
A Suite of UNIX Filters
For Fragment Assembly

Gene Myers

TR 96-07



A Suite of UNIX Filters
For Fragment Assembly*

Gene Myers

TR 96-07

ABSTRACT

A collection of UNIX filters for fragment assembly are presented. The tools are ASCII-based and batch-
oriented. The basic repertoire consists of primitives to (1) build a graph of all the overlaps amongst a
collection of FASTA-formated fragments, (2) produce any number of alternate assemblies of these fragments
from such a graph, (3) display an overlap graph, (4) display an assembly both as a layout of lines representing
each fragment, and as a multi-alignment showing the consensus of the fragments, and (5) convert an assembly
into a file suitable for input to the interactive editor of XGAP. Tools for additional tasks are planned. This
suite is intended to permit an evaluation of our FAKII C-library for fragment assembly and to serve as a set of
coding examples of the use of the FAKII library.

April 20, 1996

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported in part under DOE Grant DE-FG03-94ER61911.



A Suite of UNIX Filters for Fragment Assembly

1. Overview

Over the past ten years, we have built a series of libraries of C-coded routines for solving the problem of
assembling a collection of shotgun DNA sequence fragments. The most recent version of our Fragment Assem-
bly Kernel, FAKII Version 4.1, consists of 68 routines and is described in a 15 page technical report. These rou-
tines provide a flexible framework for solving the problem that can be embedded in any integrated informatics
system for DNA sequencing. For example, it is currently being used by other groups to solve dual-end sequenc-
ing and transposon-based sequencing problems. However, learning how to use this library takes time and
despite our best efforts to carefully document it, conceptual misunderstandings are not uncommon. To alleviate
these problems, we have developed a modest set of UNIX filters that employ the FAKII library to perform frag-
ment assembly at the UNIX command level. This suite of tools is simple to use and the source code for them
provides an example to other developers of how to use the library.

2. Computing and Storing Overlaps

The first step in assembling a collection of fragments is to determine all pairwise overlaps between them,
both in the forward and reverse orientation. The tool create_graph takes a FASTA formated file of frag-
ments, compares the fragments to each other detecting overlaps, stores the fragments and overlaps between them
in an overlap graph where each vertex represents fragment and each edge represents an overlap, and finally
writes the overlap graph to the standard output.

create_graph {e_limit:%f} {o_thresh:%f} {d_limit:%f}
{fragments:FASTA file} > {graph}

The performance of create_graph is modulated by three floating point numbers that control which overlaps
are detected and/or accepted as follows:

e_limit The maximum sequencing error rate for which overlaps will be guaranteed to be detected. For ex-
ample, if this is set to 10%, then the create_graph looks for overlaps with 20% or less differences
in the aligned regions. This parameter should never be greater than .2, and we suggest .099 as a
standard value (see below).

d_limit It is further required that the distribution of differences along the alignment of an overlap not be
highly skewed but spread across the alignment. The distribution score of an alignment is the
minimum over all segments of the alignment of the probability that one would see the observed
number of differences in that segment given an underlying error process occurring at rate e_limit.
This probability should not be too small, as if it is, it implies there is a segment of the alignment that
has an unusually large number of differences in it. Note that this is quite conservative as we are as-
suming the error process is at the maximum error rate (and not the average error rate). We recom-
mend using a value of .0001 or less.

o_thresh The overlap score of an overlap is the log of the a priori odds that such an overlap would occur by
chance. Pragmatically, this score is the length of the overlap minus a marginally decreasing penalty
per difference. A typical value is 10, implying an overlap of at least 10 bases is needed and that for
the overlap to occur by chance is a one in a million (≈ 410) event.

The e_limit and d_limit parameters control the efficiency with which overlaps are detected. The
smaller the error limit or the higher the distribution limit, the less time overlap detection will take. By far the
most important of these two efficiency parameters in Version 4.1 is the error_limit. Note that both are not
"thresholds", but only "limits": create_graph guarantees to find all overlaps inside the error limit and distribu-
tion limit, but may report additional overlaps as well. On the other hand, the overlap threshold is a true thres-
hold: any overlap not scoring above it, i.e., that is not statistically significant enough, will not be entered into the
overlap graph.

- 1 -



One should set these three parameters to the most lenient/inclusive values that they think will be ever be
needed for proper assembly, moderated by the level of efficiency with which the computation can be done. Phi-
losophically, our view is that overlap detection is a one-time computation in which one determines all the possi-
ble ways that the fragments could go together. Later, during assembly (see below), one can select a more
stringent subset of the overlaps with which to meld fragments. With regard to efficiency, it should be noted that
there are significant changes in performance as e_limit crosses the levels .05 and .10. Thus our recommen-
dation to use .099 as a standard setting.

The FASTA format for sequence files is a standard and very simple and minimalist format. Essentially
each sequence entry may be written on several lines. Sequences are separated by one or more ‘‘header’’ lines
that begin with ’>’ but may otherwise contain whatever the user desires. For example,

> GMDA1AA02.seq [Unknown form], 52 bases, 3581 checksum.
CAGGCATGAGCTACCTTGCCCAGCCAATTTTTGTGTTTTTTtGTAGAGAT
GG
> GMDA1AA04.seq [Unknown form], 127 bases, 7543 checksum.
TTTTTTTGTAGAGATGGGGTTTTGTCATGTTGCCCTGGCTGGTCTTGAAC
TCTGGAGCCCAAGCAATCTGCCCACCTTGGCCTCCTAAATTGTTGGGATT
ATAGGCATGAGCCACCGCACCCAGCct
> GMDA1BA01.seq [Unknown form], 61 bases, 8399 checksum.
AGGAGAATCACTTGAACCCGGGAGGTGGAAGTTGTAGTGAGCCAAGATCA
CGCAATTGTAC

gives three short sequences. For later reference, a name is associated by create_graph with each fragment.
The name is the first non-blank sequence of symbols of the first header line preceding the sequence. In the ex-
ample above, the three fragments would henceforward be referred to as GMDA1AA02.seq, GMDA1AA04.seq,
and GMDA1BA01.seq, respectively. If the header line is blank, then create_graph assigns the fragment the
name frag{%d} where the integer reflects its ordinal position in a list of the fragments in the overlap graph.

Because an input data set of fragments is not always available all at once, the construction of the overlap
graph can take place in several stages via the use of the utility add_to_graph.

add_to_graph {e_limit:%f} {o_thresh:%f} {d_limit:%f}
{fragments:FASTA file} < {graph} > {graph}

This utility reads an overlap graph from the standard input, reads the FASTA file of fragments, compares the
FASTA fragments to each other and to every fragment in the overlap graph, and writes an overlap graph
representing the augmented result to the standard output.

The utility show_graph reads an overlap graph from the standard input and generates an ASCII readable
"print out" of the graph or a selected portion of the graph on the standard output.

show_graph [-d] [ {from_frags:reg.exp.} [{to_frags:reg.exp.}] ] < {graph}

If the two optional regular expression arguments are absent then the entire graph is displayed. If one regular ex-
pression is present then all fragments whose name matches the regular expression, and all edges to/from the
matched fragments are displayed. If two regular expressions are specified then show_graph displays all edges
for which one fragment’s name matches one regular expression and the other fragment’s name matches the oth-
er regular expression.

The regular expression mechanism supported is exactly that of the UNIX egrep tool (including ’ˆ’ for
start of string and ’$’ for end of string) plus three special notations for numbers, identifiers, and number ranges.
First the symbol ’#’ is a short hand for the regular expression ‘‘0|[1-9][0-9]*’’, that matches any positive in-
teger constant. For example, the pattern ‘‘frag#’’ matches ‘‘frag1’’, ‘‘frag13’’, and ‘‘frag203’’ but not
‘‘frag033’’. To match the latter use the pattern ‘‘frag0*#’’. Second, the symbol ’@’ is a short hand for
‘‘[_A-Za-z][_A-Za-z0-9]*’’, i.e., any C-identifier. Finally, there is support for a number class, denoted
‘‘’{’ {integer_1} . {integer_2} ’}’’’. The first integer must not be greater than the second. The
number classes matches any sequence of digits denoting a number in the range of the class. For example ‘‘{3-
56}’’ matches ‘‘3’’, ‘‘4’’, ... ‘‘9’’, ‘‘10’’, ‘‘11’’, ... and ‘‘56’’. The integers in the number class may be pad-
ded on the left with zeros in which case the padding is considered to be part of the matching string. For exam-
ple, ‘‘{003,056}’’ matches ‘‘003’’, ‘‘004’’, ... ‘‘009’’, ‘‘010’’, ‘‘011’’, ... and ‘‘056’’.

- 2 -



If the -d option of show_graph is set then the report includes the sequences for each fragment and a
display of the alignment for each overlap between a pair of fragments. Otherwise the report simply lists the
fragment names and the overlaps between them. A portion of a sample output appears as follows:

*** BEGIN GRAPH DISPLAY *****

Range of parameter values edges were created with:
e_limit: 0.099

o_thresh: 10
d_limit: 1e-05

Fragment = frag1
Length = 346

Sequence:
caagacctggtaatcttacactggtttctatgtcgctatccaccaaccta
tttccaaggaacacggtaaggagtagtacataggcccggtcgttcactca
gcatagacaactgactgtcgcaagcatctgcgttgagggggtgtttgtac
tagacgacccccggtaagttaatatagatcgaccgaaaccagtgcacgga
atataaaccctactgcaacggggagaccgtagccatctagagtttgaata
aataacctggtaccgctagtttcggccgatttggagaggcgtaatcacgg
tgccacacataagaccgaggtattaacgctcaagctagcgtcaggt

Inedges:
<+--< frag17 (o_score = 222.4, d_score = 0.5657)
<===> frag297 (o_score = 57.0, d_score = 0.5657)
<===< frag127 (o_score = 136.7, d_score = 0.5067)

Outedges:
>===< frag28 (o_score = 23.2, d_score = 0.7190)
>---> frag141 (o_score = 195.2, d_score = 0.6474)
>===> frag140 (o_score = 129.3, d_score = 0.8338)

. . .

*** EDGE LISTINGS:

Edge: frag1 <===> frag297 (o_score = 57.0, d_score = 0.5657)

78
-----+----> frag1

frag297 <----+-----
76

frag1>: caagacctggtaatcttacactggtttctatgtcgctatccaccaaccta
-----------------------+-------+-------+----------

frag297<: caagacctggtaatcttacactg-tttctatctcgctattcaccaaccta

frag1>: tttccaaggaacacggtaaggagtagta
----+-------------------+---

frag297<: tttc-aaggaacacggtaaggagtcgta

. . .

***** END GRAPH DISPLAY ***

The quantities o_score and d_score reported for each edge are its overlap score and distributional score.
Edges/overlaps in the overlap graph are of 8 different types depending on the ‘‘geometry’’ of the overlap. The
table below gives the meaning of each edge denotation one will find in a printout.

- 3 -



A >===> B A --------> A >---> B A ------------>
--------> B --------> B

A <===< B A <-------- A <---< B A -------->
<-------- B ------------> B

A >===< B A --------> A >--+> B A ------------>
<-------- B <-------- B

A <===> B A <-------- A <+--< B A -------->
--------> B <------------ B

One need not memorize these 8 types as a graphic of each edge relationship is given in a -d listing. For exam-
ple, in the output above, the edge frag1 <===> frag297 overlaps the first 78 symbols of frag1 with the first
76 of frag297 when it is oriented opposite to that of frag1.

3. Computing and Displaying Assemblies

Once an overlap graph has been constructed, one may then proceed to assemble the fragments. The tool
assemble accomplishes this task by reading an overlap graph from the standard input and writing an assembly
object to the standard output.

assemble [-{i’th:%d}] [-c{constraints:file}]
{e_rate:%f} {o_thresh:%f} {d_thresh:%f} < {graph} > {assembly}

An assembly object records the relative positions of all fragments in the assembly, the multi-alignment of the
fragments, possibly in a number of disjoint contigs, and the consensus sequence for the multi-alignment. The
assembly takes place over a subset of the edges in the overlap graph determined by three floating point parame-
ters as follows:

e_rate The distribution score of each edge in the overlap graph will be computed assuming an error pro-
cess at the specified rate. Edges will then be eliminated if their distribution score/probability is
below d_thresh described next.

d_thresh Specifies the minimum error distribution score for edges to be considered in assemblies. Any edge
in the overlap graph whose distribution score with respect to error rate e_rate is less than
d_thresh is eliminated from consideration as regards melding fragments. Setting this parameter to
1.0 eliminates all edges, and setting it to 0.0 eliminates none.

o_thresh Specifies the minimum overlap score for edges to be considered in assemblies. Setting this para-
menter to 0. guarantees that no edges are eliminated on this basis.

For example, if a graph was created with the command:

create_graph .099 10. .0001 input >graph

then the command:

assemble .05 20. .0001 <graph >assembly

assembles over a subset of the graph whose overlap scores are greater than 20 and whose distributional scores at
rate 5% are greater than .0001. Further note that the command:

assemble 0. 0. 0. <graph >assembly

is guaranteed to assemble over all edges in the overlap graph.

There are two optional parameters to assemble. The FAK kernels have always been able to generate a
series of alternate solutions to the problem in decreasing order of ‘‘goodness’’. A parameter of the form,
e.g., -3, would produce the third best assembly. The assembler can also produce solutions consonant with a col-
lection of constraints with the -c{constraints} option, where constraints is presumed to be a file contain-
ing the results of a fac_write primitive. As yet our UNIX suite does not contain any tools for producing such
a file, but a user may use the FAKII kernel to produce one if desired.

There are two routines for producing displays or printouts of assemblies. The first is show_layout which
produces a ‘‘stick diagram’’ of an assembly in which the arrangement of fragments in each contig of an assem-

- 4 -



bly is shown by depicting each fragment as a line with an arrowhead at one end or the other to indicate its orien-
tation.

show_layout [-c{contig:%d}] [-w{columns:%d}] [-z{scale:%d}] [-n] < {assembly}

The assembly to be displayed is read from the standard input. The number of columns used for the display can
be controlled by the optional -w option which defaults to 50. The ‘‘zoom’’ factor of the display can be con-
trolled by the optional -z option which specifies the number of bases to be represented by a single column (de-
fault is 20). The -n option, if set, turns off the display of fragment names. Finally, only a single contig of a as-
sembly may be displayed by giving the contig number following the -c option. An example of a part of an out-
put obtained by the command show_layout -w70 -z30 <assembly is as follows:

*** BEGIN LAYOUT DISPLAY ***

Range of parameter values edges were created with:
e_limit: 0.099

o_thresh: 10
d_limit: 1e-06

This is the best assembly.
Parameter values are:

e_rate: 0.04
o_thresh: 15
d_thresh: 0.0001

*** CONTIG 1 (Score = 35226):
. . .

2.5K 3.0K 3.5K 4.0K
| | | |

1: .-->-----------X------------+-------> <----------- <------------+-----.
2: .--><-------<----------- <------------- ---------> ------------>-----.
3: .-----> <-------- -------------><-------------+------------->
4: .--->------------>------------>------------->--------------> ----------.
5: <------------- <-------------<------------ ---------->------------>
6: .--- <------------- <--------------- <-----------<---------.
7: .------- ----------------->-----------> ------.
8: .--------> -------------><------------- ----.
9: .--------- -------------->

10: .--------> --------------->
11: .---------- <--------------
12: .-----------> <------------
13: -------------> <----------
14: <-------------
15: <------------
16: ----->

1: MMDAF7.seq:2005 MMDAX32.seq:2192 MMDAL07Z.seq:2550
MMDAS93.seq:2922 MMDAM58L.seq:3262 MMDAJ30.seq:3640

MMDAL21LZ.seq:4041
2: MMDAF6.seq:2005 MMDAX65.seq:2215 MMDAK39L.seq:2434

MMDAM29L.seq:2834 MMDAD83.seq:3271 MMDAM73L.seq:3689
MMDAM43L.seq:4048

3: MMDAR33.seq:1890 MMDAE59.seq:2539 MMDAI71Z.seq:2878
MMDAI50.seq:3287 MMDAL41L.seq:3707

4: MMDAF11.seq:2005 MMDAL88L.seq:2227 MMDAR63.seq:2633
MMDAP02.seq:3000 MMDAR28.seq:3399 MMDAO38L.seq:3921

- 5 -



5: MMDAO22L.seq:2198 MMDAO40L.seq:2662 MMDAL54L.seq:3086
MMDAX63.seq:3482 MMDAS84.seq:3825

6: MMDAS21.seq:1813 MMDAC39.seq:2221 MMDAP10.seq:2717
MMDAP27.seq:3561 MMDAI92.seq:3924

7: MMDAJ13Z.seq:1912 MMDAJ39.seq:2510 MMDAR83.seq:3054
MMDAI87.seq:4049

8: MMDAR14.seq:1919 MMDAL81L.seq:2745 MMDAI54.seq:3161
MMDAL72L.seq:4092

9: MMDAP41.seq:1949 MMDAI57Z.seq:2760
10: MMDAI72Z.seq:1966 MMDAR03.seq:2894
11: MMDAI60.seq:1974 MMDAI46.seq:2910
12: MMDAL70L.seq:2091 MMDAO02L.seq:2959
13: MMDAS38.seq:2244 MMDAJ74L.seq:2984
14: MMDAJ47.seq:2934
15: MMDAX36.seq:3013
16: MMDAP66.seq:2936

. . .

*** END LAYOUT DISPLAY ***

A dot at the left boundary of the layout indicates that the fragment adjacent to the dot is continued from the
preceding ‘‘frame’’. Similarly, a dot at the right boundary indicates that the adjacent fragment continues on the
succeeding frame. Given an ASCII display, the best we could do for indicating the names of each fragment was
to give for each row of a frame, the list of fragments on the row of that frame in order of their first column posi-
tion. This permits easy identification in conjunction with the scale bar at the top of each frame.

The second assembly display routine, show_multi, prints a multi-alignment of each contig of an assem-
bly, along with the consensus sequence by default.

show_multi [-c{contig:%d}] [-w{columns:%d}] [-m] < {assembly}

The -c and -w options are as for show_layout. In addition the -m option, if set, suppresses the printout of the
consensus sequence. A sample output of show_multi is as follows.

*** BEGIN MULTI-ALIGNMENT DISPLAY ***
. . .

*** CONTIG 1 (Score = 15670.7):
. . .

frag112>: tgtc-c-tttatacgcccgttcatgaca-ttcct-agggaga-ttatt
frag57<: tgtcgc-tttatacgcccgttcattaca-ttcct-agggaga-ttattag
frag47>: tgtc-c-tttatacgccagttcattaaa-ttcct-agggaga-ttattag

frag263<: tgtc-catttatacgccc-ttcattacagttccaaagggaga-ttattag
frag222<: tgt--c-tttatacgcccgtt-attaca-ttcct-agggagatttattag
frag272<: tgtc-c--ttatacgcccgttcattaca-ttcct-agggaga-ttattag

frag20>: tgtc-c-tttatacgcccgttcattaca-ttcct-agggaga-ttattag
frag178>: tgtc-c-tttatacgcccgttcattaca-ttcct-agggaga-tt-ttag
frag237<: attaca-ttcc--agagaga-ttattag
frag199<: tattag

--------------------------------------------------
TGTC-C-TTTATACGCCCGTTCATTACA-TTCCT-AGGGAGA-TTATTAG

. . .

*** END MULTI-ALIGNMENT DISPLAY ***

- 6 -



4. Summary

The basic suite described above consists of six commands which are formally summarized as follows.

1. create_graph {e_limit:%f} {o_thresh:%f} {d_limit:%f}
{fragments:FASTA file} > {graph}

2. add_to_graph {e_limit:%f} {o_thresh:%f} {d_limit:%f}
{fragments:FASTA file} < {graph} > {graph}

3. show_graph [-d] [ {from_frags:reg.exp.} [{to_frags:reg.exp.}] ] < {graph}

4. assemble [-{i’th:%d}] [-c{constraints:file}]
{e_rate:%f} {o_thresh:%f} {d_thresh:%f} < {graph} > {assembly}

5. show_layout [-c{contig:%d}] [-w{columns:%d}] [-z{scale:%d}] [-n] < {assembly}

6. show_multi [-c{contig:%d}] [-w{columns:%d}] [-m] < {assembly}

The conventions for parameters in these descriptions are as follows. Any parameter in square braces is optional.
Any meta-item is enclosed in curly braces and within the braces is a one word description of the item followed
by a colon and a syntactic specification of the item, e.g. %d denotes an integer. Any redirected item is either
from/to another stage of a pipeline or is a file.

5. References

[LJAM96] Larson, S., Jain, M., Anson, E. and Myers, E. ‘‘An Interface for a Fragment Assembly Kernel.’’
Technical Report TR96-04, Dept. of Computer Science, University of Arizona, Tucson AZ 85721-
0077. http://www.cs.arizona.edu/research/reports.html.

- 7 -


