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Abstract

A membership service is used to maintain information about which sites are functioning in a dis-
tributed system at any given time. Many such services have been defined, with each implementing
a unique combination of properties that simplify the construction of higher levels of the system.
Despite this wealth of possibilities, however, any given service only realizes one set of properties,
which makes it difficult to tailor the service provided to the specific needs of the application. Here,
a configurable membership service that addresses this problem is described. This service is based
on decomposing membership into its constituent abstract properties, and then implementing these
properties as separate software modules called micro-protocols that can be configured together to
produce a customized membership service. A prototype C++ implementation of the membership
service for a simulated distributed environment is also described.
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1 Introduction

Many types of highly dependable applications—that is, applications that are relied on to provide service
despite failures [Lap92]—are implemented using distributed systems in which multiple machines are
connected by a communication network. For such applications, the problem of keeping track of which
machines are functioning and which have failed at any given time is vital. This problem is often called
the membership problem. A distributed service that maintains consistent information at all sites about
the membership of a group of machines or, equivalently, processes is called amembership service, while
the algorithm or implementation that realizes the service in a distributed system is called a membership
protocol. Both membership services and protocols have been the subject of a large number of papers in
recent years [ADKM92a, AMMS 95, Cri91, DMS94, EL95, EL90, GT92, KGR91, LE90, MSMA94,
MPS92, MAMSA94, RFJ93, RB91, Rei94, SM94, SR93, SCA94].

While this variety of membership services and protocols gives the user many options, in most cases
each service provides only a single combination of properties optimized for a given situation. As a
result, the system designer often has little choice and may end up having to use a protocol that is
either too strong or too weak. For example, the membership service in the ISIS system implements
virtual synchrony [BSS91], which is a relatively strong property that guarantees that messages reflecting
membership change events are delivered to the application at every site at precisely the identical point
in the message stream. While appropriate and useful for many applications, it can unnecessarily restrict
concurrency between processes if used when a weaker guarantee would suffice. This type of mismatch
has led to many different membership properties being defined, but in the context of separate services
rather than as part of a single service presenting multiple options to the user.

In this paper, we describe a single highly configurable membership service in which properties
and their corresponding execution guarantees can be tailored to the specific needs of the application.
With this service, for example, the user can decide at configuration time whether to include a message-
ordering guarantee such as virtual synchrony, and if so, what variant. Our approach is based on
decomposing membership into its constituent abstract properties, and then implementing these proper-
ties as a collection of software modules called micro-protocols. A custom service is then constructed
by selecting micro-protocols corresponding to the desired properties, and linking them together with a
runtime system implementing an event-driven execution model. The result is a software subsystem that
can be used in conjunction with other message-passing protocols to form a network layer for machines
involved in the application. In a larger context, this work can be viewed as extending the hierarchical
approach to constructing modular networking software represented by such systems as the x-kernel
[HP91] and Horus [RBG 95, RB95] to support finer grain modules and more flexible inter-module
communication capabilities.

The goal of this paper is to describe the design of this configurable membership service and to relate
some initial experience with a prototype implementation written in C++. In relation to other papers
on membership, our primary focus is on a new approach to designing and implementing such services,
with the specific algorithms being a secondary contribution. Our design allows the choice of properties
in a variety of areas. These areas include whether the service is accurate or live, what kind of agreement
is performed for suspected failures and recoveries, how messages are ordered, and how partitions are
handled. This work builds on earlier papers that describe the abstract properties of membership services
[HS95b, HS95c], as well as related work in which this approach has been used for other services such
as atomic multicast and group RPC [GBB 95, HS93, HS95a]. The membership service will eventually
be ported to an x-kernel based system that is currently under development [BS95].
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2 Preliminaries

2.1 System structure

A membership service can be viewed as an underlying software layer that generates messages indicating
changes in membership and forwards them to higher levels. These membership change messages
can report, for example, failures, recoveries, or the joining of two partitions. Membership can be
characterized in terms of any entity in a distributed system for which current status information is
required, such as processes in a process group, processors, or larger entities such as entire computing
systems. Here, sites are assumed to be the entity of interest, so that membership change messages
refer to such events as site failures and recoveries within a specified group of interest. We use the
term group member to refer to an unspecified site within this group. The network is assumed to be
asynchronouswith no a priori time bounds on message delivery. The failures considered are site crash
and performance failures, as well as typical network failures such as lost messages.

Given such a system, the properties of a membership service can be defined in terms of what
membership change messages it generates and when they are delivered to the application [HS95b].
The key abstraction for defining and implementing such a service is an ordering graph, i.e., a graph
in which the nodes are application and membership change messages, and the edges are ordering
constraints between the messages. Specifically, the edges define the predecessors of a message, where
the predecessors of a message M are those messages that must be delivered to the application before
M can be delivered. Several collections of protocols for building fault-tolerant systems are based on
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Ordering
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Figure 1: System structure

abstractions resembling ordering graphs, including Consul [MPS93a] and Transis [ADKM92b].
Figure 1 illustrates the logical system structure. The application, which is realized as a process group

executing on multiple sites, is the top layer. The reliable communication and membership services add
application and membership change messages, respectively, to the ordering graph. The reliable com-
munication component is responsible for realizing reliable ordered multicast communication between
group members; it guarantees that every message multicast by a group member will be received at all
sites that remain functioning for the duration of the multicast. Since ordering properties like FIFO or
causal ordering are defined relative to the sending site, these application messages typically encode in
some way the information needed to realize these constraints. The responsibility of the membership
service is to guarantee that membership change messages appear in the ordering graph when and where
they are supposed to according to the properties specified.
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2.2 Properties of membership

As noted in section 1, any given membership service implements some specified collection of properties.
A number of these properties are defined formally in [HS95b, HS95c] and summarized below.

Accuracy and Liveness. Accuracy and liveness deal with detecting a change in status of a group
member, either from functioning to non-functioning (failure), or from non-functioning to functioning
(recovery). An accuratemembership service is one that detects a change only if the change has indeed
occurred (i.e., no false detections), while a live membership service is one that is guaranteed to detect
all changes eventually [BG93]. In an asynchronous system, it is impossible to have a membership
service that is both live and accurate [CT91, FLP85]. We can further distinguish between properties
related to detecting failures and those related to detecting recoveries. For example, in most systems,
failure detection is live, while recovery detection is accurate.

Confidence. The confidence property is the degree of certainty in a suspected membership change.
The typical way to increase certainty is to collect information from multiple sites before making the
final decision on whether to forward a membership change message to the application. Different
variants of the confidence property can be realized by specifying different rules for this decision.
Possibilities range from allowing the decision to be made by only a single site (single site suspicion)
[RB91, RFJ93, SM94] to requiring that all functioning sites agree (consensus) [MPS92, AMMS 95].
The possibilities between these two extremes, called voted decision in this paper, are not commonly
explored in existing systems, a notable exception being [Rei94].

Agreement. The agreement property states that if one site delivers a membership change message
to the application, all other functioning sites will eventually deliver the same message. When a partition
occurs, this property applies only to those sites within the same partition. Weaker forms of agreement
can also be identified. For example, eventual agreement guarantees that the membership views on
different sites will eventually converge but the set of membership change messages received may be
different [RFJ93].

Ordering. Ordering properties specify whether membership change messages are ordered consis-
tently at all sites with respect to each other and/or application messages, and if so, what ordering is
enforced. Examples of orderings involving only membership change messages include FIFO order,
which implies that sites deliver membership change messages reporting the failure or recovery of a
given site in the same order, and total order, which implies that sites deliver membership change
messages involving all sites in the same order. Examples of orderings involving application messages
include:

Agreement on last message. A final message from the failed site is agreed upon and delivered
at all sites before the change message for the failed site is delivered. An analogous property,
agreement on first message, can be defined for recovery.

Agreement on predecessors. A set of messages is agreed upon and delivered at all sites before
delivering the change message. An analogous property, agreement on successors, defines an
agreed set of messages to be delivered after the change message.

Virtual synchrony. Membership change messages are delivered to the application at the same
point in the application message stream at all sites.

Sites in other partitions or that were failed during the agreement process will typically obtain updated
membership information during the partition merge or recovery process, respectively.
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Extended virtual synchrony. An extension to virtual synchrony where all messages sent by the
application prior to receipt of the change message are guaranteed to be delivered before the
change message itself.

External synchrony. When a site updates its membership, all other sites are guaranteed either to
have the same new membership or to be in a transition state to the new membership [RFJ93].

PartitionHandling. Partition handling properties specify how the system behaves when a network
partition occurs and when it is subsequentlycorrected. Policies for dealing with partitionscan be divided
into three phases: the policy used at the time the partition occurs (partition time), how operation proceeds
while the sites are partitioned (partitioned operation), and how sites in separate partitions are merged
when communication is reestablished (partition join). There are numerous options for each phase, with
the following being common choices:

Individual notification. A partition is treated as a sequence of individual site failures, with
separate change messages delivered to the application for each site in other partitions (partition
time).

Collective notification. A single change message reporting all site failures is delivered to the
application (partition time).

Majority operation. Normal operation continues only in the partition with the majority of sites,
if one exists (partitioned operation).

Continued operation. Normal operation continues at all sites, with inconsistencies resolved at
partition join time (partitioned operation).

Asymmetric join. Partition join is reduced to sites in the minority partition simulating failure and
joining the majority partition as recovering sites (partition join).

Collective join. Partitions merge their memberships as one atomic membership change. For the
memberships on all sites to be consistent after the merge, other membership change messages
must be consistently ordered with respect to the merge message (partition join).

Note that, although collective join ensures that membership information is consistent at all sites fol-
lowing the merge, the problem of reconciling application states is the responsibility of the application
level. This issue is eliminated in the asymmetric join policy, since members in the minority partition
typically adopt the application state of the majority partition during recovery.

2.3 Composite protocols

Our configurable membership service is based on a model for constructing distributed services in
which software modules referred to as micro-protocols are composed together to form a composite
protocol. Composite protocols can then be combined with traditional network protocols using standard
hierarchical techniques such as those supported by the x-kernel. The result is a two-level model that
supports flexible interaction and data sharing between modules when necessary, but also allows the

This property is similar to the property of the same name defined in [MAMSA94], but does not include all
aspects of the functionality defined in that paper.
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Figure 2: A composite protocol

strict hierarchical separation and proscribed interaction through a uniform protocol interface found in
current hierarchical systems.

A micro-protocol is structured as a collection of event handlers. Each such handler is a procedure
that is invoked when any of the events for which it is registered occurs. An event is the occurrence of
a change in the system, such as the arrival of a message. An event may be triggered by the runtime
system or by another micro-protocol depending on the situation. The invocation of the event handlers
associated with an event can either be sequential, where all handlers are executed by a single thread in
a specified order, or concurrent, where each handler is executed by its own thread. An event raised by a
micro-protocol can either be blocking, where the invoker waits until all the handlers registered for the
event have completed, or non-blocking, where the invoker continues execution without waiting.

Composite protocols are formed from a collection of micro-protocols configured together with
a standard runtime system. This runtime system implements the event registration and triggering
mechanism, and contains shared data (e.g., messages) that can be accessed by micro-protocols. A
composite protocol presents the external interface of a simple protocol, which allows it to be combined
with other simple or composite protocols. In our x-kernel prototype, for example, composite protocols
are externally indistinguishable from standard x-kernel protocols.

This approach is depicted in Figure 2. In the middle is a composite protocol, which contains
a shared data structure—in this case, an ordering graph containing the application and membership
change messages—and some event definitions. The boxes to the left represent micro-protocols, while
to the right are some common events with the list of micro-protocols that are to be invoked when the
event occurs. Other protocols would typically be found both above and below this composite protocol,
with messages being passed up or down through the protocol stack on their way between the application
and the network.

The operations defined by the model for dealing with events are as follows.

register(event name,handler name, priority). Notifies the runtime system that handler name is
to be executed when event name is triggered. If the event is sequential, the handlers are executed
in order according to priority.

trigger(event name,arguments). Notifies the runtime system that event name has occurred.
The runtime system will execute the appropriate handlers, passing arguments as invocation
parameters.

deregister(event name,handler name). Notifies the runtime system to remove the association
between event name and handler name.
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cancel event(). Instructs the runtime system to cancel further event handler invocations associ-
ated with the same event occurrence that caused the operation to be invoked. This operation is
useful mostly for sequential events.

The model also supports a TIMEOUT event that is triggered by the passage of time. In this case, the
priority parameter in the register operation is used to denote the time interval after which the specified
handler is to be executed. Event handlers are usually persistent in the sense that they are invoked every
time the specified event occurs until they are explicitly deregistered. The one exception is that event
handlers registered for TIMEOUT are executed only once and then implicitly deregistered.

3 Design Overview

The basic components of a membership service built according to the model supported by composite
protocols are events, messages, shared data structures, and micro-protocols. This section gives an
overview of the first three; micro-protocols are described in the following section. First, however,
we overview the general algorithmic strategy, which is based on token passing. Having a common
algorithmic frame of reference is, of course, necessary to implement the properties described in section
2.2 as separate software modules that can be used together in various combinations.

3.1 Algorithmic strategy

Perhaps the key requirement for implementing many of the properties of membership is some means
of information collection and dissemination. The various approaches for accomplishing this can be
classified into three major categories: (1) broadcast based (e.g., [MPS93a, ADKM92b]), (2) coordinator
based (e.g., [RB91, RFJ93]), and (3) token based (e.g., [RM89]). In examining each approach in light
of our requirements, we selected the third based on the resulting simplicity of the micro-protocols.

The basic idea behind this approach is to organize the group members into a (logical) ring and then
have a token that circulates around the ring. In contrast with other multicast and membership protocols
that use token passing, the token in our scheme is used only for membership; regular communication
need not be restricted to the ring or based on token passing. The role of the token is to collect and
distribute the information required to realize the various properties. Specifically, the token has one
record with multiple fields for each membership change underway at any given time. We call such a
record a membership entry. Various micro-protocols exploit the information in the token in various
ways.

Different properties of membership impose different requirements on how the token is used. For
example, properties that involve primarily information dissemination, such as agreement, require that
the token be rotated only once around the ring, while properties that also involve information collection,
such as virtual synchrony, require that the token be rotated twice. The number of rotations actually
used in a given configuration is the maximum of the number required across all micro-protocols that
are included. The reliability of token passing is increased by requiring that the receiver acknowledge
receipt of the token. Among other things, this strategy enables some aspects of failure detection to be
integrated into the token passing mechanism.

To realize ordering-related properties, we use an ordering graph as described above, i.e., member-
ship change messages are inserted into a graph of messages that constrains the delivery order to the
application. We assume that actual delivery of messages from the graph to the application is handled
independently from the membership service by the reliable communication component of the system,
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which is configured within the same composite protocol. As already noted, we also assume that the
underlying network provides asynchronous unreliable point-to-point message delivery, and that sites
may suffer from crash or performance failures.

3.2 Events

As described in section 2.3, execution of code within micro-protocols is initiated when events occur. In
general, events are used in this model for a variety of purposes, including to indicate a change of state
in the composite protocol such as message arrival, to signal the opportunity to update shared variables
or message fields, or as a procedure call to transfer control and data between two micro-protocols. Like
signal variables in the monitor construct found in some concurrent programming languages, an event
is a no-op if no handler is bound to that event. This feature de-couples micro-protocols to a certain
degree and helps increase the configurability of the resulting system by removing the need to explicitly
reference other micro-protocols.

In the membership service design, events can be classified into four categories:

Membership entry events. For managing membership entries that circulate in the token.

Failure and recovery events. For dealing with site failures, recoveries, and partitions.

Token handling events. For dealing with token passing, regeneration, and merging after a partition.

Message handling events. For managing application and membership change messages within
the composite protocol.

Startup and restart events. Two events, STARTUP EV and RECOVERY EV, that are generated at
a site upon initial startup and recovery, respectively.

The first four are now described in more detail. For simplicity, all events are sequential and blocking.

Membership Entry Events. The most significant events in this category are FIRST ROUND and
SECOND ROUND, which signal that a membership entry has been seen at the site for the first or second
time, respectively. ADD ENTRY is generated once current entries have been processed to signal the
opportunity to add another entry to the token prior to it being passed to the next site. Similarly,
NEW ENTRY is generated when a new entry is added to allow various micro-protocols the opportunity
to initialize fields of interest.

Failure and Recovery Events. Event SUSPECT NEXT DOWN is generated when the conditions for
failure suspicion are met for the next site in the ring. In the case of a live membership service, this
occurs when a certain number of token retransmissions are attempted without success; with an accurate
service, this occurs when a message with a new incarnation number is received from a recovering
site, indicating the earlier failure of the old incarnation. SUSPECT CHANGE is a more general event
indicating the suspected failure or recovery of any site in the system. POTENTIAL ENTRY is generated
to allow an opportunity to increase confidence in a suspected change or deny it prior to reporting it to
the application. Finally, PARTITION is generated when a partition has been confirmed; note that since
a partition cannot be distinguished from individual site failures at partition time, this event occurs after
communication has been reestablished.
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Token Handling Events. Event TOKEN RECEIVED is generated when the token arrives at the site.
FORWARDING FAILED indicates that a particular attempt to pass the token to the next site in the ring
has failed; this is also sometimes used as part of the failure detection process, as mentioned above.
MERGE TOKENS is generated when two tokens are merged into a single token, such as when partitions
are merged.

Message Handing Events. Events are also used to manage application and membership messages.
MSG FROM NET is generated when a message arrives at the composite protocol from lower-level
protocols, while MSG FROM USER is generated when upper-level protocols pass along a message to
be delivered to application processes on other sites. Both are triggered automatically by the runtime
system. The event MSG RECEIVED is generated within the membership service after some initial
processing has been performed on every application message that arrives from lower-level protocols.

Events are also used to implement interactions between the membership and communication com-
ponents of the composite protocol, as illustrated in Figure 3. Membership signals that a membership

MembershipReliable
Communication

User

Network

APPLICATION_SEND

MSG_FROM_USER

DELIVERED_TO_APPLICATION

APPLICATION_MSG

MSG_FROM_NET

Figure 3: Interaction between components

change message is ready to be added to the ordering graph by triggering APPLICATION MSG. The com-
munication service indicates that an application message is ready to be sent to lower-level protocols
with event APPLICATION SEND, while DELIVERED TO APPLICATION is generated when a message
has been delivered upwards towards the application. These latter two are often used by membership
micro-protocols involved with ordering messages.

Note that the semantics of events make their use for component interaction qualitatively different
than function calls. In this case, for example, some reasonable system configurations include no micro-
protocols that field the event APPLICATION SEND. If function calls were used, the communication code
would have to be changed to avoid making this call, while with events, no change is needed since it can
safely be generated with no effect. More importantly, since more than one handler can be bound to a
single event, using this mechanism also makes it simple for multiple independent micro-protocols to be
notified when an event occurs. In this case, for example, it is quite likely that multiple micro-protocols
will field the APPLICATION MSG event.

Finally, the event MEMBER MSG is generated when a membership change message has been
created, thereby allowing micro-protocols an opportunity to set fields in the message.
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3.3 Membership change messages

Messages transmitted from the composite protocol up to the application process on a given site are
either application data messages from other sites or membership change messages. As noted in section
2.1, membership change messages are the mechanism by which the membership service informs the
application of site failures and recoveries so that it can, for example, update a local membership list. In
certain cases, these messages are also used as control messages.

The membership change messages used in this design are the following:

STARTUP indicates that the application can begin normal processing; includes a list of initial
group members.

SHUTDOWN indicates that the application should stop.

FAILURE reports the failure of one site; if the site is this site, the application should stop.

RECOVERY reports the recovery of one site; if the site is this site, the application can resume
normal operation using the current membership information in the message.

MERGE reports the merging of two partitions; the message contains the identities of the new
group members.

C FAILURE reports the collective failure of more than one site, possibly due to a partition.

PRE MERGE indicates that the merging of two partitions is in progress; used to implement
certain message ordering guarantees that require a site to stop sending messages until the merge
is complete.

PRE CHANGE indicates that a change in membership is about to occur so that the application can
alter behavior if necessary; for example, with some message ordering guarantees, the application
must stop sending messages or change its membership into a transition state.

Note that the specific messages that an application may receive depends on the particular micro-
protocols configured into the composite protocol. For example, a MERGE message will only be
received if the micro-protocol that implements partition merging is included. Also, note that these are
just the membership messages that are delivered to the application; other messages, such as those that
implement token passing, are used by the membership service itself to communicate with peers on other
sites.

3.4 Shared data structures

One of the most important benefits of using composite protocols is that it allows micro-protocols to
share data. Our experience using the x-kernel to construct Consul [MPS93b] suggests that shared
data facilitates implementation of modular fault-tolerant services, as does the experience reported
independently by the developers of the xAMP atomic multicast suite [Fon94]. In the configurable
membership service, the most important shared data structures are the following:

MsgGraph. The ordering graph of messages.

Token. The contents of the most recent token received at this site.
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Membership. An image of the application’s view of the current membership.

ParList. The membership service’s current view of the group membership, i.e., the list of
participants in the membership protocol; membership changes take effect earlier in ParList than
Membership.

Delivered. A vector with the identifier of the most recent message delivered from each site,
which is used to determine when a message is eligible for delivery because all of its predecessors
have been delivered; shared since other micro-protocols such as those concerned with recovery
must be able to update it.

SuspectList. All suspected membership changes that have not yet been reflected in ParList.

4 Micro-Protocols

This section describes the various micro-protocols that comprise the membership service, presenting
the code for several. The goal is not to be exhaustive, but rather to give an overall view of how the
service operates and some examples of the algorithmic and programming style used to write composite
protocols. For expository purposes, we divide the micro-protocols into five categories:

Base micro-protocols. Provide the base functionality needed by other micro-protocols, including
message and token handling, and recovery.

Accuracy, liveness, and confidence micro-protocols. Deal with detecting site failures and recov-
eries.

Agreement micro-protocols. Implement the agreement process required for most variants of
membership.

Ordering and synchrony micro-protocols. Implement different varieties of message ordering
guarantees.

Partition handling micro-protocols. Implement different partition handling policies.

4.1 Base micro-protocols

The base micro-protocols areMessageDriver,TokenDriver, Recovery, and StartUp. The subsequent
paragraphs summarize their functionality.

MessageDriver. This micro-protocol coordinates the traversal of application messages from the
network to the application. It triggers MSG RECEIVED when an application message arrives from the
network and APPLICATION MSG when the message is ready to be forwarded. Application messages
sometimes have to be temporarily retained in the membership layer, for example, to implement virtual
synchrony. To do this, MessageDriver provides a mechanism for releasing a message when all
micro-protocols have finished operating on it. Specifically, two arrays are used: a global Hold array,
which specifies which micro-protocols must execute for each message, and a corresponding hold array
associated with each message, which specifies which micro-protocols have already executed. Thus,
when hold is equivalent to Hold, the message can be forwarded.

The pseudo-code forMessageDriver is shown in Figure 4. Its general form is similar to most micro-
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micro-protocolMessageDriver()
export procedure forward up( var msg: ApplMessage, hold index: int)

msg.hold[hold index] = true;
if for each i: Hold[i] = msg.hold[i] then trigger(APPLICATION MSG,msg);

event handler msg from net(var msg:NetMessage)
if msg.type = DATA then msg.amsg.hold[ ] = false;

trigger(MSG RECEIVED,msg.amsg); forward up(msg.amsg,DEFAULT);

event handler delivered msg(var msg: ApplMessage)
if msg.type = FAILURE then Membership –= msg.changed;
elseif msg.type = RECOVERY thenMembership += msg.changed;

similar for other message types

initial Hold[DEFAULT] = true; register(MSG FROM NET,msg from net);
register(DELIVERED TO APPLICATION,delivered msg);

Figure 4: MessageDrivermicro-protocol

protocols: a few event handlers, initialization code, and possibly some local variables and functions.
As can be seen from the pseudo-code, messages have a number of fields. These include its type (type),
a unique identifier (mid), the sender (sender), the hold array mentioned above (hold), the message to
be passed to the application (amsg), and, in the event of a membership change message, the identity
of the failed or recovered site (changed). Not shown here, but used below, is an array of message
identifiers (pred), which holds the predecessors of the message in the ordering graph.

TokenDriver. This micro-protocol’s task is to implement for each partition the abstraction of an
indestructible token that circulates among all functioning sites in the order dictated by the logical ring.
In addition to the actual message passing involved in sending the token to the next site, much of the
code in TokenDriver involves dealing with exceptional conditions such as lost token regeneration, site
failures during regeneration, and the possibility of multiple tokens during the merging of partitions.

TokenDriver at a given site suspects that the token has been lost when it fails to receive it again a
specified amount of time after passing it on. When this occurs, the micro-protocol first finds the most
recent copy of the token that has been seen by any site in the ring. To facilitate this, TokenDriver at
each site maintains a copy of the most recent token it has seen, together with its version number and
circulation count; the former is incremented every time the token is regenerated, while the latter is
incremented every time the site processes the token. The most recent copy of the token is discovered
by circulating a regeneration token, which at any time holds the most recent copy seen so far. Once
the regeneration token has circulated the entire ring once, it contains the most recent token, which is
then used to create a new token. Multiple sites can—and often will—issue a regeneration token, but
the algorithm ensures that only one site will have its regeneration token make the complete circuit.

Site failures may, of course, occur while the regeneration token is circulating. If this occurs, a
membership entry will be added to the regeneration token and merged with the entries from the most
recent copy of the lost token. New entries will not, however, be processed or any membership change
messages forwarded to the application during the regeneration process

The TokenDriver micro-protocol triggers the event TOKEN RECEIVED when a normal (i.e., not
regeneration) token is received, MERGE TOKENS when two tokens are merged as a part of token
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regeneration, and FORWARDING FAILED when the site to which a token is passed fails to acknowledge
the reception within a specified time bound.

Recovery. This micro-protocol handles recovery of a site after failure. Its execution is initiated when
the RECOVERY EV event is triggered automatically by the runtime system upon recovery. At this
point, Recovery begins sending JOIN messages to other sites, either using a previous membership list
saved on stable storage or exploiting broadcast-based network hardware, if available. When another
site receives this message, it triggers whichever recovery detection micro-protocol is configured into
the composite protocol (see section 4.2), which begins the process of reintegrating the site back into
the membership. The MembershipDriver micro-protocol (see section 4.3) manages the necessary
agreement protocol, which involves adding a recovery entry to the token. While the token circulates,
each site reads the recovery entry to obtain relevant information about the recovery, and updates it
as needed with information needed to reinitialize the membership state of the recovering site. Based
on what ordering properties are being enforced, the token will circulate either once or twice. Once
a site has received the token the required number of times, it inserts a membership change message
announcing the recovery into its ordering graph, with the specific location depending on the ordering
properties.

The site that originated the recovery entry is also responsible for updating the membership state of
the new member and inserting it into the logical ring. To do this, it sends a STATE message containing
the relevant state of the membership service (e.g., the current membership list) and the token to the
recovering site. Upon receiving this message, the Recovery micro-protocol updates its local data
structures. It also uses information in the recovery entry of the token to initialize the state of other
components of the composite protocol, such as the location in the ordering graph that the communication
component should use as the starting point for forwarding messages up to the application. Once this
has been done, the recovering site forwards the token to the next site and begins normal operation.

As is the case with token handling, the recovery and reintegration process is designed to tolerate
site failures, additional recoveries, and similar exceptional conditions.

StartUp. This micro-protocol manages the startup process. When the STARTUP EV event is generated
by the runtime system, it sets the incarnation number, initializes the local copy of the token, and forwards
the STARTUP message with the initial membership to the application.

4.2 Accuracy, liveness, and confidence micro-protocols

For detecting site failures, micro-protocols that implement both live and accurate algorithms are pro-
vided as alternatives. Live detection is based on lack of response from a site, i.e., timeouts. Accurate
detection, on the other hand, cannot be based on communication since the network is assumed to be
asynchronous. As a result, our implementation, like that described in [OIOP93] for Mach, detects a
site failure only when the failed site recovers and reestablishes communication. Similarly, accurate
recovery detection—the only kind possible in asynchronous systems—is implemented by the recov-
ering site contacting other sites upon recovery as described in the previous section. The following
micro-protocols implement these properties:

LiveFailureDetection. Triggers event SUSPECT NEXT DOWN signaling a suspected site failure
if token retransmission fails a specified number of times. Triggers SUSPECT CHANGE instead
if a site that is expected to communicate for some other reason does not respond in a timely
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micro-protocol LiveFailureDetection(LIMIT:int, check period: real)
var SilentList: set of int; % list of sites not heard of lately

event handler handle failure(var site:int, attempts:int)
if attempts < LIMIT and (site,FAILURE) SuspectList then attempts++;
else SuspectList += (site,FAILURE); attempts = 1;

trigger(SUSPECT NEXT DOWN,site);

event handler handle msg from net(var msg: NetMessage)
if msg.type != JOIN then

if (msg.sender,FAILURE) SuspectList then
SuspectList –= (msg.sender,FAILURE);

if msg.sender SilentList then SilentList –= msg.sender;
elseif msg.sender Membership and (msg.sender,FAILURE) SuspectList then

SuspectList += (msg.sender,FAILURE);
trigger(SUSPECT CHANGE,msg.sender,FAILURE);

event handler handle new membership msg(msg:ApplMessage)
if msg.type == FAILURE then SuspectList –= (msg.changed,FAILURE);

event handler monitor()
for each m:int Membership do

if m SilentList and (m,FAILURE) SuspectList then
SuspectList += (m,FAILURE);
trigger(SUSPECT CHANGE,m,FAILURE);

SilentList += m;
register(TIMEOUT,monitor,check period);

initial register(FORWARDING FAILED,handle failure);
register(MSG FROM NET,handle msg from net);
register(MEMBER MSG,handle new membership msg);
register(TIMEOUT,monitor,check period);

Figure 5: LiveFailureDetection micro-protocol

manner, or if a site that is already in the membership list attempts to join. The pseudo-code for
LiveFailureDetection is shown in Figure 5.

AccurateRecoveryDetection. Triggers SUSPECT CHANGE signaling a suspected site recovery
upon receiving a message from a site not currently in the membership. Used in combination with
LiveFailureDetection.

AccurateDetection. Implements accurate detection of both site failures and recoveries. Triggers
SUSPECT CHANGE signaling a suspected site failure and succeeding recovery when a message
arrives with an incarnation number greater than the current incarnation number for that site. Also
inserts the current incarnation number in outgoing messages.

Our design supports two versions of the confidence property. The first is single site suspicion, where
no confirmation is needed from other sites. In this case, a suspected membership change can simply be
entered into the token and circulated among all group members. The second is a voting-based process,
which is implemented by the micro-protocol VotedDecision. When the event POTENTIAL ENTRY is
triggered,VotedDecision sends out a request for votes and sets a timer using the facilities for TIMEOUT
events provided by the runtime system. When the timer expires, all votes that have been received
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are examined. If any site has responded “no”, the result in negative, that is, the conclusion is that no
membership change has occurred. Otherwise, the result is positive. Individual sites base their responses
on whether or not the suspected site is in their SuspectList. Many other variants of voting-based policies
are, of course, possible.

4.3 Agreement micro-protocols

Implementing agreement on site failures and recoveries is straightforward given the abstraction of an
indestructible token. In particular, since the token is guaranteed to be received periodically by every
operational site, all that is required is to enter the change in the token and circulate it. Sites then read
the entry when the token arrives and deliver a membership change message to the application at the
appropriate place in the message stream.

The micro-protocolMembershipDriver implements agreement and coordinates the overall execu-
tion of the membership protocol. It triggers events ADD ENTRY, FIRST ROUND, SECOND ROUND,
and MEMBER MSG. It also maintains information about the number of rotations needed for each mem-
bership entry in the token. Special attention is paid to entries whose reporter—the site that originally
added the entry to the token—fails during execution of the protocol. This situation is handled by having
such entries be “adopted” by other sites, which then behave as the reporter for the remainder of the
protocol.

A second membership driver micro-protocol called SimpleMembershipDriver is provided as an
option for applications not requiring agreement. Rather than circulate information in the token, it
simply translates local detection of failures and recoveries into membership change messages that are
delivered to the application. It also implements a simple recovery facility for this type of application.

All remaining micro-protocols assume thatMembershipDriver is configured into the system.

4.4 Ordering and synchrony micro-protocols

The MembershipDriver micro-protocol implements FIFO ordering of membership change messages
as a free side-effect of the agreement process. Other orderings are implemented by separate micro-
protocols, as follows

Total order. Total ordering of membership change messages is implemented by simply forwarding
membership change messages to the application in the order the changes are recorded in the token.
Since every site sees the same token, every site delivers the messages in the same total order using only
one round of token rotation.

The TotalOrder micro-protocol (Figure 6) implements this property by translating the ordering of
entries in the token into a total order in the ordering graph using message predecessor fields. Note
that the strong guarantees provided by TokenDriver and MembershipDriver greatly simplify this
micro-protocol.

Agreement on Last Message. Properties such as agreement on last message that require ordering
membership change messages with respect to application messages are somewhat more complex. For
example, the AgreedLast micro-protocol implements this property by collecting information in the
token about the last message received from the failed site. This information, which is stored in the
membership entry, is updated at a site if that site has received a message with a higher identifier than
the one currently in the token. After one rotation, then, the token holds the identifier of the most recent
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micro-protocol TotalOrder()
var previous mid: int; % id of the previously processed msg in total order

event handler handle mship msg( var msg:ApplMessage,entry:EntryType)
msg.pred[ ] += previous mid; previous mid = msg.mid;

initial previous mid = 0; register(MEMBER MSG,handle mship msg);

Figure 6: TotalOrder micro-protocol

message that any site has received from the failed site at the time it updated the entry. This message is
taken to be the agreed-upon last message, and the token rotated a second time to disseminate the result.
After receiving the token a second time, each site places the appropriate membership change message
in the ordering graph immediately after the agreed-upon last message. Note that during this process,
delivery of application messages from the suspected failed site must be stopped.

Figure 7 presents the pseudo-code for AgreedLast.

Other Ordering Micro-protocols. A variety of other message-ordering options are provided by
the micro-protocolsAgreedPred, AgreedSucc, VirtualSynchrony, ExtendedVirtualSynchrony, and
ExternalSynchrony. Each realizes the ordering guarantee in section 2.2 corresponding to its name.
The algorithms used to implement these properties are similar to that used in AgreedLast, with the
differences being the type of information collected on the first round, how this information is used, and
whether message delivery to the application can continue during the process. Details can be found in
[Hil96].

4.5 Partition handling micro-protocols

As noted in section 2.2, the policies that dictate how a system operates in the presence of partitionscan be
divided into three phases: partition time, partitioned operation, and partition join. The micro-protocols
relevant to each phase are described below.

Partition Time. By default, the membership service implements individual notification, where the
membership changes associated with a partition are treated as individual site failures. The alternative
collective notification policy is provided by the CollectiveNotification micro-protocol, which reports
the failure of all sites in other partitions in a single membership change message. It does this by
waiting for the NEW ENTRY or MERGE TOKENS events, and then when they occur, combining all
failure entries in the token into a single entry. The entries are combined so that the ordering properties
guaranteed for the combined entry are inherited from the first entry in the token. Once the entries are
combined, the token is circulated again to ensure that every site sees the combined entry. To guarantee
that no site generates a membership change message for an entry before CollectiveNotification has a
chance to combine entries, each entry is circulated at least once around the ring before a membership
change message is delivered to the application. This also guarantees that all sites in other partitions are
included in the collective entry.

Note that simultaneous true site failures will also be reported collectively since such situations are impossible
to distinguish from partitions in asynchronous systems.
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micro-protocol AgreedLast()
var LastSeen[ ], LastAllowed[ ]: int; mutex: semaphore;

event handler first round(var entry:EntryType)
var s: int;
if entry.type == FAILURE then P(mutex); s = entry.changed;

entry.pred[s] = max(LastSeen[s],entry.pred[s]);
LastAllowed[s] = entry.pred[s]; V(mutex);

else if entry.type == C FAILURE then P(mutex);
for each s entry.members do entry.pred[s] = max(LastSeen[s],entry.pred[s]);

LastAllowed[s] = entry.pred[s];
V(mutex);

event handler new membership msg( var entry:EntryType, msg: ApplMessage)
var s: int;
if entry.type == FAILURE then P(mutex); s = entry.changed;

msg.pred[s] = max(msg.pred[s],entry.pred[s]);
LastAllowed[s] = msg.pred[s]; V(mutex);

else if entry.type == C FAILURE then similar to above

event handler handle delivered msg(var msg:ApplMessage)
if msg.type == FAILURE then P(mutex);

LastAllowed[msg.changed] = MAXINT; V(mutex);
else if msg.type == C FAILURE then similar to above

event handler handle msg(var msg:ApplMessage) P(mutex);
if LastAllowed[msg.sender] < msg.mid then V(mutex); cancel event();
else LastSeen[msg.sender] = max(LastSeen[msg.sender],msg.mid); V(mutex);

initial register(FIRST ROUND,first round); register(MSG RECEIVED,handle msg);
LastSeen[ ] = 0; register(DELIVERED TO APPLICATION,handle delivered msg);
LastAllowed[ ] = MAXINT; register(MEMBER MSG,new membership msg);

Figure 7: AgreedLast micro-protocol

PartitionedOperation. The policy for what level of service a system should provide during partitions
is inherently an application decision, so the membership service generally only provides supporting
information. In our design, this is done by theAugmentedNotificationmicro-protocol, which augments
each membership change message with majority/minority status information depending on whether the
site is in the majority partition or not. Note that the appropriate value is simple to calculate, assuming
that the maximum membership of the group is known and that membership change messages are
delivered in total order. The application can use this information, for example, to halt processing or
reduce the level of service in minority partitions.

Partition Join. The merging of partitions is initiated by the PartitionDetection micro-protocol,
which attempts to detect the existence of other partitions by periodically sending “I am alive” messages
containing the current membership to all sites that are currently considered failed. Upon receipt of such
a message at some site S, the event PARTITION is triggered if the membership list in the message has no
sites in common with the membership list on S. If the lists do overlap—which might occur, for example,
if the partition was of such short duration that the process of removing sites from the list was incomplete
in one or both partitions—then the sites in the intersection are removed from the membership of S’s
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micro-protocol AsymmetricJoin()
var OtherPartition: set of int; % sites in the other partition

event handler handle partition(Members: set of int)
if dominate(Members,ParList) then

OtherPartition = Members; register(ADD ENTRY,enter shutdown);

event handler enter shutdown(var token: TokenType)
var entry: EntryType;
if SHUTDOWN token.entries then

entry.type = SHUTDOWN; entry.members = OtherPartition;
token.entries += entry; trigger(NEW ENTRY,entry);

deregister(ADD ENTRY,enter shutdown);
register(DELIVERED TO APPLICATION,handle delivered msg);

event handler handle delivered msg(msg: ApplMessage)
if msg.type == SHUTDOWN then

deregister(DELIVERED TO APPLICATION,handle delivered msg);
status = DOWN; shutdown and restart(msg.members);

initial register(PARTITION,handle partition);

Figure 8: AsymmetricJoinmicro-protocol

partition prior to beginning the merge process.
Two alternative micro-protocols are provided for implementing the partition merge when PARTI-

TION is triggered,CollectiveJoin andAsymmetricJoin. The first combines two partitions into a single
one, including merging the two logical rings used for communication. This is accomplished by one
partition giving up its token to a site in the other partition, which then combines the tokens into a single
token as described in section 4.1. A special membership change entry of type MERGE is then inserted
into the token and circulated to inform all sites in the combined membership of the new membership
information. AsymmetricJoin handles partition join by forcing sites in the minority partition to fail
prior to being allowed to rejoin the majority partition as individual recovering sites. The shutdown is
coordinated by adding a SHUTDOWN entry to the token in the minority partition.

The pseudo-code for AsymmetricJoin is shown in Figure 8. Functions dominate and shut-
down and restart are defined elsewhere. The former defines the dominance of two partitions based
on group size and site identifiers, as discussed above. The latter, which is executed only by sites in
the non-dominant partition, takes the assumed membership of the dominant partition as argument and
simulates the failure and restart of the composite protocol. It also triggers the event RECOVERY EV.

Finally, the ExtendedWithPartition micro-protocol implements extended virtual synchrony be-
tween application messages and membership change messages reporting partition merges, similar to
that defined in [MAMSA94]. This micro-protocol is distinct from ExtendedVirtualSynchrony since
the predecessor sets of such messages are different in the sites in the two merging partitions.

Otherpartitionhandlingmicro-protocols. In numerous membership services [Cri91, HS95b, KT91,
KGR91, MSMA94, MPS93a, RB91], it is simply assumed that partitions will not occur, or that only
one partition will continue to operate. The OnePartition micro-protocol implements a simple strategy
that approximates this behavior. In particular, when any message other than JOIN is received from a
site outside the current membership,OnePartition sends a STOP message that forces the offending site
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to halt. A simple dominance relationship based on group size and maximum site identifier is used to
ensure that only one partition remains active.

5 Configuring a Custom Membership Service

The collection of micro-protocols outlined above provides the basis for building a membership service
with properties customized to the needs of a given application. In principle, those micro-protocols that
provide the desired properties are combined at system configuration time to construct an instance of
the service. However, as might be expected, not all combinations are feasible, largely due to functional
dependencies between micro-protocols. Here, we discuss the issue of dependencies in the context of
the design presented in previous sections and give a configuration graph that summarizes the legal
combinations.

5.1 Dependencies

A micro-protocol is said to depend on micro-protocol if must be present in the system and
provide its specified service in order for to provide its specified service. In practice, this means
that if micro-protocol is configured into a system, micro-protocol must be configured into
the system as well. Several examples of dependencies were given in the micro-protocol descriptions
above. For example, in section 4.4, we noted that TotalOrder builds on the guarantees provided by
MembershipDriver and TokenDriver. Such assumptions are indicative of dependencies between
micro-protocols.

In general, there are a number of possible sources of dependencies between micro-protocols. One
is the inherent relationship between the properties that are being implemented. For example, totally
ordering membership change messages is impossible unless such messages are present on all sites, so
the property of total ordering depends on agreement. Thus, in our design, this means that TotalOrder
depends on MembershipDriver. A complete evaluation of dependencies between properties related
to membership can be found in [HS95c, Hil96].

Another source of dependencies comes from the way in which properties are implemented, rather
than any inherent relationship between them. That is, although it might be possible to implement
properties and independently, it is easier to implement assuming that is guaranteed, leading
to a dependency between the micro-protocols implementing the properties. For example, it is easier to
implement many of the ordering properties with respect to application messages given the assumption
that membership change messages are totally ordered. In our design, however, we purposely avoided
such dependencies to achieve maximum configurability.

The implication of the above discussion is that it usually requires a close semantic evaluation of prop-
erties and their implementations to determine the full set of dependencies in a given design. However,
some dependencies can be identified syntactically based on how interactions between micro-protocols
are programmed using either events or shared variables. For example, the AugmentedNotification
micro-protocol used for partition handling relies on the membership change messages being ordered
prior to being delivered to the application, which TotalOrder implements by setting the message pre-
decessor fields in an appropriate manner. Thus, in this case, the ordering graph is the shared variable
that identifies the dependency. As another example, the dependencies between various ordering micro-
protocols andMembershipDriver can be identified by events that are triggered byMembershipDriver
and fielded by the ordering micro-protocols.

18



5.2 Configuration graph

Configuration graphs are a graphical method for representing configuration constraints caused by
dependencies between micro-protocols. Such a graph is a directed graph, , where the
nodes represent micro-protocols and the edges represent dependencies. Often, a micro-protocol

requires that any one of a set of micro protocols, , be present. This is represented in
the dependency graph by grouping , , together and having an edge from to this group.

MembershipDriverSimpleMembershipDriver

TokenDriver Recovery

TotalOrder

StartUp

MessageDriver VotedDecision

AgreedLast AgreedSucc

AgreedPred

VirtualSynchrony

ExternalSynchrony

ExtendedVirtualSynchrony

AugmentedNotification

OnePartition PartitionDetection

CollectiveJoin

ExtendedWithPartition

AsymmetricJoin

AccurateDetection LiveFailureDetection

AccurateRecoveryDetection

CollectiveNotification

Figure 9: Configuration graph

A configuration graph can be viewed as a tool for configuring a customized service. The designer
of a system first decides which service properties are required and identifies the micro-protocols that
implement those properties in the configuration graph. These micro-protocols are then included in the
system, along with all micro-protocols on which the chosen ones depend. Essentially, this implies
that all micro-protocols in the transitive closure of those implementing the selected properties must be
included.

Figure 9 gives the configuration graph for the membership micro-protocols discussed in this paper.
Using the graph we can, for example, configure a simple membership service consisting of the micro-
protocols MessageDriver, SimpleMembershipDriver, AccurateDetection, and StartUp. This ser-
vice provides accurate but uncoordinated membership change indications to the higher level protocols.
An example of a more complicated membership service would be one that provides virtual synchrony,
and handles network partitions by allowing computation to continue in each partition and then combines
partitions by forcing sites in one to fail and rejoin as individual members. Such a service consists of
the micro-protocols AsymmetricJoin, PartitionDetection, VirtualSynchrony, TotalOrder, Mem-
bershipDriver, TokenDriver, MessageDriver, Recovery, StartUp, AccurateRecoveryDetection,
and LiveFailureDetection. In this manner, over 750 semantically distinct membership services can be
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configured from the micro-protocols in this collection.

6 Prototype Implementation

6.1 Overview

A prototype of the configurable membership service has been implemented using C++. The implemen-
tation consists of approximately 9000 lines of code and uses the Sun Solaris operating system’s thread
package to implement event handling and other control aspects of the runtime system. Currently, the
multiple sites of a distributed architecture are simulated within a single address space, although the
code for all the micro-protocols and much of the runtime system would carry over unchanged to a true
distributed implementation using C++. Using a simulated environment as an initial step has, of course,
numerous advantages. For example, it facilitates rapid prototyping of micro-protocols since it is easier
to execute test runs and collect results. It also makes it possible to control execution parameters to a
degree not possible in a real system, including the number of sites, the message transmission times, and
failure rates.

As noted in section 1, our eventual goal is to implement this service using an x-kernel based system
currently under development [BS95]. This system augments the standard hierarchical model of protocol
composition implemented by the x-kernel with support for micro-protocols and event-driven execution.
The system currently runs on DecStation 5000 workstations connected by Ethernet, and has been used
to implement a micro-protocol suite for group RPC.

6.2 Software organization

The overall software organization resembles Figure 1, with C++ classes being divided into three
major portions that implement that application, network, and communication layer, respectively. The
application is simulated by class User, which generates application messages. It also logs application
and membership change messages received from the communication service for debugging purposes.
One object of this class is created for each site in the simulated system.

The network is simulated by class Network, which implements the abstraction of an unreliable
point-to-point and multicast communication medium. In addition to routing messages between sites,
Network implements a short transmission delay and generates communication failures by deciding
for each message and destination whether or not to deliver the message based on a random number.
Site failures are simulated by shutting down all micro-protocols in a controlled manner and zeroing
out appropriate data structures. Network partitions are simulated by maintaining a table that specifies
the partition for each site, so that a message from a given site is only delivered to a destination if it
resides in the same partition. This table can be altered at runtime to simulate the creation and joining
of partitions. A single Network object is created for each simulation.

Most of the rest of the C++ classes implement the communication layer, including the commu-
nication service, the configurable membership service, and the infrastructure required to implement
composite protocols. Perhaps the two most important are the base classes CompositeProtocol
andMicroProtocol. CompositeProtocol contains the runtime system of composite protocols,
implementing the event-driven execution model and providing such operations as the registering and
deregistering of events. It also implements the interactions with the application and network layers, such
as providing operations for those layers to transfer messages to the composite protocol. This class also
contains the code that triggers system-defined events, such as MSG FROM NET and MSG FROM USER.
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Derived classes are defined from CompositeProtocol for each specific type of composite protocol,
with object instances being created from these for each simulated site.

MicroProtocol is the base class from which the micro-protocols implementing the functionality
of the communication and membership services are defined. In particular, each micro-protocol is a
derived class based on MicroProtocol, which allows them to be dealt with as uniform objects
whenever possible. A derived class is provided for each membership micro-protocol described in
section 4. The communication service, which implements reliable causally ordered multicast and the
ordering graph abstraction, is also defined in this way. Object instances are created for each site
according to the specific configuration desired.

6.3 Testing and experience

The C++ prototype has been used to test a variety of different membership services. Given the large
number of micro-protocol combinations possible based on the configuration graph in figure 9, the
services tested were representative rather than exhaustive. First, all possible combinations that did
not involve any of the micro-protocols that implement ordering properties with respect to application
messages were tested. Then, to test these micro-protocols—AgreedLast, AgreedSucc, AgreedPred,
VirtualSynchrony, External Synchrony, and ExtendedVirtual Synchrony—each was combined
with five representative configurations of the remaining micro-protocols, one withAccurateDetection
and four with LiveFailureDetection plus different ways of dealing with partitions. The test suite
included scenarios involving multiple failures and recoveries, network partitions, and token loss, as
well as normal processing.

Testing was performed as a black-box process in which various output results were monitored for a
given set of inputs. For a membership service, the primary determinants of correctness are the messages
received by the application level on each site and their ordering, so message logs maintained in User
objects were the main source of information. Token passing was also traced to validateTokenDriver,
arguably the most complicated micro-protocol. Execution of other individual micro-protocols could
also be traced by setting the appropriate bit in a tracing mask; this causes event handling code in the
micro-protocols to generate trace information every time one of its event handlers is invoked.

Building a version of the configurable membership service in this simulated environment has
demonstrated several things, in our view. One is the overall viability of our modularization approach,
where properties are mapped directly to fine-grained software modules to enhance configurability and
customization. Another is the value of event-driven execution for decoupling modules and thereby
minimizing the software changes needed to support configurability. The property-based modularity
and configurability of the service also turned out to be an asset during the testing process itself.
For example, during debugging, it was often easy to identify the property that was not being properly
enforced, which automatically identified the offending micro-protocol. The ability to include or exclude
micro-protocols easily also helped narrow the collection of modules that had to be examined when other
types of problems occurred.

Of course, one question that cannot be answered from a simulation of this type concerns the
performance cost, if any, associated with our approach to modularization. While a final resolution of
this issue must await the completion of the x-kernel based version of the service, we note that initial
experiments with a similar implementation of group RPC show modest execution overhead [BS95].
Other experiments using the x-kernel also suggest that fine-grained modularity need not imply a serious
performance penalty [OP92].
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7 Discussion

7.1 Micro-protocol execution costs

This choice of which micro-protocols to include when building a customized membership service is
based primarily on the functional guarantees required by the application. However, another consider-
ation is the incremental execution cost associated with guaranteeing the associated property, such the
number of extra messages required and the additional delay that it imposes on the delivery of messages
to the application. To examine these costs relative to the micro-protocols discussed above, we first
divide the functionality implemented by the membership service into two phases:

1. Detection: Initial detection of suspected site failures and recoveries.

2. Coordination: Subsequent processing required for sites to coordinate decision and deliver mem-
bership change message to the application.

Each phase incurs separate execution overhead based on the specific properties being enforced.
For the detection phase, the metric of interest is detection delay, that is, the time it takes from

when a change occurs until the initial suspicion is signaled at some site. For recovery detection, both
AccurateRecoveryDetection andAccurateDetection are based on receiving a JOIN message from the
recovering site, so the detection delay depends on how quickly this message is sent and received after
the site restarts. For failure detection, the delay depends on whether AccurateDetection or LiveFail-
ureDetection is used. AccurateDetection only detects a failure once the failed site recovers, so the
detection delay may be arbitrarily long. On the other hand, as with most live failure detection schemes,
the delay associated with LiveFailureDetection depends on the frequency of message exchange and
the timeout interval used before a suspicion is signaled. In our particular design, detection delay can be
reduced either by circulating the token faster, which increases the network load, or by altering the token
passing protocol to reduce the maximum number of retransmissions or shrink the timeout interval, both
of which increase the probability of false failure suspicions. VotedDecision reduces the probability of
false detections at the cost of increased detection delay.

For the coordination phase, the metrics of interest are agreement cost and delivery delay. Agreement
cost is the number of messages it takes to collect and distribute information about a membership change
to all sites so that the selected properties are guaranteed. Given our token-based protocols, the agreement
cost can most easily be analyzed in terms of how many token rotations a specific property requires. For
the micro-protocols in our service, these costs are:

One Rotation. TotalOrder, AugmentedNotification, Recovery, and AsymmetricJoin.

Two Rotations. All other ordering micro-protocols and CollectiveJoin.

Between Two and Three Rotations. CollectiveNotification.

Delivery delay is the extra delay imposed by the membership service on the time it takes a message
to be delivered to the application. Although it is difficult to calculate such delays in absolute terms,
examining the relative delays between micro-protocols can be instructive. The delays for the relevant
micro-protocols are as follows:

AgreedPred. None, since algorithm will construct an agreed predecessor set consisting of
messages already delivered on every site.
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AgreedLast. Halts delivery of messages from suspected site during agreement, and requires
delay of membership change message until agreed last message is delivered.

AgreedSucc. Halts delivery of all messages during agreement, but does not delay membership
change message.

VirtualSynchrony. Halts delivery of all messages during agreement, and requires delay of
membership change message until agreed predecessor set is delivered.

ExternalSynchrony. No extra ordering delay, but requires each site to deliver PRE CHANGE
message during first token rotation prior to forwarding token to next site.

ExtendedVirtualSynchrony. Same as ExternalSynchrony for token passing and VirtualSyn-
chrony for membership change messages, except that extra delay may be incurred since agreed
predecessor set consists of all messages sent before the initiation of agreement.

As would be expected, the delays are roughly proportional to the strength of the guarantees provided.

7.2 Related work

Membership services and protocols have been the subject of a large number of papers. Some of the work
has been based on a synchronous system model, where bounds are placed on the network transmission
time [Cri91, EL90, KGR91, LE90, SCA94]. Other work assumes an asynchronous model similar to
that used in this paper [ADKM92a, AMMS 95, DMS94, EL95, GT92, MPS92, MPS93a, MAMSA94,
RB91, SM94]. Unlike our configurable service, however, all these services guarantee only a single
collection of properties, or at most, offer a small number of choices.

Schemes based on logical rings or token passing are used by many multicast, membership, and
system diagnosis protocols. For example, token passing is used as a means of implementing reliable
totally ordered multicast in the Reliable Broadcast Protocol [CM84], Token-Passing Multicast (TPM)
protocol [RM89], Multicasting Transport Protocol (MTP) [AFM92], Totem [AMMS 95], Pinwheel
[CM95], and Reliable Multicast Protocol (RMP) [WMK95]. In these protocols, the site possessing the
token is either the only site that is allowed to send a message or the site that assigns a global ordering to
messages sent by all sites. Most of these protocols deal with site failures and recoveries, as well as the
possibility of token loss. With the exception of TPM, however, all deal with membership changes using
broadcast-based schemes that are independent of the token passing used during normal processing; in
these cases, the token is recreated only after agreement has been reached on the new membership.

The algorithms used in TMP are perhaps closest to those used in our membership service, especially
its use of the token to recreate group membership after a failure. When a site suspects that a token loss
or site failure has occurred, it generates a recovery token and circulates it to collect the identities of
operational sites. Multiple recovery tokens are eliminated by having each site only forward a token if it
was created by a site with a larger identifier. After agreement on the new membership has been reached,
a clean-up token is circulated to collect and disseminate information about the messages received on
each site so that missing messages can be requested. This token also collects the maximum sequence
number across all delivered messages as it circulates, which is then used to initialize the new token
during recovery.

Although the TMP protocol employs a token to collect and disseminate information in much the
same way as we do, the underlying algorithms are quite different. For example, unlike TPM, in our

Totem uses a commit token for a similar purpose [AMMS 95].
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approach, information about concurrent membership changes—including partitions—is collected and
disseminated using a single token. This difference changes many of the details of token handling,
such as the steps taken to regenerate the token when failures occur. Furthermore, our design empha-
sizes configurability and facilitates the construction of customized membership services, rather than
implementing a single set of properties as does TMP.

A number of membership and system diagnosis protocols organize sites into a logical ring structure
without using a token. For example, the protocols in [RFJ93] use a ring to detect membership
changes by having each site monitor its neighbor. Once a failure or recovery is detected, however, a
membership protocol that employs a coordinator process is employed rather than using the ring. Some
system diagnosis protocols, such as the Adaptive DSD protocol [BB91], use a logical ring for failure
monitoring and information propagation. A simple membership protocol derived from Adaptive DSD
that also uses a ring organization but not a token is introduced in [Hil95].

In addition to research on specific membership protocols, three other projects have investigated
issues similar to those addressed in this paper. The membership service in Horus, a system for con-
structing modular networking software according to a hierarchical model [RBG 95, RB95], provides
some degree of choice in the properties that it guarantees. In particular, the application may choose to
deal with partitions by using a single partition approach or by allowing computation to continue in all
partitions. In [RFJ93], a family of three membership protocols are described, where each protocol pro-
vides different guarantees. Although not configurable in the same sense as ours, the motivation—that
different applications need different guarantees—is similar.

Finally, in [SR93], membership services are divided into three components: a Failure Suspector,
a Multicast Component, and a View Component. The Failure Suspector implements the equivalent
of the change detection property in our approach, while the Multicast Component provides reliable
communication with virtually synchronous message ordering. Unlike our approach in which multicast
and membership are separate, however, their Multicast Component combines these two functions. The
View Component implements the equivalent of our agreement property by guaranteeing that all sites
have the same view of the membership. While similar in that they decompose membership services
into components, our approach provides a richer classification of properties and extends the concept to
an actual software system supporting a high degree of configurability and customization.

8 Conclusions

The modular membership service described in this paper facilitates the construction of a customized
fault-tolerance support layer that can provide the specific execution guarantees needed by a given
application. By supporting this type of customization and configuration, our approach reduces the size
and complexity of the system, thereby increasing the likelihood that it will operate as intended. It
also has the potential to improve application performance by giving the designer explicit control over
the tradeoff between the strength of the guarantees provided and the performance; rather than having
to accept guarantees stronger than needed and thereby incur extra execution costs, the designer can
select—and pay for—only those guarantees that are truly required. The approach is based on mapping
abstract properties to individual micro-protocols, which are then configured together with a standard
runtime system to form a composite protocol. The mapping of abstract properties to software modules
and the event-driven model supported by the runtime system both enhance the overall configurability
of the resulting system.

Our future work involving configurable services will concentrate in several areas. As already
noted, one is porting the membership service to the x-kernel based system under development, which
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will facilitate investigation of issues such as performance. Another is further work on applying our
approach to other services that simplify the construction of fault-tolerant distributed applications,
such as atomic multicast, group RPC, and distributed transactions. Finally, we plan to extend our
research to include distributed services that provide other types of execution guarantees, such as those
involving real time and security. All these investigations are related to our overall goal of developing
a unifying architectural framework for building configurable support software for a wide variety of
highly dependable applications.
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