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located at the Lewis Research Center and monitoring an ADPAC run on a node of the Lace cluster. In this
prototype, the expert system executes on the same platform as the monitoring tool, since the initial number
of rules is small. The system is currently being extended to monitor all instances of ADPAC and allow the
user to select all, or a subset, to observe. The expert system can be moved to a separate platform as soon as
the complexity of the rules increases to the point where this will be necessary.

4.2 Future Directions
One obvious direction is to modify the source code of ADPAC to allow it to communicate directly with
TESS and the monitoring and control system, rather than through its output files. A principal reason for not
modifying the source initially is the desire to prove the feasibility of this approach and identify the specific
changes desired. There is another positive feature to the approach of using the output files: It would be rel-
atively straight-forward to substitute a different high-fidelity fan simulation and provide a similar level of
monitoring through watching its output file. This technique allows for easy testing of different fan simula-
tions without the initial need to involve the authors of the simulation.

The ADPAC code is currently being re-written to take advantage of parallel machines and workstation
clusters. Once this work is completed, the parallel-ADPAC will be tested with the TESS system.

Another zooming approach being studied is to use an intermediate fan simulation, specifically a two-
dimensional, axi-symmetric simulation. This has the advantage of not requiring as much execution time as
the three-dimensional ADPAC simulation when less accuracy is needed. In addition, it will be possible in
some cases to use the solution from the medium-fidelity simulation to jump-start the three-dimensional
solution, thus shortening the execution time of the high-fidelity simulation.

Fault detection and fault tolerance techniques are being studied for use with the multiple ADPAC runs.
Currently, the system does not gracefully handle the failure of an ADPAC instance. In general, the desired
single curve performance map can be created even when one or two ADPAC instances fail, allowing the
simulation to proceed. This is an area where rules are needed for the expert system so the user will not
have to constantly monitor a long simulation in case a fault occurs.
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machines on which ADPAC is executing, and the corresponding list of output file names. Schooner’s
dynamic configuration library allows watch-dog processes to be started whenever needed by the simula-
tion. Once the watch-dog has been started, the monitor_files dispatch is called. This tells the watch-
dog the name of the output file to monitor, and starts the infinite monitoring loop. During execution, the
watch-dog makes simple procedure calls, for example

residual_report(iteration, max_err);
is called to report the residual from the current iteration. The Schooner system transparently handles com-
munications and data conversions among the machines.

4. Current Status and Future Directions
This is an on-going research project. This section describes the current state of the implementation and
then outlines some of our plans for expansion of the system.

4.1 Current State
The TESS-ADPAC system has been fully implemented. It has been tested with a subsonic engine model
and compared with experimental data from the Energy Efficient Engine. The machine suite used for the
tests consisted of a Silicon Graphics Iris 4D/440VGX at the University of Toledo for the TESS system.
The ADPAC instances were executed on a variable number of nodes of the Lace cluster, a network of 32
IBM RS6000 workstations located at the NASA Lewis Research Center.

The monitoring tool was originally designed to monitor a single ADPAC instance. This was a result of
the original zooming strategy which envisioned a single high-fidelity component simulation used in an
iterative approach (see Section 2.1). The monitoring tool has been tested on a Sun Sparc 10 workstation

# starting watch-dog
export monitor_files dispatch( "filename" val string[40])

# residual report
import residual_report prog(
        "iteration" val integer,
        "residual"  val float)

# warning reports
import warning_report1 prog( "message"  val string[-])
import warning_report2 prog( "message"  val string[-])

# final reports
import mass_in_report  prog( "mass_in"  val float)
import mass_out_report prog( "mass_out" val float)
import pressure_report prog( "pressure_ratio" val float)
import pressure_plot_report prog( "pressure" val array[52] of float)
import last_report prog()

Figure 9: ADPAC Watch-dog UTS Specification
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ally achieved when the residual has dropped four orders of magnitude, while an oscillating residual is a
symptom of a problem within ADPAC. Experience with TESS-ADPAC indicates that convergence is
reached in most cases in 500 to 800 iterations. When a computation is finished, the strip-chart on the
upper-right shows the pressure plot at 52 points along a slice through the fan. The vertical scales on the
upper left report the flow rate of air into and out of the fan. The vertical scale on the lower left shows the
final pressure ratio (outlet/inlet) computed by ADPAC. Each of the vertical scales also show the design
point provided by the one-dimensional TESS model.

A prototype expert system receives data from the monitoring tool and provides several warning mes-
sages to the user in the form of pop-up windows. One example is shown in Figure 8. The monitoring tool
uses the C language interface to CLIPS to pass data to the expert system. The pop-up windows, when
appropriate, are then triggered by procedure callbacks from CLIPS to the monitoring tool.

Since the source code for ADPAC was not available for this project, the output data files are monitored
instead. One of the data files is updated by ADPAC on each iteration during a run to report a number of
quantities, including the desired residual, and several types of warnings. One limitation of this approach is
an inability to affect ADPAC once execution has started. Thus, the expert system is currently limited to
displaying warnings and errors in the monitoring tool, rather than being able to actively steer ADPAC.

To simulate the type of monitoring desired given the constraints, a watch-dog process is created on
each machine executing ADPAC. This process uses an infinite loop to continuously check ADPAC’s out-
put file for new data. Whenever the file changes, the watch-dog examines the file for values of interest,
specifically the residual values from each iteration and warnings of interest to the expert system. It also
reads the average results from the mbave program at the completion of the ADPAC run.

Schooner connects the watch-dog processes to the monitoring tool through the use of UTS specifica-
tion files. The specification file for the watch-dog process is shown in Figure 9. An import specification
indicates a service the watch-dog process will call from another component, in this case from the monitor-
ing tool. An export is a service the watch-dog process provides to the monitoring tool. A analogous
specification file is used with the monitoring tool. Each procedure specification lists the arguments using a
Pascal-like syntax.

Execution of the watch-dog process is started after the monitoring tool receives from TESS the list of

Figure 8: Pop-up warning window
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tion and accompanying data exchange library, a set of stub compilers, and a runtime support system. The
Universal Type System (UTS) provides both the specification language and the intermediate data represen-
tation [Hayes89]. The specification language is machine- and language-independent and is used to
describe the interface for each component application. The UTS intermediate data representation provides
a medium for exchanging data across machine architectures and handling data structure differences among
languages. The stub compilers, one for each supported language, read the UTS specifications and create
the interface. The runtime system implements application-level remote procedure call (RPC) control trans-
fer between components, as well as configuration and control features. It provides the user with a means of
configuring the various applications in the computation, and provides the underlying communication and
management support.

3.3 Prototype Monitoring and Control System
To accomplish the immediate research goals, a monitoring tool has been constructed that allows the user to
observe the progress of ADPAC runs and provides information to an expert system that can raise several
warning panels. The monitoring tool, designed with TAE+, consists of windows for each instance of
ADPAC. Figure 7 shows a snapshot of one such window taken at the end of an ADPAC run. The name of
the machine executing this instance of ADPAC is shown at the top center of the window. The chart on the
lower-right portion is a strip-chart and plots the residual on a log scale over the most recent 100 iterations.
The residual provides a measure of how well ADPAC is approaching convergence. Convergence is gener-

Figure 7: ADPAC Monitoring Tool
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pull-down menus, and text fields. Second, there are data-driven objects that graphically display informa-
tion from the application in real time through dials, strip-charts, thermometers, etc. The third category is
information objects, such as text displays and help screens that provide the user with information or
instructions about the application. The data-driven objects are particularly useful in a monitoring tool as
they easily support receiving and reporting of continuous data during execution. A set of pre-defined
objects are available that can be used to create vertical and horizontal scales, rotating dials, strip charts, etc.
The user can also build objects specific to the application by creating a custom-object using the supplied
drawing tools in TAE+ and defining the type of rotational, sliding, stretching, etc. data that will be supplied
to the object. The data-driven object was a major reason for selecting TAE+ for this project, as it easily
supports the type of monitoring needed for ADPAC.

3.2.2 CLIPS
An expert system built with CLIPS begins with a user-defined set of rules. The rules are written in a func-
tional language and describe actions to take when specified conditions occur in the application. Typically,
CLIPS supplies a window that displays information to the user about the application and shows the
progress of the knowledge engine as the package works through the rules. A C language interface is also
available that by-passes the CLIPS window and allows an application to be tied directly to the knowledge
engine. This latter feature is being used in this current project. The C interface consists of function calls
that pass data to CLIPS and return results from the rules. Callbacks through the C interface allow CLIPS to
pass control commands to other components in the system.

3.2.3 Schooner interconnection system
An interconnection system provides a model of computing that connects applications and implements a
configuration management system, thus creating a meta-computation [Khokhar93]. Each application con-
tains one or several computations that accomplish a specific set of tasks, for example, the TESS or moni-
toring tool applications in Figure 6. An application can be developed using the combination of
programming language, model, or architecture that is most suitable. Thus, the meta-computation is a heter-
ogeneous, distributed program. At runtime, each application exports operations that can be invoked from
other applications. For example, the monitoring tool exports operations that can be invoked by instances of
ADPAC to report their progress. The interconnection system transparently handles the transfer of data and
control among the applications making up the meta-computation.

A meta-computation requires configuration tools to assist the user in starting and controlling the com-
ponent applications. The configuration management features of the system give the user both static and
dynamic configuration control. Static control allows the user to select the applications that will be needed,
such as the expert system and monitoring tools, and to begin execution. Dynamic control then allows
applications to be added or removed as needed by the user or through commands issued by the applications
themselves. Dynamic control is used by the monitoring tool to establish and break connections with
instances of ADPAC.

The Schooner interconnection system realizes this model of scientific computing by supplying a soft-
ware configuration and control mechanism for executing heterogeneous distributed computations. There
are four, mostly orthogonal, parts to Schooner: a specification language, and intermediate data representa-
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more complex rules and the corresponding controls to allow the expert system to actively steer the simula-
tion. To realize the immediate goal, the monitoring tool displays information about the progress of each of
the ADPAC simulations. The expert system receives data from the monitoring tool and passes back appro-
priate warnings to be displayed for the user. The interconnection system provides a transparent means of
connecting the different parts into a single application. Figure 6 illustrates this system. For clarity, only one
ADPAC instance is shown in the figure. As experience with the system is gained, the expert system will be
extended to provide active control, through the interconnection system, of ADPAC and TESS.

3.2 Control System Components
This section presents an overview of the TAE+, CLIPS, and Schooner systems that are used in the monitor-
ing tool and expert system.

3.2.1 TAE+
TAE+ is a package that supports the rapid prototyping and construction of X-windows graphical user inter-
faces. It provides a workbench that facilitates the design and layout of the application’s windows, allowing
easy placement of the various objects within each window. A programming tools package allows the user
to add code to the interface to provide program control over the various objects that make up the interface.
Finally, a code generator automatically generates code in a number of languages for creating the interface
and building the main event loop for the application.

There are three basic building blocks available for use in designing windows for a TAE+ application.
The first is a set of user-entry objects that allow the user to interact with the application through buttons,

Monitoring Tool

Expert
System

TESS & AVS

ADPAC
Fan Simulation

Interconnection

System

PVM

Figure 6: Monitoring and control system
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• Monitoring tool constructed using the TAE+ (Transportable Application Environment) package
[TAE]

• Expert system constructed using CLIPS (C-Language Integrated Production System) package
[CLIPS], and

• The Schooner interconnection system [Homer94a, Homer94b]
This section first describes the overall approach to the problem, then gives a description of each system
used, and finally presents some details of the implementation.

3.1 Control Strategy
Intelligent monitoring and control is necessary due to the complexity of engine simulations. A large num-
ber of variables can affect the outcome of a simulation and monitoring them can place a severe burden on
the user. Two types of problems that arise are physically unrealistic boundary conditions imposed on a
component and numerical instabilities that arise within a component. One simple example is the addition
of fuel to a combustor component. This should result in a rise in temperature through the combustor. As
another example, the fan component should produce a rise in air pressure at the outlet. Both of these cases
are relatively easy for an expert system to check. A more complicated example arises from numerical
instabilities in the fan component. These can produce artificial, numerically-induced vortices in the air
flow which reduce the effective area for flow through the fan and cause pre-mature choked flow. An expert
system would need more complicated rules to detect such a problem and implement the series of corrective
steps needed.

The immediate goal of this research is to build a monitoring and control system that can detect some of
these types of problems and warn the user when they arise. The longer-range goal is the development of

Figure 5: ADPAC code suite flow chart
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The source code for ADPAC is maintained by a separate group at NASA Lewis Research Center, and
has been unavailable for this project. As a result, the operation of each remote instance of ADPAC requires
several codes, illustrated in the flow chart in Figure 5. The first program, makeinput, creates the
ADPAC input data file from the boundary parameters. Then, ADPAC executes, reading its grid file and the
input data file. The output file produced by ADPAC is then read by the third program, mbave. This is a
multi-block averaging program and integrates the three-dimensional flow solution to give the single
(space-averaged) flow values which are needed by TESS. The adpacslave program coordinates the
execution of the other three programs, and handles the PVM communications with fan Multi-ADPAC
receiving the input data for makeinput and returning the results from mbave.

A new performance curve is created by fan Multi-ADPAC each time fan performance data is needed by
TESS. To reduce the overall simulation time, the space-averaged values are retained and used to create an
overall fan performance map. Before running flow solutions, this data is checked to see if the current oper-
ating conditions are within the data range. If so, the data is interpolated and used in the system simulation.
In this manner, the simulation time may be significantly reduced. This also has the added benefit of creat-
ing an overall fan performance map which can be used in subsequent, non-zooming TESS simulations.

3. Intelligent Monitoring and Control
A monitoring tool and expert system have been designed for use with the TESS/ADPAC simulation. It will
provide the user with information about the progress of the simulation and allow the inclusion of rules to
steer ADPAC runs and determine when new performance curves are needed. The design of the system is
complete and implementation is underway. The following systems are being used:

Figure 4: fan Multi-ADPAC module control panels
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2.2.2 Advanced Ducted Propfan Analysis Code (ADPAC)
The high-fidelity flow solver program used to model the operation of the fan component is the Advanced
Ducted Propfan Analysis Code (ADPAC) [Hall93]. ADPAC is a three-dimensional Euler/Navier-Stokes
numerical analysis tool developed to study high-speed ducted propfan aircraft propulsion systems. The
program utilizes a three-dimensional, time-marching numerical procedure along with a flexible, coupled 2-
D/3-D multiple block geometric grid representation to predict the flow field in and around the fan. Multiple
runs of ADPAC are needed to create the single-curve performance map used in the zooming strategy.

2.2.3 Parallel Virtual Machine (PVM)
PVM is a message-passing system that permits a network of heterogeneous Unix computers to be used as a
single large parallel computer. Using PVM, a user-defined collection of different computers, known as the
virtual machine, is used to provide aggregate power for solving large computational problems

The PVM system is composed of a daemon which resides on all of the computers making up the vir-
tual machine, and a library of PVM interface routines which supply user-callable routines. These func-
tions, along with the PVM daemon, allow a PVM application on one computer to automatically start up
tasks (computational processes) on other computers in the virtual machine and communicate data among
the tasks by sending and receiving messages.

2.3 Prototype Zooming System
The prototype zooming system is defined by two suites of codes: The first suite, residing on the user’s
workstation, runs AVS and TESS. The second suite consists of ADPAC and associated codes [Reed94].
One instance of this second suite exists for each of the multiple fan simulations used in the zooming strat-
egy.

A new TESS engine component module, fan Multi-ADPAC, was created to provide the user interface
and functionality for the zooming system. The module

• Handles the basic AVS data transfer for the fan component within TESS,
• Establishes the PVM virtual machine,
• Spawns the remote ADPAC tasks, and
• Controls the data transfer between TESS and the ADPAC simulations.
To utilize the fan Multi-ADPAC module in a TESS engine simulation, the user defines the ADPAC

control parameters and the remote machines on which to spawn the ADPAC simulations. Figure 4 shows
the AVS pop-up windows used to accept this input from the user. PVM daemons are started on each remote
machine specified by the user to create the virtual parallel machine.

Each time TESS needs fan performance data during a simulation, fan Multi-ADPAC creates the needed
remote instances of ADPAC on the virtual machine and sends each its boundary condition parameters. fan
Multi-ADPAC then waits for the simulation results. Each result is matched with its boundary conditions,
then used to create data points on the performance curve (see Figure 2). Once all the values have been
received, the performance curve is interpolated to match the stagnation pressure ratio across the fan,
impressed by the TESS simulation, to determine the stagnation temperature ratio and mass flow rate. These
values are then used by TESS to continue the complete propulsion system simulation.
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bine, duct, etc.) are represented graphically as AVS module icons, or simply modules. Each module has a
control panel where the operational characteristics of the engine component are defined by the user (e.g.,
the mass flow rate, design point performance data). An engine is created by selecting the modules needed
and placing them in the work space of the Network Editor. The dataflow network is then created by con-
necting the modules to establish the physical connections of the engine. Figure 3 shows a typical TESS
engine network that models a two spool, two stream turbofan engine.

Once all of the components have been connected and their operational parameters have been entered,
the user selects the length of time for the transient, and defines how the governing equations are to be
solved numerically for both the steady-state and transient portions of the simulation. Currently, for steady-
state solutions, the user may choose either Newton-Raphson or Fourth-order Runge-Kutta methods. For
transient solutions, the user may choose either Modified Euler, Fourth-order Runge-Kutta, Adams, or Gear
methods. When simulation execution is begun, TESS first attempts to balance the engine at the initial oper-
ating point using the steady-state balancing method. Once the engine is balanced, the transient is begun
and proceeds up to the number of simulation seconds defined by the user.

Figure 3: TESS engine model dataflow network
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the stagnation pressure ratio computed across the engine model. If the values are identical, then the extrap-
olated field distributions are proved to be suitable representations and the averaged values of mass-flow
rate and stagnation temperature ratio may be used in the one-dimensional simulation.

Typically, however, the averaged stagnation pressure ratio will not initially match the low-fidelity sim-
ulator value, and the three-dimensional boundary condition representations must be redefined and the
above process repeated until the necessary match is found. An iterative approach to boundary value match-
ing was found to be computationally unstable, requiring many iterations to achieve a balance. Worse, in
many instances, the iterative approach led to an oscillatory mode where convergence could not be
achieved.

A solution is the construction of a performance map from multiple runs of the three-dimensional com-
ponent. A single-curve performance map, such as that shown in Figure 2, is constructed and the appropri-
ate value can then be chosen from the map, interpolating as needed. To shorten the overall time for the
simulation, the multiple runs can be performed in parallel when the necessary computational resources are
available.

2.2 Simulation Tools
This section presents an overview of TESS and ADPAC. Also presented is PVM [Sunderam90], a mes-
sage-passing package, that transfers data and control between TESS and the multiple 3-D fan simulations
needed to implement the zooming strategy.

2.2.1 Turbofan Engine System Simulator (TESS)
The low-fidelity system simulator used in the current research is the Turbofan Engine System Simulator
(TESS). TESS is an object-based, one-dimensional, transient, thermodynamic aircraft engine simulator
which runs under AVS. This integrated system provides the graphical user interface and operating environ-
ment for construction of arbitrary engine configurations, selecting and controlling steady-state and tran-
sient engine operation, and graphical display of simulation results.

The Network Editor of AVS provides a visual interface for creating dataflow programs. For TESS, the
dataflow is used to model the flow of air through the engine. Engine components (e.g., compressor, tur-

Figure 2: Single curve fan map created by zooming
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interconnection system that provides the software framework to connect the various tasks.

Section two describes an engine model that demonstrates zooming on the fan component of NASA’s
Energy Efficient Engine [Davis85]. Section three describes the design of a monitoring tool and expert sys-
tem that assists the user in executing the simulation and will be used to explore techniques for intelligent
control. The last section gives the current status of the project and outlines some of its future directions.

2. Simulation Strategy
The simulation strategy utilizes a high-fidelity flow solver in a low-fidelity simulation, and has been imple-
mented in a prototype zooming framework consisting of the following systems:

• TESS - A propulsion system simulator [Reed93] running with the Application Visualization System
(AVS) [AVS92].

• ADPAC - a fully three-dimensional Navier-Stokes/Euler flow analysis package capable of providing
detailed flow analysis of the fan component in a turbofan engine [Hall93].

This system is depicted in Figure 1. Here the fan component of the one-dimensional “baseline” engine
model has been “zoomed” to a three-dimensional analysis.

2.1 Zooming
Implementation of the zooming concept is difficult, due mainly to the inability to accurately resolve high-
fidelity data fields from a single value as supplied from the low-fidelity system simulator. In order for the
zooming to be accurate, the upstream and downstream boundary values (which are single valued), must be
extrapolated to define a suitable three-dimensional distribution of field variables such that when integrated
over, the original single-valued boundary conditions are recovered.

This process begins with the single inlet boundary values for stagnation pressure, stagnation tempera-
ture, and Mach number, and the exit boundary value of static pressure from the fan component of the one-
dimensional engine model. These are then extrapolated to appropriate three-dimensional field distributions
and applied as boundary conditions to the fan simulation. The results of the fan 3-D simulation are then
integrated to determine the mass-flow rate, and the mass-averaged values of outlet/inlet ratios for the stag-
nation pressure and stagnation temperature. The averaged stagnation pressure ratio is then compared with

Fan
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Figure 1: System schematic representing zooming on the fan component
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Development of an Intelligent Monitoring and Control System
for a Heterogeneous Numerical Propulsion System Simulation

1. Introduction
Designing and implementing new propulsion technologies can be an expensive and time-consuming pro-
cess. The Numerical Propulsion System Simulation project, sponsored by NASA Lewis Research Center,
is bringing new computer simulation techniques and parallel hardware to bear on this problem [Claus92,
Claus91]. Specifically, it is fostering the development of parallel simulations to improve both the execution
time and accuracy of the simulations. A simulation executive will be developed that will support complete
engine simulations made up from improved component simulations. Research on the simulation executive
includes developing the monitoring and control techniques needed to manage the simulation, and explor-
ing the use of expert systems techniques to assist the user in controlling the simulation.

Several key issues must be addressed in the design of the propulsion system simulation. One is the
integration of simulation codes at different levels of fidelity. Low fidelity modelling requires empirical data
that are not available at the preliminary design stage. On the other hand, high fidelity modelling overcomes
this limitation, but at a substantial computational cost. Zooming allows selected components to be mod-
elled in detail and integrated into a low-level engine simulation. Additionally, during a low fidelity simula-
tion, zooming provides a means of selectively examining in detail the physical processes within
components of the engine.

A second issue is the use of a monitoring and control system. A monitoring tool will allow the user to
observe the progress of the simulation through displays of its key parameters. An expert system can further
improve the simulation by continuously monitoring and actively steering the simulation. This requires sup-
port in two areas: The first area is the collection of knowledge and the formulation of rules that govern the
design and operation of jet engines. The second area is the integration of expert system software into the
simulation executive to assist the user in executing the simulation.

A third issue is heterogeneity. The engine component codes and the expert system take advantage of a
variety of vector and parallel platforms, and employ a variety of programming models and languages. An
interconnection system allows components to execute on the most appropriate platform with minimum
effort on the part of the user and the scientific programmer. The user should not see individual simulations
that execute in isolation, but rather a single integrated simulation.

This paper describes a prototype simulation executive designed to address all three issues: zooming, a
monitoring and control system, and heterogeneity support. The prototype employs a one-dimensional
model of a complete engine. In this model, the operational characteristics of the individual system compo-
nents are supplied in the form of performance maps that are constructed from experimental data. To pro-
vide descriptions of the physical processes occurring in an engine component beyond that supplied by a
performance map, a higher fidelity component simulation is used. The simulation executive uses a moni-
toring tool that provides information about the engine simulation to the user and the expert system. Based
on this information, the expert system can provide warnings and errors to the user and will be able to
actively steer the engine simulation. Heterogeneity is addressed in the simulation executive through an
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