �xed nugget, a module/object infras-

tructure, and a con�gurable collection of modules. The nugget consists of the lowest-level

resource management, such as memory management, processor allocation and exception

handling. The nugget is a truly minimal kernel; it includes functionality that must be

executed with the machine in kernel mode, but not functionality that may be put into the

kernel domain for performance.

The module/object infrastructure (MOI) provides location transparency and dynamic

binding at the granularity of modules. All functionality not found in either the nugget

or the module/object infrastructure is implemented in the form of con�gurable modules,

which can be linked into any protection domain, including the privileged kernel domain

of each machine. The basic Lipto architecture is illustrated in Figure 4.1.

A module provides the implementation for one or more types of objects. For example,

a module that implements the top layer of a �le system might provide two object types:

a service object of type �le manager and a resource object of type �le. A module is

the unit of con�guration and distribution; it provides implementations of object types

that represent a service or resource. Objects are passive run-time entities; they represent

services and resources. An object's code is executed by independent threads of control

upon invocation of one of the object's operations.

The architecture places three constraints on the implementation of objects: (1) An

object must export a procedural interface consisting of a set of functions with well-de�ned

signatures, (2) an object must not share data with any object implemented in a di�erent

module, and (3) the object invocation mechanism must conform to the architecture's

57

speci�cation. The module implementor is free to use any programming language and

methodology, as long as these conditions are satis�ed.

Encapsulation of objects with respect to objects implemented in other modules can be

achieved in two ways. One is to use a programming language that enforces encapsulation

through a safe type system. Unfortunately, such languages are currently not widely used

in the implementation of operating system software. Without language support, encapsu-

lation has to rely on convention. This has two consequences: �rst, each module should be

con�gured into a separate protection domain during the testing phase to detect violations

of encapsulation. Second, only modules that enjoy mutual trust can be con�gured into a

common domain. Otherwise, an untrusted module could maliciously violate encapsulation

to gain unauthorized access to information or resources.

The task of Lipto's module/object infrastructure is to provide location transparency.

It consists of a service called the system directory that maps global object identi�ers to

object references, and a location transparent object invocation mechanism.

The system directory allows an authorized client object to obtain a reference to a

server object using a global name for that object. This reference can be used to invoke the

operations de�ned for the server object's interface. We omit a description of the mechanism

for naming and locating objects, since it is not relevant to Lipto's architecture, which is

the focus of this chapter. The design and implementation of the invocation mechanism is

described in detail in the next section.

Lipto includes a proxy compiler that takes as input an interface de�nition for a class of

modules that export the same interface. It produces target language speci�c interface def-

inition �les and source code that implements proxy objects. Our proxy compiler currently

supports C and C++ as target languages for the implementation of modules.

4.3 Object Invocation Mechanism

This section describes in some detail the design and implementation of Lipto's object

invocation mechanism. We start with the overall design issues and proceed in the following

subsections with a description of individual components.

4.3.1 Design Issues

The main goals in the design of Lipto's invocation mechanism are: (1) to provide location

transparency while closely resembling the semantics of a local procedure call, and (2) to

retain the e�ciency of a local procedure call in the intra-domain case. As stated earlier,

this is essential for decomposing the system at a �ne grain. The technique of proxy objects

permits the representation of all object references as local pointers, and thus a very e�cient

implementation of local invocations. This technique is \optimized" for local invocation,

which is the most common case. It is the task of the proxy objects to handle the remote

case, hiding the associated complexity from both caller and callee.

Several problems arise in the attempt to provide location transparency while retaining

local procedure call semantics: remote procedure calls can fail; it is di�cult to provide

pass-by-reference parameter passing semantics; binding a caller and callee involves complex

naming, locating, protection, and authentication issues; and the performance of local,

58

same-machine, and cross-machine invocations each di�er by an order of magnitude. Most

existing remote invocation systems do not attempt to hide the di�erences between local

and remote calls, and require the caller to explicitly handle all the issues of a remote

invocation, such as binding, authentication and failure handling. This approach conicts

with our goals since it exposes the full complexity of remote invocation to the caller, which

would discourage a �ne-grained decomposition.

The complexity of certain mechanisms used in the module/object infrastructure, and

their associated costs, depend on the scale of the client-server distribution. Binding,

authentication and failure detection are relatively simple between domains on a shared-

memory machine or between nodes in a tightly coupled multiprocessor. They are more

complex among machines connected by a LAN, and require elaborate protocols when the

machines are connected by a WAN. Note that in a �ne-grained modular system, many

modules need only be accessed within a limited scope, e.g., within the same machine.

Only modules that represent entire subsystems must be accessible on a larger scale. Con-

sequently, the most common cases can be handled using simple and e�cient mechanisms.

A module's access scope is determined when it is registered with the system directory, and

is transparent to the module implementor. We proceed with a discussion of the issues in

location transparency from the perspective of the module implementor.

4.3.1.1 Binding and Authentication

Before invoking any operations on an object, a client has to obtain a reference for that

object. This hides binding and authentication inside the mechanism for reference creation,

thereby shielding the client from these issues. Further, the cost of binding, authentication

and resource allocation is associated with reference creation, which allows a more e�cient

implementation of invocations because a \pseudo-connection" between client and server

object is established. The implicit assumption is that a client that obtains a reference to an

object will invoke several operations on that object before relinquishing the reference, so

that the cost of reference creation is amortized over several calls. For cases where this is not

a reasonable assumption, the proxy compiler can generate proxy object implementations

for individual object types that delay connection establishment until the �rst invocation

occurs.

4.3.1.2 Parameter Passing

Lipto's invocation mechanism provides the parameter passing methods val, ref, in, out

and inout. Val is the default mode for data types. Since it always causes parameters to

be copied, it is only used for simple data types. Ref is the method used for arguments

of an object type. A reference for the object is passed and invocations of the object's

operations through this reference are forwarded; the object is not moved nor copied.

The only exception to this rule applies to the system-de�ned object type IOData (see

Section 2.5). The IOData type encapsulates untyped, immutable data. When an instance

of type IOData is passed as an argument/result, it is logically moved. Instances of type

IOData are typically used as containers for raw data that is passed through the layers of

the I/O subsystem.

59

In Lipto, we have found the parameter passing modes val (for simple data types)

and ref (for object types) to be su�cient in almost all cases. This is because complex

arguments are usually encapsulated in objects, and bulk data is passed in IOData objects.

However, to provide e�cient passing modes for special situations, and to ease the transition

of non-object-oriented interfaces, the additional passing modes in, out and inout are

provided, which can be applied to arbitrary non-object data types. In the non-local case,

these modes cause parameters to be copied in the usual way, but in the local case, they are

implemented by passing a pointer. This eliminates parameter copying costs in the case of

a local invocation, which could otherwise impose a performance penalty in the local case

due to the lack of a by-reference parameter passing mode.

In order to ensure location transparency, modules that use in, out, or inout passing

modes must obey three restrictions. In particular, modules must not (1) pass aliases as

actuals to in, out, or inout formal parameters, (2) reference an out formal parameter be-

fore it is set, or (3) modify an in formal parameter. In languages where these constraints

can be expressed, the proxy compiler generates appropriate code as part of the interface

de�nition. For modules implemented in languages such as C, the programmer is responsi-

ble for verifying these constraints. Alternatively, one could devise language speci�c type

checkers that warn about potentially location dependent code.

4.3.1.3 Failure Handling

We next consider the issue of invocation failure handling. Our approach is to give the

interface designer some exibility. One choice is to reserve a special result value for

each operation that indicates an invocation failure. The pitfall of this method is that

the programmer has to include a test for failure after each invocation. Alternatively, a

module interface speci�cation can require each client object to support an upcall interface

that includes an operation for failure noti�cation. With this approach, clients can handle

failures as exceptional conditions, and no explicit test is necessary after an invocation.

Finally, the interface designer is free to provide no failure noti�cation at all in an in-

terface. When an invocation fails, the system takes the default action of terminating the

client's protection domain. This method e�ectively eliminates the potential for indepen-

dent failure of client and server, and thus obviates the need for failure handling. Note that

this may be a reasonable approach for many modules whose access scope is limited to the

same physical machine. In general, location transparent invocation introduces complexity

in failure handling, due to the potential for independent failure of modules. We believe

that our design provides some exibility, and minimizes the impact of this issue on the

feasibility of �ne-grained decomposition.

4.3.1.4 Performance

The �nal issue is that of non-local invocation performance. Our invocation mechanism

relies on a con�gurable RPC service, which allows the dynamic substitution of the most

appropriate RPC mechanism. As a consequence, RPC protocols can be used that take

advantage of locality or special hardware support. In current hardware architectures,

non-local invocations, even on the same machine, are an order of magnitude more costly

60

than a procedure call. Thus, there is an inherent tradeo� between �ne-grained protection

and performance. Lipto's location transparent invocation system provides exibility in

dealing with this tradeo�. First, the dynamic con�guration of RPC services allows the

use of protocols that provide performance close to the architectural limits in each case.

Second, proxy objects can employ caching mechanisms to reduce the performance hit

of remote invocations. Third, by decoupling modularity and protection, the architecture

allows the adjustment of the granularity of protection according to the needs of a particular

installation and its users.

4.3.2 Object References and Local Invocation

Now consider the implementation of object references and local invocation. From the

module/object implementor's perspective, all invocations are local; either the invocation

is to a local server object, or to a proxy object. Thus, the implementation of object

references and the conventions for local invocation entirely de�ne the interface between

module implementations and the module/object infrastructure.

An object reference is a pointer to a structure that represents the state of the referent

object. This state structure is object implementation dependent. The architecture de�nes

only the �rst member: A pointer to a table of < functionpointer; offset > tuples, one

for each operation that the object supports, indexed by the operation number. The

functionpointer refers to a function that implements the operation. The offset is added

to the value of the object reference, and the resulting value is passed as a hidden �rst

argument to the function.

Object implementations are responsible for generating the operation table at compile

time. To perform an invocation, the appropriate tuple is fetched from the table using

the operation number as an index. Then, the o�set is added to the value of the object

reference and passed to the function, along with the operation's explicit arguments.

Our implementation of object references and invocations is identical to the way many

C++ compilers implement object references and invocations. This is not accidental: Since

C++ is our primary implementation language for system modules, and we are using

the GNU C++ compiler, it was convenient to choose our convention to conform to this

compiler's implementation. This allows modules implemented in C++ to invoke objects

implemented in other modules as if they were C++ objects.

4.3.3 Non-Local Invocation

Whenever a reference is created to a non-local object, a client proxy object is instantiated

in the local domain, and a reference to the proxy object is returned to the client. This proxy

object supports the appropriate interface, and is responsible for forwarding invocations to a

server proxy object in the callee object's protection domain. Upon receiving an invocation,

this server proxy in turn invokes the callee object and passes any results of the invoked

operation back to the client proxy, which eventually returns control to the calling object.

The invocations from caller to client proxy, and from server proxy to callee are handled as

local invocations, as described above. The caller is unaware of the fact that the callee is

remote, just as the callee is unaware of the fact that it is being invoked by a remote object.

The pair of proxy objects forward invocations between client and server object using a

61

Client
Object

Client
Proxy

Server
Proxy

Server
Object

Protection
Boundary

RPC
Service

Figure 4.2: Proxy Objects and RPC

remote procedure call service. The speci�c RPC service used depends on the location of

the server object with respect to the client object.

Figure 4.2 illustrates the basic components involved in a cross-domain call. Note that

the \protection boundary" in this �gure could correspond to a domain boundary as well as

a machine boundary. The RPC service module may rely on a lower-level communication

service to accomplish its task.

It is useful to isolate the orthogonal issues involved in location transparent object

invocation. We have identi�ed three such issues: (1) distribution hiding, (2) data transfer,

and (3) control transfer. These three concerns are explicitly separated from one another

in our implementation. First, distribution hiding is the responsibility of the proxy objects.

Second, the data transfer mechanism is hidden inside the abstract data type IOData. The

IOData data type encapsulates data as it is passed between the client proxy and server

proxy. Finally, control transfer is handled by a set of highly specialized RPC services: a

new protocol called user-kernel RPC (UKRPC) for the case of a user-level object invoking

a kernel object; a new protocol called kernel-user RPC (KURPC) for the opposite case;

LRPC and URPC protocols for invocations among user-level objects on the same machine;

and Birrell-Nelson RPC for cross-machine invocations. The following subsections consider

the three components of location transparent object invocation, in turn.

4.3.3.1 Distribution Hiding and Proxy Objects

The client proxy and server proxy hide distribution and communication issues from the

client and server objects. The proxy pair must perform several tasks: (1) binding and

authentication; (2) failure handling; (3) object reference management; (4) argument/result

marshaling; (5) argument/result validation; (6) performance enhancement (caching); and

(7) replication management.

The proxy object implementations generated from an interface de�nition by the proxy-

compiler handle the �rst �ve tasks. Tasks (6) and (7) are related to performance and

62

fault-tolerance; handling of these issues is optional. The compiler-generated proxy object

implementations can be manually augmented to employ performance improving techniques

such as caching, and reliability-related techniques such as transparent server replication

based on an underlying group communication service.

Binding and authentication are performed during the instantiation of a pair of proxy

objects; each proxy is passed an address object that refers to its peer. The address object

encapsulates an RPC address and authentication credentials; it is used by the proxies to

establish a connection.

Object reference management (3) is concerned with the mechanisms and policies used

to translate an object reference passed as an argument/result, into a reference that is

meaningful in the recipient's domain. There are subtle issues concerning references and

object identity, the details of which are omitted for the sake of brevity; for a discussion of

these issues, see [JLHB88]. Lipto avoids overheads associated with reference translation

by allowing more than one proxy object (in the same domain) to represent a given remote

object. This approach makes it harder to determine object identity, but our experience

suggests that operations whose performance su�er from this are few and infrequently

invoked. Alternatively, Lipto's proxy compiler could be extended to generate proxies that

employ di�erent policies for each reference type, according to information in the service

class de�nition.

Tasks (4) and (5) require special attention because they do not have to be performed

in all cases. For example, data presentation is not an issue when the invocation is between

objects that reside on machines of the same architecture; argument/result validation can

be omitted if they are supplied by an object in a trusted domain; and, argument/result

marshaling can be simpli�ed in the case of an invocation between objects on the same

machine. Our compiler-generated proxy objects take advantage of these optimizations

and perform these functions only when required.

4.3.3.2 Data Transfer and the IOData Type

The data transfer component of object invocation is handled in the implementation of

the abstract data type IOData, which was introduced in Section 2.5. An IOData instance

contains raw (untyped) data; its implementation avoids physical copying of data whenever

possible. Abstractly, an IOData object is a string of untyped, immutable data. It supports

a number of operations such as concatenate, fragment, truncate, prepend and append, to

facilitate copy-free processing of the data by network protocols. Users of an IOData object

cannot access its data directly; data must be explicitly embedded into and retrieved from

the object. The implementation of the IOData type is integrated with the fbuf facility

described in Chapter 5, which permits e�cient data transfer across protection domain

boundaries.

4.3.3.3 Control Transfer

We now turn our attention to the various RPC protocols used to transfer control across

protection boundaries. UKRPC implements the case of an object in a user-level address

space calling an object in the kernel address space. UKRPC implements a simple system

63

call disguised as an RPC service. KURPC is responsible for handling calls from the

kernel address space to an object in a user-level address space. Thus, it implements what

is commonly called a user-space upcall, again disguised as an RPC service. What has

become known as light-weight RPC (LRPC) [BALL90] is in our implementation simply a

combination of UKRPC and KURPC.

For cross-machine invocations, we use a decomposed version of the conventional Birrell-

Nelson RPC protocol [BN84, OP92]. This RPC service is implemented as three indepen-

dent modules. Notice that this service, while it is used as a communication service for

object invocation, could itself be con�gured with a domain boundary between any two

component modules. In fact, the communication service used between two proxy objects

can be arbitrarily complex. Consequently, the client and server proxy can transparently

span heterogeneous systems and networks.

4.4 Performance

We ran a series of tests to evaluate the performance of our object invocation mechanisms.

In each test, we measured the elapsed time for 1; 000; 000 object invocations performed in

a tight loop. From this number, we subtracted the elapsed time for 1; 000; 000 iterations of

an empty loop to compensate for the cost of the loop, and divided the result by 1; 000; 000.

Most of the tests were run on a Sun 3/75, which uses a MC68020 microprocessor

running at 16.67MHz. The processor has a 256 byte on-chip instruction cache. Our

measurements suggested that in the test case for the invocation of an object within the

same address space, all instructions of the test loop were held in the instruction cache

(i-cache) after the �rst iteration. In all other test cases, the instructions of the test

loop exceeded the capacity of the i-cache. In order to make the numbers comparable, we

included code into the test loop that ensures that every iteration starts with a cold i-cache.

Although Lipto has not been ported to RISC-based machines, we have measured indi-

vidual components of our invocation mechanisms on both a Sun SPARCstation 1 (SPARC

processor at 20 MHz) and an IRIS 4D/25 (MIPS R2000 at 20MHz). We then calculated

the expected performance of the simplest invocation cases from these measurements. Note

that the measurements on the RISC machines were made with warm caches, which seems

reasonable given their larger instruction caches. The following reports on four separate

experiments.

First, we measured the round-trip cost of a local (intra-domain) object invocation,

which corresponds to a C++ virtual function call. Table 4.1 quanti�es the overhead

imposed by Lipto's location transparent object invocation in the local case by comparing

a local invocation to an ordinary function call. The numbers presented in this table are

in microseconds, and were measured using the GNU C++ compiler, version 1.37.1.

The overhead is mainly due the indirection caused by the late binding, and the fact that

the object pointer is passed as an argument. Note that our version of the GNU compiler

does not use register windows on the SPARC. Using register windows, we suspect that

the invocation cost on the SPARC would be within twice the cost of a function call, as

is the case on the other processors. This cost|paid for location transparency and late

64

MC68020 SPARC MIPS R2000

function call 4 0.3 0.5

local invoc. 7 0.9 0.8

Table 4.1: Local Call Performance (�sec)

MC68020 SPARC MIPS R2000

System Call 26 15.2 9

No Arguments 57 22 15

One IOData Argument 51 19 13

Two int Arguments, int result 69 24 16

Table 4.2: UKRPC Performance (�sec)

binding|is small enough not to stand in the way of a �ne-grained decomposition of the

system.

Second, we measured the round-trip cost for an object in a user address space calling

an object in the kernel address space (UKRPC). The results for various arguments and

results are given in Table 4.2. The row labeled system call shows the cost of a kernel

trap plus invocation of an empty C function in the kernel address space for each of the

machines. It provides a reference value to determine the added overhead of a UKRPC

invocation. Note that an invocation with one IOData argument is faster than a call with

no arguments. This is because no argument message has to be created when one of the

arguments is of type IOData; this IOData object is used as the argument. Also note that

the cost of such an invocation is independent of the size of the IOData object. This is

because no data is being copied.

We found that on the MC68020, a user-to-kernel object invocation costs approximately

twice as much as a simple system call, but on a RISC processor, the additional penalty is

on the order of only 33 to 50 percent.

Third, we measured the round-trip cost of a kernel-to-user object invocation with

various arguments and results. The results are presented in Table 4.3. One observation is

that upcalls are an order of magnitude more expensive than their counterpart downcalls.

This is in part because of the lack of hardware support (i.e., a counterpart to a system

trap) available on the Sun 3/75. Note that by combining UKRPC with KURPC, one gets

a user-to-user RPC (LRPC) time of approximately 244 �sec in the null argument case,

which is comparable to LRPC times reported elsewhere in the literature [BALL90].

Finally, we measured the round-trip performance of Lipto's network RPC service suite.

This is interesting for two reasons. First, this suite implements one of the three basic RPC

cases identi�ed in Section 3. Second, our network RPC is in fact implemented by a stack of

modules that invoke each other using Lipto's location transparent invocation mechanism.

We have explicitly compared the performance of this service suite with a corresponding

suite implemented in the x-kernel [HP91], which does not provide a location transparent

invocation mechanism. As illustrated in Table 4.4, the performance of this suite in the

65

MC68020

No Arguments 187

One IOData (128 bytes) Argument 240

Two int Arguments, int result 247

Table 4.3: KURPC Performance (�sec)

two systems is almost identical. Note that KURPC and UKRPC were used to cross the

user/kernel boundary, which in this example was between an application object and the

topmost module of the RPC protocol stack. The numbers reported are in milliseconds.

Lipto RPC x-Kernel

0 Bytes 2.6 2.6

128 Bytes 2.9 2.9

1k Bytes 5.2 5.1

2k Bytes 11.8 11.7

3k Bytes 15.0 14.8

4k Bytes 17.0 16.7

8k Bytes 29.2 29.2

15k Bytes 50.0 50.7

Table 4.4: NRPC Performance (msec)

In summary, Lipto's location transparent invocation mechanism is at most twice as

expensive as a statically bound invocation mechanism. Moreover, a \macro" experiment

comparing Lipto to the x-kernel suggests that this increased cost on the invocation mech-

anism has little e�ect on the performance of the system as a whole.

4.5 Discussion

The distinction between modularity and protection has often been blurred in operating

system design. This implicit merging of modularity and protection, in turn, puts stress

on how interfaces get designed, and how they evolve over time. This section looks at

modularity and protection from a historical perspective, makes several comments about

interface design, and relates our work to other object systems.

4.5.1 Modularity and Protection

A review of previous operating system architectures indicates that modularity and pro-

tection have always been implemented by a single mechanism, that is, they have always

been tightly coupled. At one end of the spectrum, several systems have employed capabil-

ities as their modularity/protection mechanism. Capabilities may either be implemented

in hardware as in the Cambridge Cap [WN80, Yud83] and the Intel 432, or in software

on top of standard paged virtual memory hardware as in Hydra on C.mmp [WCC+74,

66

WLH81]. Whether implemented by hardware or software, such systems o�er �ne grained

modularity/protection, but limited exibility since a single mechanism is used for both

functions. Interfaces may be de�ned by the programmer, but every invocation through an

interface requires crossing a protection boundary as well, resulting in poor performance.

At the other end of the spectrum, UNIX [RT74] is an example of a monolithic system.

Both modularity and protection are supported only at a very coarse grain by the distinction

of kernel and user contexts, where a single �xed invocation interface provides access to

all system services. All services provided by the operating system are implemented in a

single protection domain, and thus cannot be protected from each other. Moreover, the

code contained in this single address space uses shared/global data, and thus provides

almost no encapsulation. In such systems, both modularity and protection are sacri�ced

for speed.

The trend towards the use of UNIX as a standard operating system platform has

stressed its design from two directions. First, new application domains have created a

constant demand for new, specialized system services. Second, the increasing variety of

hardware platforms to which the system is ported has made it necessary to modify and

extend the system in major ways. This has caused a dramatic increase in the size and

complexity of the systems, while at the same time its portability, reliability and e�ciency

have su�ered.

In reaction to the maintenance problems caused by monolithic systems, and in order

to provide more exibility for implementing new kinds of services, several server-based

systems are being implemented. These system are characterized by a small kernel or

microkernel which provides only basic services, and multiple servers which provide all

other services. Examples of such systems include Chorus, Topaz, and Version 3 of Mach

[ABB+86, RAA+88, TSS88]. Server-based systems attempt to �nd a balance between

modularity and performance by supporting coarse-grained protection and modularity, with

the granularity at the level of the address space. Each service is allowed to de�ne its own

interfaces, which are implemented on top of a small, �xed set of interfaces to the kernel's

primitive communication services. However, crossing an interface always requires crossing

a protection boundary. As a result, the granularity of modules is rather coarse. While

the system can be extended horizontally, i.e. by adding servers which rely on the kernel,

it cannot readily be extended vertically, i.e. by adding servers which rely on the services

provided by other servers, because communication costs are a concern. Finally, the kernel

de�nes a �xed set of functions which are implemented in the kernel domain. Designers

of microkernels have been debating for years in an e�ort to determine this set, striking

a balance between concerns to keep the kernel small, and concerns for e�ciency, which

call for the inclusion of more functionality into the kernel domain. We believe that such a

�xed set of functions which will satisfy all applications and allows the system to perform

well on all hardware platforms does not exist. The problem is again that the idea of a

module, the microkernel in this case, is associated with a protection domain, the kernel

domain.

While modularity and protection have been coupled in previous operating system ar-

chitectures, this coupling is not essential. From the modular decomposition of a system

we hope to obtain software engineering advantages by limiting the knowledge that each

67

module has of its surroundings. Such advantages include con�gurability, location trans-

parence, and failure localization. In order to support modularity it is su�cient to be able

to separate the interface of a module from its implementation, and to encapsulate mod-

ules so that they do not depend on shared data. Language support for this encapsulation

is desirable, but not necessary. Encapsulation can rely on a weakly typed language, as

is the case with Lipto which uses C++.2 In fact, encapsulation can be based entirely

upon programming conventions, as long as it is possible to recon�gure a given module

into an isolated address space so that its encapsulation is enforced in hardware, if that is

necessary.

Protection provides for failure isolation so that a failure in one component of a system

cannot adversely a�ect the operation of another correct component. Such failure isolation

is desirable whenever two components of a system enjoy di�erent levels of trust, such

as between two user components or between user and system components of a general-

purpose operating system. The recent trend to server-based systems provides evidence

that such failure isolation may also be desired between system components. Protection

requires implementing domains (contexts, address spaces) that are separate from each

other, as well as safe mechanisms for cross-domain communication.

A long held myth claims: \there is a fundamental tradeo� between modularity and

performance." The programming language community has enjoyed some success in dis-

pelling this myth with the introduction of languages that explicitly support modularity,

either in the form of abstract data types as in CLU or Ada, or objects as in C++ or

Ei�el. One key to the success of these languages is the observation that modularity can

be enforced at compile time instead of at run time.

In operating systems, since modularity and protection have always been implemented

using a single mechanism, the myth has been more di�cult to dispel. As long as crossing

a module boundary implies crossing a protection boundary, it will be true that modularity

can be obtained only at the expense of performance. A major contribution of this work is

the observation that the separation of modularity and protection allows their enforcement

to be similarly separated.

4.5.2 Interface design

In traditional operating system architectures, all operating system services are accessed

through a single, general, static system call interface. We believe that the traditional

system call interface designs have three major aws. First, they are only available at

protection boundaries. This implies that it is di�cult to layer new services atop existing

ones. Second, it is di�cult to modify the interface as the system evolves. Additions to

the interface can be handled in a backwards compatible way, but modi�cations to the

interface, or the introduction of alternate implementations of a service (e.g., signal(2)

vs. sigset(2)) are problematic. The addition of new hardware to the system, which

would most naturally be expressed by the addition of a new service interface, must be

handled by less structured means such as the UNIX ioctl call. Third, it is di�cult to

provide direct access to lower level services. Naive applications require insulation from the

2By weakly typed, we mean that type safety is not strictly enforced in all cases.

68

details of the hardware on which they are executing, but sophisticated applications (such

as databases and real-time audio and video) require low level access to the hardware in

order to achieve acceptable performance.

An implementor of a database system, for example, does not want the underlying

�lesystem to perform bu�ering and prefetching, because these mechanisms are likely to

interact negatively with the database's own caching mechanisms. Consequently, one would

like the �lesystem to be accessible through a low-level interface for use by sophisticated

applications, in addition to the standard, high-level interface provided for naive applica-

tions. Similarly, databases often do not perform well on top of the virtual memory/process

abstraction; they could bene�t from a low-level interface to the memory and process man-

agement system that allows them to participate in page replacement and thread scheduling

decisions [Duc89].

One of the innovations of the UNIX operating system is its uniform treatment of �les

and devices; a general, uniform interface (open, close, read, write, seek) is provided for

such access. Together with the convention for the usage of the �le descriptors stdin, stdout

and stderr, it is the key to the composability of simple �lter-like applications. This UNIX

�le interface is an example of what would be called a service class in Lipto. The problem,

however, is that in UNIX access to lower level �le system features and features that are

speci�c to certain devices are only accessible through awkward, unstructured interfaces

such as the ioctl and fcntl system calls.

The BSD UNIX socket interface, on the other hand, was designed as a general interface

for access of network services at di�erent levels. Its generality, however, not only makes it

di�cult to use, but also leads to paradoxical cases where the use of a lower level network

service is more expensive as the use of a higher level service. As an example of this,

in SunOS 4.0, the protocol suite UDP/IP/ETH performs better than the suite IP/ETH

[HP91].

The separation of protection from modularity in Lipto encourages the modular de-

composition of the system services, allowing and requiring the de�nition of many more

interfaces. Each kind of service (File service, Network communication service), and each

level of service of the same kind (Datagram, Stream, Remote procedure call) de�nes its

own set of interfaces in the form of a service class. An application simply accesses a service

at the desired level, using the appropriate service class. Thus, a naive application that

has very general requirement for the type of services it is using, uses a general, high-level

service class. A sophisticated application, on the other hand, accesses its services using

lower-level, more speci�c service class.

It is not su�cient, however, to merely de�ne and implement the mechanism that

allows the addition of new interfaces. First, some conventions are required that prevent

a proliferation of interfaces. Note that the software engineering bene�ts that come with

a modular, composable system are maximized when the number of interfaces is relatively

small, and the number of modules that support the same interface is large. A decision to

de�ne a new interface must be based on the determination that no existing interface can

be used to access a new service in a natural way. This should only happen when the new

service actually is of a new kind, or makes use of a new technology.

Second, the architecture must provide support for managing the interface space. Lipto

69

allows the de�nition of a hierarchy of service classes. Although Lipto initially de�nes a

at set of service classes, our architecture is general enough to allow the de�nition of a

hierarchy of service classes based on the subtyping principle. Thus, we can support the

case where future technologies require the addition of new operations to the interfaces of

an existing service class, while backward compatibility is required with respect to existing

services and applications that use the service class.

4.5.3 Object Systems

Note that although Lipto's module/object infrastructure and currently almost all its sys-

tem modules are implemented in C++, module implementors can in principle use any

implementation language; i.e., Lipto is language independent from the module implemen-

tor's perspective. This is di�erent from language-level object systems such as Emerald and

Hermes [JLHB88, Str90], which support location-transparent objects in a single-language

environment.

In the case where other object-oriented languages are used, our design does not im-

pose an object model for language level objects. Moreover, Lipto does not provide an

object management layer that supports the creation, migration and storage of such ob-

jects. Instead, it is our policy that distributed applications should be either implemented

in a language that supports distributed and persistent objects, or use an object-support

layer on top of the basic system services which provides these services. This is an im-

portant feature that makes Lipto di�erent from other object-oriented systems, such as

SOS [SGH+89]. In other words, Lipto is an operating system that uses an object-oriented

structuring technique internally, it is not an object-support system.

4.6 Related work

The FLEX project [C+93a] provides support for decomposing existing operating system

implementations using the approach of decoupling modularity and protection. The Spring

operating system [HK93, HPM93] uses a location-transparent object model. However,

object invocations are more complex and less e�cient than Lipto's. Consequently, Spring's

objects are more coarse-grained than Lipto's modules. Psyche [SLM90a, SLM+90b] has

separate abstractions for modularity and protection to facilitate parallel programming in

multiple models.

The Chorus operating system allows its servers (actors) to be collocated with the

microkernel in the same protection domain [RAA+88, RAA+92]. This results in increased

system performance due to reduced communication costs. The same capability was added

to a version of the Mach 3 kernel [LHFL93]. There are no provisions for collocating

servers in user-level protection domains and the coarse-grained servers comprise entire

subsystems, as is the case in conventional microkernel-based systems.

Software fault isolation [WLAG93] has been proposed as an alternative to hardware en-

forced protection between mutually trusting softwaremodules. It provides fault isolation|

but not data privacy|at a moderate performance cost. This technique is complementary

to Lipto's decoupling of modularity and protection.

70

Clouds is a distributed operating system that is, like Lipto, based on the object-thread

model [DLJAR91]. However, a Clouds object is persistent and resides in its own protection

domain. Consequently, Clouds objects are \heavy-weight" and they do not support �ne-

grained decomposition. Choices is an object-oriented operating system [CRJ87]. It has

a �ne-grained, modular structure based on the encapsulation, subtyping, and inheritance

mechanisms of its implementation language, C++. However, the entire system is contained

in the kernel domain. The system's application interface is exported to user-level domains

using proxy objects, but the internal interfaces are strictly local.

4.7 Concluding Remarks

This chapter makes three contributions. First, it articulates the principle of decoupling

modularity and protection domains. We believe this principle is critical to the successful

realization of modular operating systems. In particular, it allows increased modularity at

a smaller cost, improves scalability, portability and distributability, and permits vertical

extensions of the system through layering of services. Second, it describes how modular-

ity and protection are decoupled in Lipto, an experimental operating system. Third, it

describes in some detail the invocation mechanism used by Lipto. Our analysis of this

mechanism suggests that e�cient domain-independent invocations are possible.

At a more detailed level, the cross-domain invocation mechanism is optimistic, i.e.,

it is tailored to local (intra-domain) invocation, which is the most common case. Conse-

quently, it uses local object references and closely resembles procedure call semantics. The

mechanism is partitioned into three distinct concerns: distribution hiding, data transfer,

and control transfer. Proxy objects implement distribution hiding, independent of the

underlying mechanisms for data and control transfer. Control transfer is handled by an

appropriate RPC protocol. The data transfer mechanism is hidden inside the IOData

abstract data type, which is used to pass invocation arguments and results between client

proxy and server proxy. The appropriate invocation mechanism for each situation can be

dynamically con�gured by choosing an appropriate RPC protocol for control transfer.

71

CHAPTER 5

High-Bandwidth Cross-Domain Data Transfer

The previous chapter introduced a novel operating system structuring approach that

achieves �ne-grained modularity without the cost of additional protection boundaries and

server processes. However, in any operating system that supports protection and security,

some protection boundaries necessarily remain. In current microkernel-based operating

systems, many protection boundaries may occur in the I/O data path. As outlined in

Chapter 2, supporting high-speed I/O requires an e�cient means of transferring I/O data

across protection domain boundaries. Moreover, an appropriate transfer facility must be

integrated with API and bu�er manager to be e�ective. This chapter presents a novel OS

facility for the e�cient management and transfer of I/O bu�ers across protection domain

boundaries.

5.1 Motivation

Optimizing operations that cross protection domain boundaries has received a great deal

of attention recently [Kar89, BALL90, BALL91]. This is because an e�cient cross-domain

invocation facility enables a more modular operating system design. For the most part,

this earlier work focuses on lowering control transfer latency|it assumes that the ar-

guments transferred by the cross-domain call are small enough to be copied from one

domain to another. This work considers the complementary issue of increasing data trans-

fer throughput|we are interested in I/O intensive applications that require signi�cant

amounts of data to be moved across protection boundaries.

Focusing more speci�cally on network I/O, we observe that on the one hand emerging

network technology will soon o�er sustained data rates approaching one gigabit per second

to the end host, while on the other hand, the trend towards microkernel-based operating

systems leads to a situation where the I/O data path may intersect multiple protection

domains. The challenge is to turn good network bandwidth into good application-to-

application bandwidth, without compromising the OS structure. Since in a microkernel-

based system one might �nd device drivers, network protocols, and application software

all residing in di�erent protection domains, an important problem is moving data across

domain boundaries as e�ciently as possible. As outlined in Chapter 2, this task is made

di�cult by the limitations of the memory architecture, most notably the CPU{memory

bandwidth. As network bandwidth approaches memory bandwidth, copying data from

one domain to another simply cannot keep up with improved network performance.

This chapter introduces a high-bandwidth cross-domain transfer and bu�er manage-

ment facility, called fast bu�ers (fbufs), and shows how it can be optimized to support

data that originates and/or terminates at an I/O device, potentially traversing multiple

protection domains. Fbufs combine two well-known techniques for transferring data across

72

originator
domain

receiver
domains

data sinkdata source

cross−domain transfers

Figure 5.1: Layers Distributed over Multiple Protection Domains

protection domains: page remapping and shared memory. It is equally correct to view

fbufs as using shared memory (where page remapping is used to dynamically change the

set of pages shared among a set of domains), or using page remapping (where pages that

have been mapped into a set of domains are cached for use by future transfers).

5.2 Characterizing Network I/O

This section outlines the requirements for a bu�er management and cross-domain data

transfer facility by examining the relevant characteristics of network I/O. The discussion

appeals to the reader's intuitive notion of a data bu�er; Section 5.4 de�nes a speci�c

representation.

We are interested in the situation where I/O data is processed by a sequence of soft-

ware layers|device drivers, network protocols, and application programs|that may be

distributed across multiple protection domains. Figure 5.1 depicts this abstractly: data is

generated by a source module, passed through one or more software layers, and consumed

by a sink module. As the data is passed from one module to another, it traverses a se-

quence of protection domains. The data source is said to run in the originator domain,

and the other modules run in receiver domains.

Note that although this section considers the general case of multiple protection do-

mains, the discussion applies equally well to systems in which only two domains are in-

volved: kernel and user. Section 5.6 shows how di�erent transfer mechanisms perform in

the two domain case, and Section 5.7 discusses the larger issue of how many domains one

might expect in practice.

5.2.1 Networks and Bu�ers

On the input side, the network adaptor delivers data to the host at the granularity of a

protocol data unit (PDU), where each arriving PDU is received into a bu�er.1 Higher level

1PDU size may be larger than the network packet size, as is likely in an ATM network. PDUs are the

appropriate unit to consider because they are what the end hosts sees.

73

protocols may reassemble a collection of PDUs into a larger application data unit (ADU).

Thus, an incoming ADU is typically stored as a sequence of non-contiguous, PDU-sized

bu�ers.

On the output side, an ADU is often stored in a single contiguous bu�er, and then

fragmented into a set of smaller PDUs by lower level protocols. Fragmentation need not

disturb the original bu�er holding the ADU; each fragment can be represented by an

o�set/length into the original bu�er.

PDU sizes are network dependent, while ADU sizes are application dependent. Control

overhead imposes a practical lower bound on both. For example, a 1 Gbps link with 4

KByte PDUs results in more than 30,500 PDUs per second. On the other hand, network

latency concerns place an upper bound on PDU size, particularly when PDUs are sent over

the network without further fragmentation. Similarly, ADU size is limited by application-

speci�c latency requirements, and by physical memory limitations.

5.2.2 Allocating Bu�ers

At the time a bu�er is allocated, we assume it is known that the bu�er is to be used for I/O

data. This is certainly the case for a device driver that allocates bu�ers to hold incoming

packets, and it is a reasonable expectation to place on application programs. Note that

it is not strictly necessary for the application to know that the bu�er will eventually �nd

its way to an I/O device, but only that it might transfer the bu�er to another domain.

The situation depicted in Figure 5.1 is oversimpli�ed in that it implies that there exists

a single, linear path through the I/O subsystem. In general, data may traverse a number of

di�erent paths through the software layers, and as a consequence, visit di�erent sequences

of protection domains. We call such a path an I/O data path, and say that a bu�er

belongs to a particular I/O data path. We further assume that all data that originates

from (terminates at) a particular communication endpoint (e.g., a socket or port) travels

the same I/O data path. An application can therefore easily identify the I/O data path of

a bu�er at the time of allocation by referring to the communication endpoint it intends to

use. In the case of incoming PDUs, the I/O data path to which the PDU (bu�er) belongs

can often be determined, either by the network adaptor (e.g., by interpreting an ATM

cell's VCI and/or adaptation layer info) or by having the device driver inspect the headers

of the arriving PDU prior to the transfer of the PDU into main memory.

Locality in network communication [Mog92] implies that if there is tra�c on a partic-

ular I/O data path, then more tra�c can be expected on the same path in the near future.

Consequently, it is likely that a bu�er that was used for a particular I/O data path can

be reused soon for that same data path.

5.2.3 Accessing Bu�ers

We now consider how bu�ers are accessed by the various software layers along the I/O data

path. The layer that allocates a bu�er initially writes to it. For example, a device driver

allocates a bu�er to hold an incoming PDU, while an application program �lls a newly

allocated bu�er with data to be transmitted. Subsequent layers require only read access

to the bu�er. An intermediate layer that needs to modify the data in the bu�er instead

allocates and writes to a new bu�er. Similarly, an intermediate layer that prepends or

74

appends new data to a bu�er|e.g., a protocol that attaches a header|instead allocates

a new bu�er and logically concatenates it with the original bu�er using the same bu�er

aggregation mechanism that is used to join a set of PDUs into a reassembled ADU.

We therefore restrict I/O bu�ers to be immutable|they are created with an initial

data content and may not be subsequently changed. The immutability of bu�ers implies

that the originator domain needs write permission for a newly allocated bu�er, but it does

not need write access after transferring the bu�er. Receiver domains need read access to

bu�ers that are passed to them.

Bu�ers can be transferred from one layer to another with eithermove or copy semantics.

Move semantics are su�cient when the passing layer has no future need for the bu�er's

data. Copy semantics are required when the passing layer needs to retain access to the

bu�er, for example, because it may need to retransmit it sometime in the future. Note

that there are no performance advantages in providing move rather than copy semantics

since bu�ers are immutable. This is because with immutable bu�ers, copy semantics can

be achieved by simply sharing bu�ers.

Consider the case where a bu�er is passed out of the originator domain. As described

above, there is no reason for a correct and well behaved originator to write to the bu�er

after the transfer. However, protection and security needs generally require that the

bu�er/transfer facility enforce the bu�er's immutability. This is done by reducing the

originator's access permissions to read only. Suppose the system does not enforce im-

mutability; such a bu�er is said to be volatile. If the originator is a trusted domain|e.g.,

the kernel that allocated a bu�er for an incoming PDU|then the bu�er's immutability

clearly need not be enforced. If the originator of the bu�er is not trusted, then it is most

likely an application that generated the data. A receiver of such a bu�er could fail (crash)

while interpreting the data if the bu�er is modi�ed by a malicious or faulty application.

Note, however, that layers of the I/O subsystem generally do not interpret outgoing data.

Thus, an application would merely interfere with its own output operation by modify-

ing the bu�er asynchronously. The result may be no di�erent if the application had put

incorrect data in the bu�er to begin with.

There are thus two approaches. One is to enforce immutability of a bu�er; i.e. the

originator loses its write access to the bu�er upon transferring it to another domain. The

second is to simply assume that the bu�er is volatile, in which case a receiver that wishes

to interpret the data must �rst request that the system raise the protection on the bu�er

in the originator domain. This is a no-op if the originator is a trusted domain.

Finally, consider the issue of how long a particular domain might keep a reference to

a bu�er. Since a bu�er can be passed to an untrusted application, and this domain may

retain its reference for an arbitrarily long time, it is necessary that bu�ers be pageable.

In other words, the cross-domain transfer facility must operate on pageable, rather than

wired (pinned-down) bu�ers.

5.2.4 Summary of Requirements

In summary, by examining how bu�ers are used by the network subsystem, we are able to

identify the following set of requirements on the bu�er management/transfer system, or

conversely, a set of restrictions that can reasonably be placed on the users of the transfer

75

facility.

� The transfer facility should support both single, contiguous bu�ers, and non-contiguous

aggregates of bu�ers.

� It is reasonable to require the use of a special bu�er allocator for I/O data.

� At the time of allocation, the I/O data path that a bu�er will traverse is often known.

For such cases, the transfer facility can employ a data path speci�c allocator.

� The I/O subsystem can be designed to use only immutable bu�ers. Consequently,

providing only copy semantics is reasonable.

� The transfer facility can support two mechanisms to protect against asynchronous

modi�cation of a bu�er by the originator domain: eagerly enforce immutability by

raising the protection on a bu�er when the originator transfers it, or lazily raise the

protection upon request by a receiver.

� Bu�ers should be pageable.

Section 5.4 gives the design of a cross-domain transfer facility that supports (exploits)

these requirements (restrictions).

5.3 Related Work

Before we proceed to describing a facility that achieves the goals outlined in the previous

Section, we �rst review related work on the subject of cross-domain data transfer.

5.3.1 Page Remapping

Several operating systems provide various forms of virtual memory (VM) support for

transferring data from one domain to another. For example, the V kernel and DASH

[Che88, TA91] support page remapping, while Accent and Mach support copy-on-write

(COW) [FR86, ABB+86]. Page remapping has move rather than copy semantics, which

limits its utility to situations where the sender needs no further access to the transferred

data. Copy-on-write has copy semantics, but it can only avoid physical copying when the

data is not written by either the sender or the receiver after the transfer.

Both techniques require careful implementation to achieve good performance. The

time it takes to switch to supervisor mode, acquire necessary locks to VM data structures,

change VM mappings|perhaps at several levels|for each page, perform TLB/cache con-

sistency actions, and return to user mode poses a limit to the achievable performance. We

consider two of the more highly tuned implementations in more detail.

First, Tzou and Anderson evaluate the remap facility in the DASH operating system

[TA91]. The paper reports an incremental overhead of 208�secs/page on a Sun 3/50.

However, because it measures a ping-pong test case|the same page is remapped back

and forth between a pair of processes|it does not include the cost of allocating and

deallocating pages. In practice, high-bandwidth data ows in one direction through an

76

I/O data path, requiring the source to continually allocate new bu�ers and the sink to

deallocate them. The authors also fail to consider the cost of clearing (e.g., �lling with

zeros) newly allocated pages, which may be required for security reasons.

So as to update the Tzou/Anderson results, and to quantify the impact of these limi-

tations, we have implemented a similar remap facility on a modern machine (DecStation

5000/200). Our measurements show that it is possible to achieve an incremental overhead

of 22�secs/page in the ping-pong test, but that one would expect an incremental over-

head of somewhere between 42 and 99�secs/page when considering the costs of allocating,

clearing, and deallocating bu�ers, depending on what percentage of each page needed to

be cleared.

The improvement from 208�secs/page (Sun 3/50) to 22�secs/page (Dec 5000/200)

might be taken as evidence that page remapping will continue to become faster at the

same rate as processors become faster. We doubt that this extrapolation is correct. Of

the 22�secs required to remap another page, we found that the CPU was stalled waiting

for cache �lls approximately half of the time. The operation is likely to become more

memory bound as the gap between CPU and memory speeds widens.

Second, the Peregrine RPC system [JZ93] reduces RPC latency by remapping a single

kernel page containing the request packet into the server's address space, to serve as the

server thread's runtime stack. The authors report a cost of only 4�secs for this operation

on a Sun 3/60. We suspect the reason for this surprisingly low number is that Peregrine can

remap a page merely by modifying the corresponding page table entry. This is because in

the V system|upon which Peregrine is based|all VM state is encoded only in the Sun's

physical page tables. Portability concerns have caused virtually all modern operating

systems to employ a two-level virtual memory system. In these systems, mapping changes

require the modi�cation of both low-level, machine dependent page tables, and high-

level, machine-independent data structures. Moreover, unlike the Sun 3/60, most modern

architectures (including the DecStation) require the ushing of the corresponding TLB

entries after a change of mappings. Both DASH and the fbuf mechanism described in the

next section are implemented in a two-level VM system.

Peregrine overlaps the receipt of one PDU from the Ethernet with copying the previous

PDU across the user/kernel boundary. However, this strategy does not scale to either

high-speed networks, or microkernel-based systems. As network bandwidth approaches

memory bandwidth, contention for main memory no longer allows concurrent reception

and copying|possibly more than once|at network speeds.

5.3.2 Shared Memory

Another approach is to statically share virtual memory among two or more domains, and

to use this memory to transfer data. For example, the DEC Firey RPC facility uses a pool

of bu�ers that is globally and permanently shared among all domains [SB90]. Since all

domains have read and write access permissions to the entire pool, protection and security

are compromised. Data is copied between the shared bu�er pool and an application's

private memory. As another example, LRPC [BALL90] uses argument stacks that are

pairwise shared between communicating protection domains. Arguments must generally

be copied into and out of the argument stack.

77

Both techniques reduce the number of copies required, rather than eliminating copying.

This is su�cient to improve the latency of RPC calls that carry relatively small amounts of

data, and to preserve the relatively low bandwidth of Ethernet LANs. The fbuf mechanism

has the di�erent goal of preserving the bandwidth a�orded by high-speed networks at the

user level. Fbufs complement a low-latency RPC mechanism.

The bottom line is that using statically shared memory to eliminate all copying poses

problems: globally shared memory compromises security, pairwise shared memory requires

copying when data is either not immediately consumed or is forwarded to a third domain,

and group-wise shared memory requires that the data path of a bu�er is always known at

the time of allocation. All forms of shared memory may compromise protection between

the sharing domains.

Several recent systems attempt to avoid data copying by transferring data directly

between UNIX application bu�ers and network interface [Jac90, DWB+93]. This approach

works when data is accessed only in a single application domain. A substantial amount

of memory may be required in the network adaptor when interfacing to high-bandwidth,

high-latency networks. Moreover, this memory is a limited resource dedicated to network

bu�ering. With fbufs, on the other hand, network data is bu�ered in main memory;

the network subsystem can share physical memory dynamically with other subsystems,

applications and �le caches.

5.4 Design

This section describes the design of an integrated bu�er and data transfer mechanism.

It begins by introducing a basic mechanism, and then evolves the design with a series of

optimizations. Some of the optimizations can be applied independently, giving rise to a

set of implementations with di�erent restrictions and costs.

5.4.1 Basic Mechanism

I/O data is stored in bu�ers called fbufs, each of which consists of one or more contiguous

virtual memory pages. A protection domain gains access to an fbuf either by explicitly

allocating the fbuf, or implicitly by receiving the fbuf via IPC. In the former case, the

domain is called the originator of the fbuf; in the latter case, the domain is a receiver of

the fbuf.

An abstract data type is typically layered on top of fbufs to support bu�er aggrega-

tion. Such abstractions typically provide operations to logically join one or more bu�ers

into an aggregate, split an aggregate into separate bu�ers, clip data from one end of an

aggregate, and so on. Examples of such aggregation abstractions include the IOData type

introduced in Section 2.5, the x-kernel messages [HP91], and BSD Unix mbufs [LMKQ89].

For the purpose of the following discussion, we refer to such an abstraction as an aggregate

object, and we use the x-kernel's directed acyclic graph (DAG) representation depicted in

Figure 5.2.

A virtual page remapping facility logically copies or moves a set of virtual memory

pages between protection domains by modifying virtual memory mappings. We use a

78

Aggregate Object

Fbufs

Figure 5.2: Aggregate Object

conventional remap facility with copy semantics as the baseline for our design. The use

of such a facility to transfer an aggregate object involves the following steps.

1. Allocate an Aggregate Object (Originator)

(a) Find and allocate a free virtual address range in the originator (per-fbuf)

(b) Allocate physical memory pages and clear contents (per-page)

(c) Update physical page tables (per-page)

2. Send Aggregate Object (Originator)

(a) Generate a list of fbufs from the aggregate object (per-fbuf)

(b) Raise protection in originator (read only or no access) (per-fbuf)

(c) Update physical page tables, ensure TLB/cache consistency (per-page)

3. Receive Aggregate Object (Receiver)

(a) Find and reserve a free virtual address range in the receiver (per-fbuf)

(b) Update physical page tables (per-page)

(c) Construct an aggregate object from the list of fbufs (per-fbuf)

4. Free an Aggregate Object (Originator, Receiver)

(a) Deallocate virtual address range (per-fbuf)

(b) Update physical page table, ensure TLB/cache consistency (per-page)

(c) Free physical memory pages if there are no more references (per-page)

79

Note that a receiver that forwards an aggregate object to another domain would also

perform the actions in step 2.

Even in a careful implementation, these actions can result in substantial overhead.

For example, a simple data path with two domain crossings requires six physical page

table updates for each page, three of which may require TLB/cache consistency actions.

Moreover, each allocated physical page may need to be cleared|i.e., �lled with zeroes|for

security reasons.

5.4.2 Optimizations

The following set of optimizations are designed to eliminate the per-page and per-fbuf

costs associated with the base remapping mechanism.

5.4.2.1 Restricted Dynamic Read Sharing

The �rst optimization places two functional restrictions on data transfer. First, only pages

from a limited range of virtual addresses can be remapped. This address range, called the

fbuf region, is globally shared among all domains. Note that sharing of an address range

does not imply unrestricted access to the memory that is mapped into that range. Second,

write accesses to an fbuf by either a receiver, or the originator while a receiver is holding

a reference to the fbuf, are illegal and result in a memory access violation exception.

The �rst restriction implies that an fbuf is mapped at the same virtual address in the

originator and all receivers. This eliminates the need for action (3a) during transfer. Note

that the DASH remap facility uses a similar optimization. Shared mapping at the same

virtual address also precludes virtual address aliasing, which simpli�es and speeds up the

management of virtually tagged caches, in machines that employ such caches. The second

restriction eliminates the need for a copy-on-write mechanism. These restrictions require

a special bu�er allocator and immutable bu�ers.

5.4.2.2 Fbuf Caching

This optimization takes advantage of locality in interprocess communication. Speci�cally,

we exploit the fact that once a PDU or ADU has followed a certain data path|i.e., visited

a certain sequence of protection domains|more PDUs or ADUs can be expected to travel

the same path soon.

Consider what happens when a PDU arrives from the network. An fbuf is allocated

in the kernel, �lled, and then transferred one or more times until the data is consumed

by the destination domain. At this point, the fbuf is mapped with read only permission

into the set of domains that participate in an I/O data path. Ordinarily, the fbuf would

now be unmapped from these domains, and the physical pages returned to a free memory

pool. Instead, write permissions are returned to the originator, and the fbuf is placed on

a free list associated with the I/O data path. When another packet arrives for the same

data path, the fbuf can be reused. In this case, no clearing of the bu�ers is required, and

the appropriate mappings already exist.

Fbuf caching eliminates actions (1a-c), (3a-b), and (4a-c) in the common case where

fbufs can be reused. It reduces the number of page table updates required to two, irre-

80

spective of the number of transfers. Moreover, it eliminates expensive clearing of pages,

and increases locality of reference at the level of TLB, cache, and main memory. The

optimization requires that the originator is able to determine the I/O data path at the

time of fbuf allocation.

5.4.2.3 Integrated Bu�er Management/Transfer

Recall that the aggregate object abstraction is layered on top of fbufs. However, the

transfer facility described up to this point transfers fbufs, not aggregate objects across

protection boundaries. That is, an aggregate object has to be translated into a list of

fbufs in the sending domain (2a), this list is then passed to the kernel to e�ect a transfer,

and the aggregate object is rebuilt on the receiving side (3c). Note that in this case, any

internal data structures maintained by the aggregate object (e.g., interior DAG nodes) are

stored in memory that is private to each domain. One consequence of this design is that

the fbufs can be used to transfer any data across a domain boundary, and that a di�erent

representation for aggregated data can be used on either side of the boundary.

Consider now an optimization that incorporates knowledge about the aggregate object

into the transfer facility, thereby eliminating steps (2a) and (3c). The optimization in-

tegrates bu�er management and cross-domain data transfer facility by placing the entire

aggregate object into fbufs. Since the fbuf region is mapped at the same virtual address

in all domains, no internal pointer translations are required. During a send operation, a

reference to the root node of the aggregate object is passed to the kernel. The kernel in-

spects the aggregate and transfers all fbufs in which reachable nodes reside, unless shared

mappings already exist. The receiving domain receives a reference to the root node of the

aggregate object. Steps (2a) and (3c) have therefore been eliminated.

5.4.2.4 Volatile fbufs

Under the previous optimizations, the transport of an fbuf from the originator to a receiver

still requires two physical page table updates per page: one to remove write permission

from the originator when the fbuf is transferred, and one to return write permissions to

the originator after the fbuf was freed by all the receivers.

The need for removing write permissions from the originator can be eliminated in many

cases by de�ning fbufs to be volatile by default. That is, a receiver must assume that the

contents of a received fbuf may change asynchronously unless it explicitly requests that

the fbuf be secured, that is, write permissions are removed from the originator. As argued

in Section 5.2.3, removing write permissions is unnecessary in many cases.

When the volatile fbuf optimization is applied in conjunction with integrated bu�er

management, an additional problem arises. Since the aggregate object (e.g., a DAG) is

stored in fbufs, and a receiving domain must traverse the DAG to access the data, the

receiver may be vulnerable to asynchronous changes of the DAG. For example, a bad

pointer could cause a protocol in the kernel domain to fail while traversing the DAG in

order to compute a checksum.

The problem is solved in the following way. First, receivers verify that DAG pointers

reference locations within the fbuf region (this involves a simple range check). Second,

81

receivers check for cycles during DAG traversals to avoid in�nite loops. Third, read

accesses by a receiver to an address within the fbuf region for which the receiver has

no permissions are handled as follows. The VM system maps a page at the appropriate

location in the o�ending domain, initializes the page with a leaf node that contains no

data, and allows the read to complete. Thus, invalid DAG references appear to the receiver

as the absence of data.

5.4.2.5 Summary

The optimizations described above eliminate all per-page and per-fbuf costs associated

with cross-domain data transfer in the common case|when the data path can be identi�ed

at fbuf allocation time, an appropriate fbuf is already cached, and when removing write

permissions from the originator is unnecessary. Moreover, in the common case, no kernel

involvement is required during cross-domain data transfer. Our facility is therefore well

suited for use with user-level IPC facilities such as URPC [BALL91], and other highly

optimized IPC mechanisms such as MMS [GA91].

5.5 Implementation

We have implemented and evaluated fbufs using an experimental platform consisting of

CMU's Mach 3.0 microkernel [ABB+86], augmented with a network subsystem based on

the University of Arizona's x-kernel [HP91]. Mach is a portable, multi-processor capable

microkernel that provides virtual memory, local message passing facilities, and device

access. The x-kernel is a framework for the implementation of modular, yet e�cient

communication protocols.

The x-kernel based network subsystem consists of a protocol graph that can span

multiple protection domains, including the microkernel. Proxy objects are used in the

x-kernel to forward cross-domain invocations using the Mach IPC facilities. The x-kernel

supports an abstract data type that employs lazily evaluated bu�er management; it uses

a DAG-based representation similar to the one illustrated in Figure 5.2. The IOData

abstract data type described in Section 2.5 is an extended version of the x-kernel's bu�er

ADT. All applications, network protocols and device drivers deal with network data in

terms of the IOData abstraction.

Incorporating fbufs into this software environment required the following changes: the

Mach microkernel was modi�ed to provide virtual memory support for fbufs, the x-kernel

bu�er ADT was replaced with the IOData abstraction, implemented on top of fbufs, the

proxies were modi�ed to use the fbuf data transfer facility, and minor modi�cations were

made to device drivers and other software modules that allocate IOData bu�er instances.

These changes resulted in a fully functional system.

5.5.1 Allocation

A two-level allocation scheme with per-domain allocators ensures that most fbuf alloca-

tions can be satis�ed without kernel involvement. A range of virtual addresses, the fbuf

region, is reserved in each protection domain, including the kernel. User domains initially

82

have no access permissions to the fbuf region, while the kernel has permanent unrestricted

access to the entire region. Upon request, the kernel hands out ownership of �xed sized

chunks of the fbuf region to user-level protection domains, and grants read/write access

for the chunk to the owning domains. The fbuf region is pageable like ordinary virtual

memory, with physical memory allocated lazily upon access.

Fbuf allocation requests are �elded by fbuf allocators locally in each domain. There is a

generic allocator that allocates uncached fbufs, and per-datapath allocators that allocate

cached fbufs. These allocators satisfy their space needs by requesting chunks from the

kernel as needed. Deallocated fbufs are placed on the appropriate allocator's free list,

which is maintained in LIFO order. Consequently, most fbuf allocations can be satis�ed

without kernel involvement.

Since fbufs are pageable, the amount of physical memory allocated to fbufs depends on

the level of I/O tra�c relative to other system activity. Similarly, the amount of physical

memory allocated to a particular datapath's fbufs is determined by its recent tra�c. The

LIFO ordering ensures that fbufs at the front of the free list are most likely to have physical

memory mapped to them, which minimizes paging activity. When the kernel reclaims the

physical memory of an fbuf that is on a free list, it discards the fbuf's contents; it does

not have to page it out to secondary storage.

The IOData abstract data type is implemented using a DAG structure, with interior

nodes and bu�er fragments placed into fbufs obtained from the appropriate fbuf allocator.

The nodes and bu�er fragments of a single IOData instance are clustered onto fbufs to

reduce the number of pages occupied by a single DAG.

5.5.2 Transfer

The fbuf transfer mechanism comes into play when an IOData bu�er is passed as an

argument in a cross-domain invocation. The proxy in the calling domain inspects the

bu�er's fbuf allocator. If the allocator produces cached fbufs and fbufs from this allocator

have been passed to the destination domain before, then no virtual memory mapping

changes are necessary to transfer the fbuf DAG that represents the bu�er. In this case,

a reference to the root node is sent in a simple Mach IPC message. Otherwise, the Mach

IPC message is specially tagged as carrying a fbuf DAG reference.

The Mach kernel's IPC mechanism intercepts such tagged messages and invokes fbuf-

speci�c virtual memory extensions to perform the appropriate mapping changes. If the

IOData's fbufs are cached, then the mappings are changed for all of the allocator's fbufs.

This ensures that all fbufs maintained by a cached fbuf allocator always have the same

mappings. Consequently, inspecting an fbuf's allocator su�ces to determine whether

mapping changes are required to transfer the fbuf. For uncached fbufs, mappings are only

changed for the fbufs reachable in the transferred fbuf DAG.

The proxy in the receiving domain creates a new instance of the IOData bu�er type.

This instance is initialized to refer to the fbuf DAG received from the calling domain.

5.5.3 Deallocation

When a message is deallocated and the corresponding fbufs are owned by a di�erent

domain, the reference is put on a list of deallocated external references. When an RPC

83

incremental asymptotic

per-page cost (�secs) throughput (Mbps)

fbufs, cached/volatile 3 10,922

fbufs, volatile 21 1,560

fbufs, cached 29 1,130

fbufs 37 886

Mach COW 144 228

Copy 316 104

Table 5.1: Incremental per-page costs

call from the owning domain occurs, the reply message is used to carry deallocation notices

from this list. When too many freed references have accumulated, an explicit message must

be sent notifying the owning domain of the deallocations. In practice, it is rarely necessary

to send additional messages for the purpose of deallocation. Deallocation notices that refer

to uncached fbufs are tagged, since mappings need to be removed by the VM system as

part of the deallocation.

5.5.4 Domain Termination

When a domain terminates, it may hold references to fbufs it has received. In the case of

an abnormal termination, the domain may not properly relinquish those references. Note,

however, that the domain is part of an I/O data path. Thus, its termination will cause

the destruction of a communication endpoint, which will in turn cause the deallocation of

all associated fbufs.

A terminating domain may also be the originator of fbufs for which other domains

hold references. The kernel will retain chunks of the fbuf region owned by the terminating

domain until all external references are relinquished.

5.5.5 Exceptional Cases

In response to a read access to a location of the fbuf region for which the o�ending

domain has no access permission, the virtual memory system's fault handler maps a page

that contains an empty message leaf node at the appropriate address. This is necessary

to protect receivers of volatile fbufs from asynchronous modi�cations of an fbuf DAG by

the originator, as discussed in Section 5.4.2.4. Upon illegal write access within the fbuf

region, an access violation exception is raised in the o�ending domain.

An incorrect or malicious domain may fail to deallocate fbufs it receives. This would

eventually cause the exhaustion of the fbuf region's virtual address range. To prevent this,

the kernel limits the number of fbuf lots that can be allocated to any per-datapath fbuf

allocator.

5.6 Performance

This section reports on several experiments designed to evaluate the performance of fbufs.

The software platform used in these experiments consists of CMU's Mach 3.0 microkernel

84

(MK74) [ABB+86], augmented with a network subsystem based on the University of

Arizona's x-kernel (Version 3.2) [HP91]. The hardware platform consists of a pair of

DecStation 5000/200 workstations (25MHz MIPS R3000 CPU, 64/64 KB I/D caches, 16

MB of main memory), each of which was attached to a prototype ATM network interface

board, called Osiris, designed by Bellcore for the Aurora Gigabit testbed [Dav91]. The

Osiris boards were connected by a null modem, and they support a link speed of 622Mbps.

For all results reported in this section, each data point is the average of 10 trials,

where each trial consists of sending 100,000 messages, after an initial warm-up period. In

all cases, the 90% con�dence intervals where within 5% of the average. The workstations

were running in single-user mode.

The �rst experiment quanti�es the performance of fbuf transfers across a single protec-

tion boundary. A test protocol in the originator domain repeatedly allocates an IOData

bu�er, writes one word in each VM page of the associated fbuf, and passes the message

to a dummy protocol in the receiver domain. The dummy protocol touches (reads) one

word in each page of the received bu�er, deallocates the bu�er, and returns. Table 5.1

shows the incremental per-page costs|independent of IPC latency|and the calculated

asymptotic bandwidths.

There are four things to notice about these numbers. First, the cached/volatile case

performs an order of magnitude better than the uncached or non-volatile cases. It also per-

forms an order of magnitude better than the Tzou/Anderson page remapping mechanism

re-implemented on the same hardware. Second, the per-page overhead of cached/volatile

fbufs is due to TLB misses caused by the accesses in the test and dummy protocols. TLB

misses are handled in software in the MIPS architecture. Third, the cost for clearing pages

in the uncached case is not included in the table. Filling a page with zeros takes 57�secs

on the DecStation. Fourth, the relatively high per-page overhead for the Mach COW

facility is partly due to its lazy update strategy for physical page tables, which causes two

page faults for each transfer.

The second experiment measures throughput as a function of message size. The results

are shown in Figure 5.3. Unlike Table 5.1, the throughput rates shown for small messages

in these graphs are strongly inuenced by the control transfer latency of the IPC mech-

anism; it is not intrinsic to the bu�er transfer facility. As before, Mach's native transfer

facility has been included for comparison; it uses data copying for message sizes of less

than 2KBytes, and COW otherwise.

For small messages|under 4KB|the performance break-down is as follows. For

message sizes under 2KB, Mach's native data transfer facility is slightly faster than un-

cached or non-volatile fbufs; this is due to the latency associated with invoking the virtual

memory system, which we have not optimized in our current implementation. However,

cached/volatile fbufs outperform Mach's transfer facility even for very small message sizes.

Consequently, no special-casing is necessary to e�ciently transfer small messages.

The third experiment demonstrates the impact of fbufs on network throughput by

taking protocol processing overhead into account. It is also valuable because it is a macro

experiment; i.e., it more accurately reects the e�ects of the processor's instruction and

data caches. A test protocol in the originator domain repeatedly creates an IOData bu�er,

85

0

1000

2000

3000

4000

5000

6000

7000

4096 32768 65536 131072 262144

Throughput in Mbps

Message size in bytes

Mach 3

333333 3 3 3 3

cached, volatile fbufs +

+++
++

+

+

+

+

+

volatile, uncached fbufs 2

22222
2 2

2
2

2

non-volatile, cached fbufs �

������
� � � �

non-volatile, uncached fbufs 4

444444
4 4 4 4

Figure 5.3: Throughput of a single domain boundary crossing

and sends it using a UDP/IP protocol stack that resides in a network server domain.2 IP

fragments large messages into PDUs of 4KBytes. A local loopback protocol is con�gured

below IP; it turns PDU's around and sends them back up the protocol stack. Finally,

IP reassembles the message on the way back up, and sends it to a receiver domain that

contains the dummy protocol from the �rst experiment. The use of a loopback protocol

rather than a real device driver simulates an in�nitely fast network. Thus, the experiment

ignores the e�ects of limited I/O bus bandwidth and network bandwidth in currently

available commercial hardware.

For comparison purposes, we have performed the same experiment with all components

con�gured into a single protection domain, rather than three domains. By comparing

the results we can quantify the impact of domain boundaries on network throughput.

Figure 5.4 shows the measured throughput in each case. The anomaly in the single

domain graph is caused by a �xed fragmentation overhead that sets in for messages larger

than 4KBytes. This cost is gradually amortized for messages much larger than 4KBytes.

Moreover, this peak does not occur in the multiple domain cases due to the dominance of

cross-domain latency for 4KByte transfers.

There are four things to observe about these results. First, the use of cached fbufs

leads to a more than twofold improvement in throughput over uncached fbufs for the

entire range of message sizes. This is signi�cant since the performance of uncached fbufs

is competitive with the fastest page remapping schemes. Second, we considered only a

single domain crossing in either direction; this corresponds to the structure of a monolithic

system. In a microkernel-based system, it is possible that additional domain crossings

would occur. Third, for message sizes of 64KBytes and larger, the cached fbuf throughput

is more than 90% of the throughput for a data path that involves no domain boundary

2UDP and IP have been slightly modi�ed to support messages larger than 64KBytes.

86

0

50

100

150

200

250

4096 32768 65536 131072 262144

Throughput in Mbps

Message size in bytes

single domain 3

3

3

3

3

3

3

3
3 3 3

3 domains, cached fbufs +

+
+
+

+
+

+

+

+
+ +

3 domains, uncached fbufs 2

22
2
2
2
2

2
2 2 2

Figure 5.4: Throughput of a UDP/IP local loopback test

crossings. This is of practical importance since large messages are common with high-

bandwidth applications. Fourth, because the test is run in loopback mode, the throughput

achieved is roughly half of what one would expect between two DecStations connected by

an in�nitely fast network.

A �nal experiment measures end-to-end throughput of UDP/IP between two DecSta-

tions using a null modem connection of the Osiris network interface boards. The protocol

suite is identical to that used in the previous experiment, except that the local loopback

protocol below IP is replaced with a driver for the Osiris board, and IP's PDU size was

set to 16KBytes. The test protocol uses a sliding window to facilitate ow control.

Figure 5.5 shows the measured end-to-end throughput achieved with cached/volatile

fbufs as a function of the message size. In the kernel-kernel case, the entire protocol stack,

including the test protocol, is con�gured in the kernel. This case serves as a baseline for

evaluating the impact of domain boundary crossings on throughput. The user-user case

involves a kernel/user boundary crossing on each host. In the user-netserver-user case,

UDP is con�gured in a separate user level server domain, necessitating both a user/user

and a kernel/user boundary crossing as part of the data path on each host.

We make the following observations. First, the maximal throughput achieved is 285

Mbps, or 55% of the net bandwidth supported by the network link3. This limitation is

due to the capacity of the DecStation's turbochannel bus, not software overheads. The

turbochannel has a peak bandwidth of 800 Mbps, but DMA startup latencies reduce

the e�ective throughput. The Osiris board currently initiates a DMA transfer for each

ATM cell payload, limiting the maximal throughput to 367 Mbps. Bus contention due to

CPU/memory tra�c further reduces the attainable I/O throughput to 285 Mbps.

3The net bandwidth of 516 Mbps is derived from the link bandwidth (622 Mbps) minus ATM cell

overhead.

87

0

50

100

150

200

250

300

1 2 4 8 16 32 64 128 256 512 1024

Throughput in Mbps

Message size in KBytes

kernel-kernel 3

3

3

3

3
3 3 3 3 3 3 3

user-user +

+

+

+

+

+
+ + +

+ + +

user-netserver-user 2

2
2

2

2

2

2

2
2

2
2 2

Figure 5.5: UDP/IP end-to-end throughput using cached, volatile fbufs

Second, domain crossings have virtually no e�ect on end-to-end throughput for large

messages (> 256KB) when cached/volatile fbufs are used. For medium sized messages

(8{64KB), Mach IPC latencies result in a signi�cant throughput penalty per domain

crossing. The throughput for small messages (< 8KB) is mainly limited by driver and

protocol processing overheads.

For medium sized messages, the throughput penalty for a second domain crossing is

much larger than the penalty for the �rst crossing. The di�erence is too large to be

explained by the di�erent latency of kernel/user and user/user crossings. We attribute

this penalty to the exhaustion of cache and TLB when a third domain is added to the data

path. Because our version of Mach/Unix does not support shared libraries, program text

that implements the x-kernel infrastructure is duplicated in each domain. This duplication

reduces instruction access locality and reduces hit rates in both TLB and instruction cache.

The use of shared libraries should help mitigate this e�ect.

Figure 5.6 shows the measured end-to-end throughput when uncached/non-volatile

fbufs are used.4 As in the loop-back experiment, the signi�cance of the uncached/non-

volatile case is that it is comparable to the best one can achieve with page remapping.

The kernel-kernel graph is once again included as a baseline for comparison. The maximal

user-user throughput is 225 Mbps. Thus, the use of uncached fbufs leads to a throughput

degradation of 21% when one boundary crossing occurs on each host. The throughput

achieved in the user-netserver-user case is only marginally lower. The reason is that UDP|

which resides in the netserver domain|does not access the message's body. Thus, there

4The use of non-volatile fbufs has a cost only in the transmitting host; this is because the kernel is the

originator of all fbufs in the receiving host. For similar reasons, uncached fbufs incur additional cost only

in the receiving host. In our test, the cost for non-volatile fbufs is hidden by the larger cost of uncached

fbufs.

88

0

50

100

150

200

250

300

1 2 4 8 16 32 64 128 256 512 1024

Throughput in Mbps

Message size in KBytes

kernel-kernel 3

3

3

3

3
3 3 3 3 3 3 3

user-user +

+ +
+

+

+

+

+

+

+
+ +

user-netserver-user 2

2 2
2

2

2

2

2

2

2

2 2

Figure 5.6: UDP/IP end-to-end throughput using uncached, non-volatile fbufs

is no need to ever map the corresponding pages into the netserver domain. Consequently,

the additional cost for using uncached fbufs in this case is small.

Note that the maximal throughput achieved with uncached fbufs is CPU bound, while

throughput is I/O bound with cached fbufs. Thus, the throughput �gure does not fully

reect the bene�t of using cached fbufs. In our test, part of the bene�t takes the form

of a reduction of CPU load. Speci�cally, the CPU load on the receiving host during

the reception of 1 MByte packets is 88% when cached fbufs are used, while the CPU is

saturated when uncached fbufs are used5.

One can shift this e�ect by setting IP's PDU size to 32 KBytes, which cuts protocol

processing overheads roughly in half, thereby freeing CPU resources. In this case, the test

becomes I/O bound even when uncached fbufs are used, i.e., the uncached throughput

approaches the cached throughput for large messages. However, the CPU is still saturated

during the reception of 1 MByte messages with uncached fbufs, while CPU load is only

55% when cached fbufs are used. Here, the use of cached fbufs leads entirely to a reduction

of CPU load. On the other hand, a hypothetical system with much higher I/O bandwidth

would make throughput CPU bound in both the cached and uncached fbuf cases. The

local loopback test (which simulates in�nite I/O bandwidth) has demonstrated that the

use of cached fbufs leads to a twofold improvement in throughput over uncached fbufs in

this case. Thus, on the DecStation, the use of cached fbufs can reduce CPU load up to

45% or increase throughput by up to a factor of two, when compared to uncached fbufs

in the case where a single user-kernel domain crossing occurs.

5CPU load was derived from the rate of a counter that is updated by a low-priority background thread.

89

5.7 Discussion

In this section, we discuss several issues relating to the applicability and e�ectiveness of

fbuf in various circumstances.

5.7.1 How Many Domains?

An important question not yet answered is how many domains a data path might intersect

in practice. On the one hand, there is a trend towards microkernel-based systems, the

motivation being that systems structured in this way are easier to con�gure, extend, debug,

and distribute. In a system with a user-level networking server, there are at least two

domain crossings; a third-party window or multimedia server would add additional domain

crossings. On the other hand, even a microkernel-based system does not necessarily imply

that multiple domain crossings are required. For example, recent work suggests that it is

possible to implement the TCP/IP protocol suite using application libraries, thus requiring

only a single user/kernel crossing in the common case [MB93a, TNML93].

There are three responses to this question. First, server-based systems have undeniable

advantages; it is a general technique that makes it possible to transparently add new

services and entire OS personalities without requiring modi�cation/rebuilding of the kernel

and applications. It is not yet clear whether the application-library approach can achieve

the same e�ect, or even generalize beyond TCP/IP. Second, our work shows how to avoid

the negative impact of domain crossings on end-to-end throughput for large messages. This

is signi�cant because many applications that demand high throughput generate/consume

large data units. Such applications include continuous media, data visualization, and

scienti�c programs. For these applications, minimizing domain crossings may therefore

not be as critical. Third, as demonstrated in the previous section, fbufs are also well suited

for situations where only a single kernel/user domain crossing occurs in the data path.

5.7.2 Characteristics of Network I/O Revisited

Fbufs gain e�ciency partly by placing certain restrictions on the use of I/O bu�ers, as

described in Section 5.2. Nevertheless, fbufs can be transparently integrated with network

subsystems that are written to an immutable bu�er abstraction, as demonstrated by our x-

kernel based implementation. Necessary modi�cations are restricted to software modules

that allocate bu�ers based on cached fbufs, and modules that interpret I/O data.

In the interest of preserving user-level throughput, it is necessary to transfer bu�ers

between application programs and operating system as e�ciently as between modules of

the operating system. Unfortunately, the semantics of the UNIX read/write interface

make it di�cult to use fbufs (or any other VM based technique). This is because the

UNIX interface has copy semantics, and it allows the application to specify an unaligned

bu�er address anywhere in the its address space. We therefore propose the addition of an

interface for high-bandwidth I/O that uses immutable bu�er aggregates (see Section 2.5).

New high-bandwidth applications can use this interface; existing applications can continue

to use the old interface, which requires copying.

The use of such an interface requires applications to use an abstract data type that

encapsulates bu�er aggregates. This implies that an application that reads input data

90

must be prepared to deal with the potentially non-contiguous storage of bu�ers, unless

it is willing to pay the performance penalty of copying the data into contiguous storage.

To minimize inconvenience to application programmers, our proposed interface supports

a generator-like operation that retrieves data from a bu�er aggregate at the granularity

of an application-de�ned data unit, such as a structure or a line of text. Copying only

occurs when a data unit crosses a bu�er fragment boundary.

Since fbufs are immutable, data modi�cations require the use of a new bu�er. Within

the network subsystem, this does not incur a performance penalty, since data manipu-

lations are either applied to the entire data (presentation conversions, encryption), or

they are localized to the header/trailer. In the latter case, the bu�er editing functions|

e.g., join, split, clip|on the aggregate object can be used to logically concatenate a new

header with the remaining, unchanged bu�er. The same is true for application data ma-

nipulations, as long as manipulations on part of the data are localized enough to warrant

the small overhead of bu�er editing. We cannot imagine an application where this is a

problem.

Cached fbufs require that the I/O data path of an fbuf be identi�ed at the time the

fbuf is allocated. In those cases where the I/O data path cannot be determined, a default

allocator is used. This allocator returns uncached fbufs, and as a consequence, VM map

manipulations are necessary for each domain transfer. The driver for the Osiris network

interface used in our experiments employs the following strategy. The driver maintains

queues of preallocated cached fbufs for the 16 most recently used data paths, plus a single

queue of preallocated uncached fbufs. The adaptor board performs reassembly of incoming

PDUs from ATM cells by storing the cell payloads into a bu�er in main memory using

DMA. When the adaptor board needs a new reassembly bu�er, it checks to see if there is

a preallocated fbuf for the virtual circuit identi�er (VCI) of the incoming PDU. If not, it

uses a bu�er from the queue of uncached fbufs.

Note that the use of cached fbufs requires a demultiplexing capability in the network

adaptor, or it must at least permit the host CPU to inspect the packet header prior to

the transfer of data into main memory. While most low-bandwidth (Ethernet) network

adaptors do not have this capability, network adaptors for high-speed networks are still

the subject of research. Two prototypes of such interfaces we are familiar with (the Osiris

board, and the HP Afterburner board [DWB+93]) do have adequate support.

5.7.3 Architectural Considerations

As observed in Section 5.6, the performance of cached fbufs for large messages is limited

by TLB miss handling overhead.6 In many modern architectures (including the MIPS),

TLB entries are tagged with a domain identi�er. This organization penalizes sharing in a

global address space, since a separate TLB entry is required in each domain for a particular

shared page, even if the address mapping and protection information are identical.

Several modern processors permit the use of a single TLB entry for the mapping of

several physical pages (HP-PA, MIPS R4000). This facility can be used to reduce the

TLB overhead for large fbufs. However, the physical pages mapped with a single TLB

6Our implementation already clusters DAG nodes to reduce the number of pages occupied by a single

fbuf aggregate.

91

entry must be contiguous in physical address. This requires a form of physical memory

management currently not present in many operating systems.

Choosing the size of the fbuf region involves a tradeo�. The region must be large

enough to accommodate the I/O bu�ering needs of both the kernel and all user domains.

On the other hand, a large window reduces the size of the private address spaces of kernel

and user domains. The trend towards machines with 64-bit wide virtual addresses should

make this less of an issue.

5.7.4 Relationship to Other VM Systems

This paper describes an integrated implementation of fbufs based on modifying/extending

the Mach kernel. We now briey discuss ways to layer fbufs on top of existing VM systems.

Note that in each case, kernel modi�cations are still required to give in-kernel software

modules (e.g., device drivers) access to the fbuf facility.

Several modern VM systems|e.g., those provided by the Mach and Chorus micro-

kernels|export an external pager interface. This interface allows a user process to deter-

mine the semantics of a virtual memory object that can be mapped into other protection

domains. We have designed an fbuf implementation that uses a Mach external pager and

does not require modi�cations of the VM system. In this implementation, an fbuf transfer

that requires VM mapping changes must involve the external pager, which requires com-

munication between the sender of the fbuf and the pager, and subsequently between the

pager and the kernel. Consequently, the penalty for using uncached and/or non-volatile

fbufs is expected to be quite high.

A shared memory facility such that provided by System V UNIX could presumably

be used to implement fbufs. However, it is unclear how the semantics for read accesses

to protected locations in the fbuf region (Section 5.4.2.4) can be achieved. Also, many

implementations of System V shared memory have rather severe limitations with regard

to the number and size of shared memory segments.

5.8 Concluding Remarks

This chapter presents an integrated bu�er management/transfer mechanism that is op-

timized for high-bandwidth I/O. The mechanism, called fbufs, exploits locality in I/O

tra�c to achieve high throughput without compromising protection, security, or modular-

ity. Fbufs combine the page remapping technique with dynamically mapped, group-wise

shared virtual memory. In the worst case, it performs as well as the fastest page remap-

ping facilities described in the literature. Moreover, it o�ers the even better performance

of shared memory in the common case where the data path of a bu�er is know at the time

of allocation. Fbufs do not compromise protection and security. This is achieved through

a combination of group-wise sharing, read-only sharing, and by weakening the semantics

of bu�er transfers (volatile bu�ers).

A micro experiment shows that fbufs o�er an order of magnitude better throughput

than page remapping for a single domain crossing. Macro experiments involving the

UDP/IP protocol stack show when cached/volatile fbufs are used, domain crossings have

virtually no impact on end-to-end throughput for large messages.

92

93

CHAPTER 6

Application Device Channels

The previous chapter described a technique that can avoid bandwidth degradation

due to protection boundary crossings along the I/O data path. Protection boundaries

also have the e�ect of adding latency to I/O operations, due to the necessary proces-

sor reallocation, scheduling, validation, and the resulting drop in memory access locality.

As shown in Section 5.6, fbufs cannot eliminate the added latency caused by protection

domain boundaries. In this chapter, we briey describe a new approach that gives appli-

cations direct access to a network device for common I/O operations, thus bypassing the

OS kernel and removing all protection boundaries from the network I/O data path.

6.1 Motivation

Consider how an application program generally interacts with the operating system and

the underlying hardware. Conceptually, the OS is layered between the application program

and the hardware. This layering, however, is not strictly preserved in the implementation.

For e�ciency reasons, application programs are allowed to directly access main memory

and to directly execute instructions on the CPU and the oating-point co-processor (FPU).

The operating system is only involved in relatively infrequent, \coarse-grained" operations

such as resource allocation, scheduling, and I/O (See Figure 6.1).

OS

Application

SchedulingResource
(de)allocation

I/O

FPU CPU Memory Devices

Figure 6.1: Application{OS{Hardware Interaction

94

Even though applications have direct access to hardware operations, a protected op-

erating system maintains control of the machine in order to ensure a fair allocation of

resources and to isolate application software faults. This is accomplished by limiting

the set of memory locations that an application can access, by disallowing user access

to devices, and by restricting the CPU instruction set available to applications. This is

depicted by the shaded areas in Figure 6.1. For example, applications are not allowed

to mask interrupts, since doing so could prevent the OS from re-gaining control of the

machine when a user's time-slice has expired. By restricting an application's capabilities

through hardware assist, the OS can maintain protection, safety, and fairness, while still

allowing applications to perform the most common operations (i.e., computations in main

memory) directly and without OS intervention. This strategy reects a sound system

design that isolates, and optimizes for, the common case.

Traditionally, I/O operations had inherently long latencies due to slow hardware de-

vices (disks, slow network links). Additional software latencies due to OS kernel involve-

ment where therefore acceptable. With high-speed local area networks, on the other

hand, OS software latencies can easily dominate the end-to-end communication delays

experienced by applications. For example, parallel programming systems implemented

on workstation clusters are very communication-intensive [KDCZ94, TMP94]. The per-

formance and scalability of such systems can su�er from added communication latencies

caused by the lack of direct access to the network hardware.

The design of application device channels recognizes communication as a �ne-grained,

performance-critical operation, and allows applications to bypass the operating system

kernel during network send and receive operations. The OS is normally only involved

in the establishment and termination of network connections. Protection, safety, and

fairness are maintained, because the network adaptor validates send and received requests

from application programs based on information provided by the OS during connection

establishment.

6.2 Design

The basic approach taken in designing ADCs is depicted in Figure 6.2. First, instead

of centralizing the network communication software inside the operating system, a copy

of this software is placed into each user domain as part of the standard library that is

linked with application programs. This user-level network software supports the standard

application programming interface. Thus, the use of ADCs is transparent to application

programs, except for performance.

Second, the network software is granted direct access to a restricted set of functions

provided by the network adaptor. This set of functions is su�cient to support common

network send and receive operations without involving the OS kernel. As a result, the

OS kernel is removed from the critical network send/receive path. An application domain

communicates with the network adaptor through an application device channel, which

consists of a set of data structures that is shared between network adaptor and the network

software linked with the application. These data structures include queues of data bu�er

descriptors for transmission and reception of network messages.

95

OS

Network Protocols

Application
 Connection
Management

ADC

Protocol
 Library

Send Receive

Network InterfaceADC

Figure 6.2: Application Device Channel

When an application opens a network connection, the operating system informs the

network adaptor about the mapping between network connection and ADC, creates the

associated shared data structures, and grants the application domain access to these data

structures. The network adaptor passes subsequently arriving network messages to the

appropriate ADC, and transmits outgoing messages queued on an ADC by an application

using the appropriate network connection. An application cannot gain access to network

messages destined for another application, nor can it transmit messages other than through

network connections opened on its behalf by the OS.

The use of user-level network software in place of a centralized, trusted network sub-

system inside the OS kernel poses several problems. These problems and their solutions

are described elsewhere in the literature [TNML93, MB93a]. The main issue is that many

networks protocols have state that must be maintained on a per-host basis, such as the

TCP/UDP port space. Fortunately, maintaining this state inside the OS is acceptable,

since its access is not required as part of common send and receive operations.

There are two main advantages to the use of application device channels. First, net-

work send and receive operations bypass the OS kernel. This eliminates protection domain

boundary crossing, which would otherwise entail data transfer operations, processor reallo-

cation, scheduling, and the associated drop in memory access locality. In traditional imple-

mentations, these costs account for a signi�cant portion of the application-to-application

latency experienced on a high-speed local area network.

Second, since application device channels give application domains low-level network

access, it is possible to use customized network protocols and software. This exibility

can lead to further performance improvements, since it allows the use of application-

speci�c knowledge to optimize communications performance. For example, a parallel

programming system implemented on a workstation cluster can gain e�ciency by using

96

specialized message-passing protocols and bu�ering strategies instead of generic TCP/IP

network connections.

6.3 Implementation

We have implemented ADCs in a Mach 3.0/x-kernel environment, using the Osiris ATM

network adaptor described in detail in Chapter 3. Here, the Osiris transmit dual-port

memory is divided into sixteen 4KB pages, each of which contains a separate transmit

queue. The receive dual-port memory is similarly partitioned so that each page contains

a separate free bu�er queue and receive queue. One transmit queue, and one pair of

free/receive queues are used by the operating system in the usual way. The remaining

pages are grouped in pairs of one transmit and one receive page.

When an application opens a network connection, the operating system maps one

pair of pages into the application's address space to form an application device channel.

Linked with the application is an ADC channel driver, which performs essentially the

same functions as the in-kernel Osiris device driver. Also linked with the application is

a replicated, user-level implementation of the network protocol software.

As part of the connection establishment, the operating system assigns a set of ATM

virtual circuit identi�ers (VCIs) and a priority to the ADC. The Osiris receive processor

queues incoming messages on the receive queue of an ADC if the VCI of the message is in

the set of VCIs assigned to that ADC. Applications can send messages through an ADC

using the VCIs assigned to that ADC. Therefore, application can only receive and transmit

messages on connection that they have opened with the authorization of the operating

system. The ADC priority is used by the Osiris transmit processor to determine the

order of transmissions from the various ADCs' transmit queues. Using these priorities,

the OS can enforce network resource allocation policies.

For each ADC, the Osiris on-board processors maintain a virtual-to-physical address

translation table. This table provides address translation for the application's virtual

bu�er addresses (needed for DMA) and ensures memory access protection. When an

application queues a bu�er with an address not contained in this table, the on-board

processor asserts an interrupt. The operating system's interrupt handler in turn looks

up the address in the application's page table. If a valid mapping exists, the kernel

provides the appropriate translation information to the network adaptor, otherwise, an

access violation exception is raised in the o�ending application process.

All host interrupts are �elded by the OS kernel's interrupt handler. If the interrupt

indicates an event a�ecting an ADC, such as the transition of an ADC's receive queue

from the empty to a non-empty state, the interrupt handler directly signals a thread in

the ADC channel driver linked with the application. A full context switch to an OS kernel

thread does not occur in this case. Note also that due to the use of interrupt-reducing

techniques, the average number of host interrupts per network message is less than one

(see Section 3.2.2).

The number of application processes with open network connections can exceed the

maximal number of ADCs (15 in our implementation). In this case, only a subset of

the processes can use ADCs, and the remaining processes must use the normal I/O path

through the OS kernel. For best performance, the OS tries to assigns the available ADCs

97

to the processes with the most network tra�c. An ADC can be reassigned from one

application to another. To do this, the OS deactivates the ADC channel driver in one

application, causing subsequent I/O requests to follow the normal path through the kernel.

Then, another ADC channel driver is activated, causing further network tra�c to use the

ADC. ADC reassignment is transparent to application programs, except for performance.

6.4 Related Work

At �rst glance, ADCs may appear similar to the mapped devices used in Mach [RH91]

and other microkernel-based systems. In these systems, the user-level UNIX server is

granted direct access to, and control of, the network device. However, application device

channels are di�erent from mapped device drivers in two important ways. First, the OS

kernel remains in control of the device in the case of ADCs; only certain kinds of access

are granted to the application domain. Second, the device can be fairly shared among

and directly accessed by a number of untrusted applications; the device is not mapped

into|and therefore controlled by|a single domain, as is the case with mapped devices.

With ADCs, the device can be shared by multiple application domains, rather than a

single network server domain.

The network interface in the SHRIMP multicomputer [BLA+94] allows application

access without sacri�cing protection, as do ADCs. The complex, custom-designed interface

supports communication based on remote virtual memory mapping, and it connects to a

dedicated multicomputer interconnection network. An ADC, on the other hand, is a

software mechanism implemented with minimal hardware assist from a general-purpose

network adaptor (Section 3.8.2 discusses the requirements for a network adaptor to support

ADCs). As such, it can support general TCP/IP internetwork access along with highly

e�cient message-passing tra�c for parallel computing on workstation clusters.

The TMCCM-5 Connection Machine supports application-level communication through

a memory-mapped network interface [L+92]. Unlike ADCs, the CM-5 maintains protection

only between computing nodes in separate partitions, not within a partition (a partition

is a subset of compute nodes con�gured to communicate).

6.5 Performance

To assess the performance of application device channels, we have repeated the experi-

ments described in Section 3.9, except that the test programs were user-level applications,

and the Mach kernel was modi�ed to use ADCs. All results we obtained were within

the error margins of the results reported in that section for the case of kernel-to-kernel

message exchanges. That is, the latency and bandwidth of messages exchanged between

application programs on separate hosts using ADCs was identical to that obtained when

messages were exchanged between the OS kernels running on the hosts. This is signi�cant,

since it shows that ADCs can eliminate the performance penalty normally associated with

crossing the user-kernel protection domain boundary.

98

6.6 Summary

The design of application device channels recognizes communication as a performance-

critical operation for emerging distributed applications. ADCs allow applications to bypass

the OS kernel during network send and receive operations. Operating system intervention

is normally limited to connection establishment and termination. ADCs deliver network

performance between application programs that is otherwise achievable only between OS

kernels. They permit further performance improvements due to the use of application-

speci�c, customized network communications software.

99

CHAPTER 7

Conclusion

The objective of the work presented in this dissertation is to avoid the I/O bottleneck

in operating systems. This bottleneck results from the lack of main memory bandwidth in

modern computer systems, combined with the poor memory access locality that current

operating systems display during I/O activity. This dissertation introduces a set of new

techniques that facilitate high-performance I/O without sacri�cing the advantages of a

modular OS structure.

7.1 Contributions and Limitations

The contribution of this dissertation is a set of set of novel techniques that facilitate

high-performance I/O in both modular and monolithic operating systems.

� A new structuring approach for operating systems that allows �ne-grained modular-

ity without the performance penalty of an equally �ne-grained protection structure;

� the fbuf facility for the management and transfer of I/O data bu�ers across protec-

tion domain boundaries;

� application device channels, which allow applications to bypass the OS kernel in

common I/O operations, while leaving control over the device in the hands of the

operating system; and

� a set of techniques that reduce host processing overhead and achieve high perfor-

mance in driving a high-speed network adaptor.

These new techniques result from a re-evaluation of traditional approaches to sup-

porting I/O in operating systems. In particular, they are based on the following key

observations.

Memory bandwidth is a scarce resource. The traditional approach to performance

oriented system design is to focus on minimizing the number of CPU instructions

executed during an operation. The characteristics of modern computer systems with

their fast CPUs, limited memory bandwidth and fast I/O devices make it necessary

to focus instead on minimizing main memory tra�c.

Communication is a common operation. Current operating system designs require

OS kernel involvement in each I/O operation. This approach is well suited for ap-

plications that spend most of their time operating on data stored in main memory,

and perform occasional, coarse-grained I/O operations. The kinds of distributed ap-

plications that are enabled by high-speed networking are likely to perform frequent,

100

�ne-grained I/O, making communication a common operation. Thus, operating

systems should be optimized accordingly, and implement common I/O operations

without requiring kernel involvement.

This dissertation focuses on the primary problem of preserving the bandwidth and

latency of high-speed networks at the application level. The advent of high-speed net-

working, and the applications that it enables also pose a number of secondary problems.

For example, live audio and video applications require that the operating system schedules

resources in such a way that the real-time constraints of continuous media are met. This

work does not directly address these issues, but complements e�orts in that area [AH91,

JH93, Jef92, RR93, LKG92].

The experiments used to evaluate the techniques developed in this work use network

communication as the only form of I/O. Network tra�c is arguably the most challenging

form of I/O, since incoming data arrives at network devices asynchronously. Thus, we

believe that with the exception of application device channels, the presented techniques

readily generalize to other forms of I/O, such as disk tra�c.

7.2 Future Directions

The techniques introduced in this dissertation resulted from a re-evaluation of traditional

approaches to supporting I/O in operating system. This re-evaluation was necessary in

light of technological changes in computer and network hardware. The most important

of these technological advances|the advent of high-speed networks|is likely to enable

an exiting new class of I/O intensive distributed applications. For these applications,

communication is as common as computations on data in main memory. This di�ers

signi�cantly from traditional applications, where I/O operations are interspersed with

long periods of computation on data in main memory.

This change in the nature of computing, from compute-centric, centralized applications

to communication-centric, distributed applications suggest a fundamental re-thinking of

the design and implementation of operating systems. Our long-term research agenda is

to re-examine all the basic abstractions, services, and mechanisms provided by operating

systems in light of a communication-centric view of computation.

101

REFERENCES

[ABB+86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and

M. Young. Mach: A new kernel foundation for Unix development. In Pro-

ceedings of the USENIX Summer '86 Conference, July 1986.

[AH91] David P. Anderson and George Homsey. A continuous media I/O server

and its synchronization mechanism. IEEE Computer, 24(10):51{57, October

1991.

[AP93] Mark B. Abbott and Larry L. Peterson. Increasing network throughput

by integrating protocol layers. IEEE/ACM Transactions on Networking,

1(5):600{610, October 1993.

[B+93] G. Blair et al. A network interface unit to support continuous media. IEEE

Journal on Selected Areas in Communications, 11(2):264{275, February 1993.

[BALL90] Brian Bershad, Tom Anderson, Ed Lazowska, and Hank Levy. Lightweight

remote procedure call. ACM Transactions on Computer Systems, 8(1):37{

55, February 1990.

[BALL91] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M.

Levy. User-level interprocess communication for shared memory multipro-

cessors. ACM Transactions on Computer Systems, 9(2):175{198, May 1991.

[BC89] R. Ballart and Y. C. Ching. SONET: Now it's standard optical network.

IEEE Communications Mag., 29(3):8{15, March 1989.

[Bel92] Bellcore, Morristown, NJ. Asynchronous Transfer Mode (ATM) and ATM

Adaptation layer (AAL) Protocols Generic Requirements, Technical Advisory

TA-NWT-001113, August 1992.

[BLA+94] Matthias A. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, Edward W.

Felten, and Jonathan Sandberg. Virtual memory mapped network interface

for the SHRIMP multicomputer. In Proceedings of the 21st Annual Interna-

tional Symposium on Computer Architecture, pages 142{153, April 1994.

[BN84] Andrew Birrell and Bruce Nelson. Implementing remote procedure calls.

ACM Transactions on Computer Systems, 2(1):39{59, February 1984.

[BP93] D. Banks and M. Prudence. A high-performance network architecture for a

PA-RISC workstation. IEEE Journal on Selected Areas in Communications,

11(2):191{202, February 1993.

102

[BPP92] Mary L. Bailey, Michael A. Pagels, and Larry L. Peterson. The x-chip: An

experiment in hardware multiplexing. In IEEE Workshop on the Architec-

ture and Implementation of High Performance Communication Subsystems,

February 1992.

[C+91] Eric Cooper et al. Host interface design for ATM LANs. In Proc. 16th

Conf. on Local Computer Networks, Minneapolis, MN, October 1991.

[C+93a] John B. Carter et al. FLEX: A tool for building e�cient and exible systems.

In Fourth Workshop on Workstation Operating Systems, pages 198{202, Napa,

CA, October 1993.

[C+93b] D. D. Clark et al. The aurora gigabit testbed. Computer Networks and

ISDN Systems, 25(6):599{621, January 1993.

[CB93] J. B. Chen and Brian Bershad. The impact of operating system structure on

memory system performance. In Proceedings of the Fourteenth ACM Sym-

posium on Operating Systems Principles, December 1993.

[Che88] David R. Cheriton. The V distributed system. Communications of the

ACM, 31(3):314{333, March 1988.

[CRJ87] Roy H. Campbell, Vincent Russo, and Gary Johnston. Choices: The design

of a multiprocessor operating system. In Proceedings of the USENIC C++

Workshop, pages 109{123, November 1987.

[CT90] David D. Clark and David L. Tennenhouse. Architectural considerations

for a new generation of protocols. In Proceedings of the SIGCOMM '90

Symposium, pages 200{208, September 1990.

[CW92] Richard Comerford and George F. Watson. Memory catches up. IEEE

Spectrum, 29(10):34{57, October 1992.

[D+92] Todd A. Dutton et al. The design of the DEC 3000 AXP systems, two

high-performance workstations. Digital Technical Journal, 4(4):66{81, 1992.

[DAPP93] Peter Druschel, Mark B. Abbott, Michael Pagels, and Larry L. Peterson.

Network subsystem design. IEEE Network (Special Issue on End-System

Support for High Speed Networks), 7(4), July 1993.

[Dav91] Bruce S. Davie. A host-network interface architecture for ATM. In Proceed-

ings of the SIGCOMM '91 Conference, pages 307{315, Zuerich, Switzerland,

September 1991.

[Dav93] B. S. Davie. The architecture and implementation of a high-speed host in-

terface. IEEE Journal on Selected Areas in Communications, 11(2):228{239,

February 1993.

103

[DHP91] Peter Druschel, Norman C. Hutchinson, and Larry L. Peterson. Service

composition in Lipto. In Proceedings of the 1991 International Workshop on

Object-Orientation in Operating Systems, pages 108{111, October 1991.

[DLJAR91] Partha Dasgupta, Richard J. LeBlanc Jr., Mustaque Ahamad, and Umak-

ishore Ramachandran. The Clouds distributed operating system. IEEE

Computer, 24(11):34{, November 1991.

[DPH91] Peter Druschel, Larry L. Peterson, and Norman C. Hutchinson. Lipto: A

dynamically con�gurable object-oriented kernel. In Newsletter of the IEEE

Computer Society Technical Committee on Operating Systems and Application

Environments, volume 5, pages 11{16. IEEE, 1991.

[Dru93] Peter Druschel. E�cient support for incremental customization of OS ser-

vices. In Proceedings of the Third International Workshop on Object Orien-

tation in Operating Systems, pages 186{190, Asheville, NC, December 1993.

[Duc89] Dan Duchamp. Analysis of transaction management performance. In Pro-

ceedings of the Twelfth ACM Symposium on Operating Systems Principles,

pages 177{190, December 1989.

[DWB+93] Chris Dalton, Greg Watson, David Banks, Costas Calamvokis, Aled Edwards,

and John Lumley. Afterburner. IEEE Network, 7(4):36{43, July 1993.

[Fel90] David C. Feldmeier. Multiplexing issues in communication system design.

In Proc. ACM SIGCOMM '90, pages 209{219, Philadelphia, PA, Spetember

1990.

[FR86] Robert Fitzgerald and Richard F. Rashid. The integration of virtual memory

management and interprocess communication in Accent. ACM Transactions

on Computer Systems, 4(2):147{177, May 1986.

[GA91] Ramesh Govindan and David P. Anderson. Scheduling and IPC mechanisms

for continuous media. In Proceedings of 13th ACM Symposium on Operating

Systems Principles, pages 68{80, October 1991.

[GHM+90] Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page, Gerald J.

Popek, and Dieter Rothmeier. Implementation of the �cus replicated �le

system. In Proceedings of the USENIX Summer '90 Conference, pages 63{

71, June 1990.

[Hil92] Dan Hildebrand. An architectural overview of QNX. In Proceedings of the

Usenix Workshop on Micro-Kernels and Other Kernel Architectures, April

1992.

[HK93] Graham Hamilton and Panos Kougiouris. The Spring nucleus: A micro-

kernel for objects. In Proc. of the 1993 Summer Usenix Conference, pages

147{159, Cincinatti, OH, June 1993.

104

[HP90] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-

titative Approach. Morgan Kaufmann Publishers, Inc., Palo Alto, California,

1990.

[HP91] Norman C. Hutchinson and Larry L. Peterson. The x-Kernel: An architec-

ture for implementing network protocols. IEEE Transactions on Software

Engineering, 17(1):64{76, January 1991.

[HPM93] Graham Hamilton, Michael L. Powell, and James J. Mitchell. Subcontract:

A exible base for distributed programming. In Proceedings of the Fourteenth

ACM Symposium on Operating Systems Principles, pages 69{79, 1993.

[IBM90] IBM Corporation. IBM RISC System/6000 POWERstation and POW-

ERserver: Hardware Technical Reference, General Information Manual, IBM

Order Number SA23-2643-00, 1990.

[IEE90] Gigabit network testbeds. IEEE Computer, pages 77{80, September 1990.

[Jac90] Van Jacobson. E�cient protocol implementation. In ACM SIGCOMM '90

tutorial, September 1990.

[Jef92] Kevin Je�ay. On Kernel Support for Real-Time Muiltimedia Applications.

In Proceedings Third IEEE Workshop on Workstation Operating Systems,

pages 39{46, Key Biscayne, FL, April 1992.

[JH93] Alan Jones and Andrew Hopper. Handling audio and video streams in a

distributed environment. In Proceedings of the Fourteenth ACM Symposium

on Operating Systems Principles, pages 231{243, 1993.

[JLHB88] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained

mobility in the Emerald system. ACM Transactions on Computer Systems,

6(1):109{133, February 1988.

[JZ93] David B. Johnson and Willy Zwaenepoel. The Peregrine high-performance

RPC system. Software|Practice and Experience, 23(2):201{221, February

1993.

[Kar89] Paul A. Karger. Using registers to optimize cross-domain call performance.

In Third Conf. on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS-III), pages 194{204, Boston, Massachusetts (USA),

April 1989. ACM.

[KC88] Hemant Kanakia and David R. Cheriton. The VMP network adapter board

(NAB): High-performance network communication for multiprocessors. In

Proceedings of the SIGCOMM '88 Symposium, pages 175{187, August 1988.

[KDCZ94] Peter Keleher, Sandhya Dwarkadas, Alan Cox, and Willy Zwaenepoel.

Treadmarks: Distributed shared memory on standard workstations and oper-

ating systems. In Proceedings of the 1994 Winter Usenix Conference, pages

115{131, January 1994.

105

[L+92] Charles E. Leiserson et al. The network architecture of the Connection Ma-

chine CM-5. In Proceedings of the 4th ACM Symposium on Parallel Algo-

rithms and Architectures, pages 272{285, June 1992.

[LHFL93] Jay Lepreau, Mike Hibler, Bryan Ford, and Je�rey Law. In-kernel servers on

Mach 3.0: Implementation and performance. In Proc. of the Third Usenix

Mach Symposium, pages 39{55, April 1993.

[LKG92] Li Li, A. Karmouch, and N.D. Georganas. Real-time Synchronization Con-

trol in Multimedia Distributed Systems. ACM Computer Communications

Review, 22(3):79{86, 1992.

[LMKQ89] Samuel J. Le�er, Marshall K. McKusick, Michael J. Karels, and John S.

Quarterman. The Design and Implementation of the 4.3BSD UNIX Operat-

ing System. Addison-Wesley Publishing Company, 1989.

[MB93a] Chris Maeda and Brian Bershad. Protocol service decomposition for high-

performance networking. In Proceedings of the Fourteenth ACM Symposium

on Operating Systems Principles, December 1993.

[MB93b] Chris Maeda and Brian N. Bershad. Networking performance for microker-

nels. In Proceedings of the Third International Workshop on Object Orien-

tation in Operating Systems, pages 154{159, Asheville, NC, December 1993.

[Mog92] Je�rey C. Mogul. Network locality at the scale of processes. ACM Trans-

actions on Computer Systems, 10(2):81{109, May 1992.

[OP92] Sean W. O'Malley and Larry L. Peterson. A dynamic network architecture.

ACM Transactions on Computer Systems, 10(2):110{143, May 1992.

[PDP93] Michael A. Pagels, Peter Druschel, and Larry L. Peterson. Cache and TLB

e�ectiveness in the processing of network data. Technical Report TR 93-4,

Department of Computer Science, University of Arizona, Tucson, Ariz., 1993.

[Prz90] Steven A. Przybylski. Cache and Memory Hierarchy Design: A

Performance-Directed Approach. Morgan Kaufmann, San Mateo, CA, 1990.

TK7895.M4P79.

[RAA+88] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont,

F. Herrmann, C. Kaiser, S. Langlois, P. L�eonard, and W. Neuhauser. Chorus

distributed operating systems. Computing Systems Journal, 1(4):305{370,

December 1988.

[RAA+92] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guille-

mont, F. Herrman, C. Kaiser, S. Langlois, P. L�eonard, and W. Neuhauser.

Overview of the Chorus distributed operating system. In Workshop on

Micro-Kernels and Other Kernel Architectures, pages 39{70, Seattle WA

(USA), April 1992. Usenix.

106

[Ram93] K. K. Ramakrishnan. Performance considerations in designing network in-

terfaces. IEEE Journal on Selected Areas in Communications, 11(2):203{

219, February 1993.

[RH91] F. Reynolds and J. Heller. Kernel support for network protocol servers.

In Proceedings of the USENIX Mach Symposium, pages 149{162, Monterey,

Calif., November 1991.

[RR93] S. Ramanathan and P. V. Rangan. Adaptive feedback techniques for syn-

chronized multimedia retrieval over integrated networks. IEEE/ACM trans.

on Networking, 1(2), April 1993.

[RT74] Dennis M. Ritchie and Ken Thompson. The Unix time-sharing system.

Communications of the ACM, 17(7):365{375, July 1974.

[SB90] Michael D. Schroeder and Michael Burrows. Performance of Firey RPC.

ACM Transactions on Computer Systems, 8(1):1{17, February 1990.

[SGH+89] Marc Shapiro, Yvon Gourhant, Sabine Habert, Laurence Mosseri, Michel Ruf-

�n, and Celine Valot. Sos: An object-oriented operating system|assessment

and perspectives. Computer Systems, 2(4):287{338, December 1989.

[Sha86] Marc Shapiro. Structure and encapsulation in distributed systems: The

proxy principle. In Proceedings of the Sixth International Conference on

Distributed Computing Systems, pages 198{204, Boston, Mass., May 1986.

[SLM90a] Michael L. Scott, Thomas J. LeBlanc, and Brian D.Marsh. Multi-model par-

allel programming in Psyche. In Proc. 2nd Annual ACM SIGPLAN Symp.

on Principles and Practice of Parallel Programming, page 7078, Seattle, WA

(USA), March 1990. ACM.

[SLM+90b] Michael L. Scott, Thomas J. LeBlanc, Brian D. Marsh, Timothy G. Becker,

Dubnicki Cezary, and Evangelos P. Markatos. Implementation issues for the

Psyche multiprocessor operating system. Computing Systems, 3(1):101{137,

1990.

[ST93] Jonathan M. Smith and C. Brendan S. Traw. Giving applications access to

Gb/s networking. IEEE Network, 7(4):44{52, July 1993.

[Sta93] Richard Stallman. Using and porting GNU CC. Free Software Foundation,

Cambridge, MA, June 1993.

[Str90] Robert E. Strom. Hermes: An integrated language and system for dis-

tributed programming. In 1990 Workshop on Experimental Distributed Sys-

tems, October 1990.

[TA91] Shin-Yuan Tzou and David P. Anderson. The performance of message-

passing using restricted virtual memory remapping. Software|Practice and

Experience, 21:251{267, March 1991.

107

[TMP94] Charles J. Turner, David Mosberger, and Larry L. Peterson. Cluster-C*:

Understanding the performance limits. In Proceedings of the 1994 Scalable

High Performance Computing Conference. IEEE, May 1994.

[TNML93] C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska. Implementing network

protocols at user level. In Proceedings of the SIGCOMM '93 Symposium,

September 1993.

[TS93] C. B. S. Traw and J. M. Smith. Hardware/software organization of a high-

performance ATM host interface. IEEE Journal on Selected Areas in Com-

munications, 11(2):240{253, February 1993.

[TSS88] C. P. Thacker, L. C. Stewart, and E.. H. Satterthwaite. Firey: A mul-

tiprocessor workstation. IEEE Transactions on Computers, 37(8):909{920,

August 1988.

[UNI89] UNIX System V Release 3.2|Programmer's Reference Manual. Prentice

Hall, Englewood Cli�s, New Jersey, 1989.

[WCC+74] W.Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.

Hydra: The kernel of a multiprocessor operating system. Communications

of the ACM, 17(6):337{345, June 1974.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.

E�cient software-based fault isolation. In Proceedings of the Fourteenth

ACM Symposium on Operating Systems Principles, pages 203{216, 1993.

[WLH81] William A. Wulf, Roy Levin, and Samuel P. Harbison. Hydra/c.mmp: An

experimental computer system, 1981.

[WN80] Maurice V. Wilkes and Roger M. Needham. The Cambridge model dis-

tributed system. OSR, 14(1):21{29, January 1980.

[Yud83] Mark Yudkin. Resource management in a distributed system. Proceedings

of the Eighth Data Communication Symposium, pages 221{226, October 1983.

