
The Price of Synchrony

Peter J. Downey

TR 96-09

ABSTRACT

Loops that synchronize parallel processors at the end of each iteration are compared with
loops that do not synchronize their iterations. In the presence of data dependencies, loop syn-
chronization cannot always be removed—the purpose here is to estimate the additional costs
incurred when synchronization is necessary.

Suppose there are n parallel processors each executing k iterations. Under the assumption
that each iteration of the loop body runs for a time controlled by an independent identically
distributed random variable X with mean µ and variance σ2, it is shown here that the ratio of
the expected time taken with synchronized loops to the expected time taken with unsynchron-
ized loops is asymptotically

µ

EX (n) + ε(n)
(n, k → ∞) (∗)

where EX (n) is the expected maximum of n independent random variables with with the dis-
tribution of X, and ε(n) is the (deterministic) time to fork n processes. Since EX (n) grows
with n in a way that can be estimated for many particular distributions, the ratio (∗) yields an
estimate of the relative time penalty incurred by loop synchronization and the sensitivity of
this penalty as the degree of parallelism n increases.

November 20, 1996

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

The Price of Synchrony

1. Introduction

Large scale scientific computations performed on parallel processors often contain parallel iterations, in which

the same body of code is repeatedly executed on each of the processors, and in which the number of iterations

on each processor is very large. Depending on the specific application, the iterations may be synchronized or

unsynchronized. In synchronized iteration, iteration number i must terminate on all of the processors before

iteration number i + 1 can begin on any processor. In unsynchronized iteration, iterations can proceed in order

but independently on each processor, with the only synchronization occurring after all parallel processors have

finished their iterations.

This paper compares the running time of synchronized iteration to that of unsynchronized iteration under

simple probabilistic assumptions about the running time of iteration bodies. It assesses the time penalties

incurred by synchronization, and indicates the main determinants affecting such time penalties. Results are

asymptotic—valid only for large numbers of iterations across a large number of processors.

Let there be n identical processors P 1 , P 2 , . . . , Pn each repeatedly executing a body of code B for a total

of k iterations. Depending on the particular processor and the iteration number, this code will give rise to com-

putations of various lengths (depending on differing conditional paths taken by varying initial data, differing

machine environments, etc.). Let us denote by Xj
(i) the computation done by machine j (1 ≤ j ≤ n) at iteration i

(1 ≤ i ≤ k).

In an unsynchronized loop, processor Pj performs the sequence of computations

Xj
(1) , Xj(2) , . . . , Xj(k) ,

with no pause between successive computations. In the synchronized loop, Pj performs the same sequence of

computations; however, all stage i computations on each of the processors

X1
(i) , X2(i) , . . . , Xn(i)

are constrained to begin simultaneously. This introduces overheads in both synchronizing the start of the n

- 1 -

parallel computations, as well as in awaiting the termination of the n parallel computations from the previous

(i − 1th) iteration.

To describe the differences between these two loop structures in terms of a (typical) parallel programming

language, we use pseudocode taken from [Ber97]. If B is the repetitive body of code performed at each itera-

tion, then the synchronized loop corresponds to the code

Synchronized:

for i := 1 to k do
for 1 ≤ j ≤ n do in parallel

B
end in parallel

endfor

where the parallel for loop is the inner loop. The unsynchronized loop corresponds to the dual loop structure

Unsynchronized:

for 1 ≤ j ≤ n do in parallel
for i := 1 to k do

B
endfor

end in parallel

in which the parallel for loop is the outer loop. The code body B is in general parameterized by both the

processor number j as well as the iteration variable i.

These two programs are in general not equivalent. The question of whether the synchronized version can be

replaced by the unsynchronized version while preserving equivalence can be answered only by reference to the

particular structure of the iteration body B. For example, if B makes reference to data computed by earlier

iterations on machine j only, then the unsynchronized version can be used. Generally, cross-processor depen-

dencies will force the synchronized loop to be employed. Many algorithms based on the parallel random access

machine (PRAM) computational model [Ber97] require that loops be synchronized.

In this paper, we study the relative efficiency of these two loop organizations in isolation from the question

of whether the more efficient version can actually be used correctly. This serves to compare the relative cost of

using synchronization should it be necessary, and to assess the improvement obtained when using unsynchron-

ized loops can be correctly used.

- 2 -

1.1 Timing Model

To model the running time for these two loop structures, let us denote the execution time for computation Xj
(i)

by Xj(i) . In this paper, Xj(i) is assumed to be a random variable. In the model discussed here, we assume that

the distribution of these random variables is known, but that the particular amount of time taken by processor Pj

on its ith iteration—Xj(i)—is not known deterministically. We therefore seek to understand how running time

depends upon the ensemble of times, and characteristics of this ensemble, rather than upon particular instances

of execution.

One obvious influence on the total time of a parallelized iterative process comes from execution time uncer-

tainties. Successive executions of the code body can vary widely and unpredictably in running time; but the

iteration body can be characterized by a distribution of running time rather than by a single quantity. The per-

formance in time of these loops is clearly influenced by the characteristics of this distribution, such as its mean

and standard deviation. In addition, when loops are run in parallel, one is forced to consider not just sums of

uncertain time durations, but also the extreme (maximum) running time of a number uncertain time durations.

For the moment, let us ignore any time overheads necessary to initiate (or fork) n computations on proces-

sors P 1 , . . . , Pn. Such overheads will occur whenever a for . . . do in parallel statement is

encountered. These overheads will be added during the analysis in Section 2 below. With this momentary

simplification, the total time spent in executing the synchronized loop can be depicted in Figure 1.1 below.

The vertical lines in these figures depict synchronization barriers. The unsynchronized loop model is depicted in

Figure 1.2.

1.2 Model Assumptions

In Section 2, we compare the expected values of Sn, the running time of the synchronized loop, with Un, the

running time of the unsynchronized loop. Here we collect the assumptions made in the analysis. Some assump-

tions are made in order to make the analysis tractable, and some are made to focus attention on asymptotic con-

ditions of interest—where both the number of processors n and the number of iterations k are very large.

There are k iterations of the loop performed in parallel on n processors.

- 3 -

| |
Sn

| |
X (n)

= max (X1(1) , . . . , Xn(1))

X1(1)

X2(1)

X3(1)

Xn(1)

n
proc.

X1(2)

X2(2)

X3(2)

Xn(2)

X1(3)

X2(3)

X3(3)

Xn(3)

k iterations. .

Figure 1.1: Synchronized Loops. Time for k iterations on n processors, with synchronization after each paral-
lel loop body. Vertical lines are barriers at which synchronization occurs. In this illustration, there are n = 4
processors and k = 3 iteration stages.

| |
Un

| |
Y (n) = max (Y 1 , . . . , Yn)

X1(1)

X2(1)

X3(1)

Xn(1)

n
proc.

X1(2)

X2(2)

X3(2)

Xn(2)

X1(3)

X2(3)

X3(3)

Xn(3)

Figure 1.2: Unsynchronized Loops. Time for k iterations on n processors, with no synchronization of loops
across processors. Vertical lines are barriers at which synchronization occurs. Random variables Yi are sums of
k random variables, each distributed as X, e.g., Y 1 = X1(1) + X1(2) + X1(3) + In this illustration, there are
n = 4 processors and k = 3 iterations.
Task times Xj(i) (1 ≤ j ≤ n, 1 ≤i ≤ k) are independent, identically distributed random variables with a com-

mon distribution F(x) = P[X ≤ x].

- 4 -

Distribution F has finite variance σ2. The mean of F will be denoted µ.

The time to fork n parallel tasks is a deterministic quantity ε(n). In general it is will be a slowly increasing

function of the number of processors. We will assume that it increases at most linearly in n:

ε(n) = O(n) (n → ∞) .

As the number k of iterations and the number of processors n gets large, we assume that the numbers of pro-

cessors used grows more slowly than the number of iterations performed:

k
n

→ 0 (n, k → ∞) .

This assumption assures that a large number of iterations are performed on each processor, no matter how

many processors are available.

2. Analysis

2.1 Synchronized Loop

The completion time Sn (Figure 1.1) of the synchronized loop is the sum of k stages. Each stage completes in a

time distributed as X (n) , the maximum of n i.i.d. random task times with distribution F, plus the time ε(n)

needed to fork these n tasks. This yields an expectation of

ESn = k .EX (n) + k .ε(n) . (2-1)

2.2 Unsynchronized Loop

The completion time Un (Figure 1.2) is a maximum of n sums, plus the initial fork time. Thus

Un = max(Y 1 , Y 2 , . . . , Yn) + ε(n) , (2-2)

where each of the Yi are independent, and each is the sum of k i.i.d. variates with distribution F. That is:

Yi = d X 1 + X 2 + . . . + Xk . (2-3)

Since F has finite variance, then for large k, each Yi converges in distribution to a normal random variable

with the appropriate mean and variance:

Yi →d N(k .µ, k .σ2) (k → ∞) . (2-4)

Therefore for large k, Un is asymptotically the maximum of n normals with the distribution (2-4), plus a term

- 5 -

that accounts for the forking overhead.

From the asymptotic theory of extremes of the normal distribution [Res87], it is known that, if

Z 1 , Z 2 , . . . , Zn are independent normals with mean µZ and standard deviation σZ, then the expectation of the

maximum grows like O(√ ln n). More precisely:

EZ (n) = µZ + σZ
.√2. ln n + o(1) (n → ∞) . (2-5)

Applying this result to (2-2) and (2-4) results in

EUn = EY (n) + ε(n) (2-6)

= kµ + k 1⁄2σ√2 ln n + ε(n) + o(1) (n, k → ∞) ,

where the o(1) term reflects the normal approximation in (2-4) as well as the approximation to the extreme in

(2-5).

2.3 The Ratio

The relative speed-up obtained by removing synchronization on each iteration is, using (2-1) with (2-6),

EUn

ESn
=

kµ + k 1⁄2σ√2 ln n + ε(n)

k .EX (n) + k .ε(n)
+ o(1) (2-7)

=
µ + σ√2(ln n)/k + ε(n)/k

EX (n) + ε(n)
+ o(1) (n, k → ∞) ,

Since n = o(k) by assumption, we have that (ln n)/k = o(1). Since ε(n) = O(n) by assumption, we

have also that ε(n)/k = O(n/k) = o(1). Thus (2-7) simplifies to:

EUn

ESn
=

µ

EX (n) + ε(n)
+ o(1) (n, k → ∞) , (2-8)

The result in (2-8) can be interpreted as indicating that the relative time dilation, or ‘‘slow-down’’, produced

by synchronizing each iteration consists of the sum of a forking overhead factor (ε(n)/µ) and a joining overhead

factor (EX (n) /µ). For large k, each group of n tasks out of the overall total of k .n tasks is slowed by this

amount due to synchronization. The expression in (2-8) is thus a relative dilation factor of ESn over EUn.

As an example, if X is normal with mean µ and variance σ2, then EX (n) = µ + σ.√2. ln n + o(1) and

we obtain from (2-8) the ratio ESn /EUn = 1 + (σ/µ)√2 ln n + ε(n)/µ + o(1). The latter expression

shows that the joining overhead term is directly affected by the coefficient of variation (σ/µ) of the distribution

of X, as well as rising slowly with increases in degree n of parallelism.

- 6 -

3. Growth of the Extreme EX (n)

This section reviews results on the rate of growth of the expected extreme EX (n) in n. Depending upon what is

known about the distribution of X, various asymptotic estimates or bounds can be provided. The most general

result is [Dow95] that EX (n) is a monotone increasing and concave function of n and that EX (n) = o(n) pro-

vided EX is finite [Dow90a].

More can be said, however. Better bounds on the growth of EX (n) with n allow us to use (2-8) to quantify

the size of this ratio. If, as assumed in this paper, X has a finite variance, then EX (n) = o(n 1⁄2). These and

other bounds on EX (n) are summarized in Table 1 below. First we review definitions of regular variation used

in many of the results in the table.

Regularly Varying Functions. Regularly varying functions are those that scale homogeneously for large argu-

ment. In this paper we are interested in distribution functions F(t) for which the complementary d.f.

1 − F(t)—denoted here by F(t)—is a regularly varying function with negative index. However, we will begin

with the general definition of a regularly varying function, and define rapid variation, index of variation, and

classes of random variables related to these concepts.

DEFINITION. A positive measurable function f : (0, ∞) → (0, ∞) is regularly varying at infinity if for all

λ > 1, the limit

x → ∞
lim

f (x)
f (λx) (3-1)

exists and is in (0, ∞). f is rapidly varying if the limit exists and is 0 or ∞.

The fundamental result about regular variation [Bin87, Theorem 1.4.1] is that if the (finite or infinite) limit

(3-1) exists for all λ > 1, then there is an extended real number ρ , −∞ ≤ ρ ≤ ∞ such that

∀ λ > 0
x → ∞
lim

f (x)
f (λx)

= λρ . (3-2)

This ρ is called the exponent or index of variation. If (3-2) holds, so that f is regularly varying with index ρ, we

write f ∈ Rρ . Thus with the understanding λ−∞ = 0 and λ∞ = ∞, R−∞ and R∞ are the rapidly varying func-

tions.

Functions like xa + sin x where a > 0 are in Ra. Functions like exp(− x k) , k > 0 belong to R−∞ and

their reciprocals belong to R∞ . Functions that fail to have a well-defined limit (finite or infinite) in (3-2) are

- 7 -

neither regularly varying nor rapidly varying. Examples are sin x and e − x . By historical convention, the class

R 0 is called the slowly varying functions. It includes, for example functions like (ln x)α for any α ≥ 0, and

their reciprocals.

From the results above, it is evident that f ∈ Rρ if and only if there is some slowly varying function l such

that f (x) = x ρ .l(x). It is easy to see that if f ∈ Rρ and g ∼ f then g ∈ Rρ . Thus asymptotic equality ∼ is

the natural equivalence relation on the class of regularly varying functions.

In applications to random variables, we say that X = d F is a regularly varying random variable of index

−α, for some α ≥ 0, provided F(t) ∈ R−α. In this case we write X ∈ R−α. For example, if X = d F(t)

where F(t) = 1 − (ln t) − 1 for t ∈ [e , ∞), then X ∈ R 0.

With these preliminaries, results about the behavior of EX (n) for large n are summarized in Table 1 below.

- 8 -

Asymptotic Bounds for n → ∞
d.f. hypotheses EX (n) bound Note

EX < ∞ o(n) 1
EXp < ∞ (p > 1) o(n 1/p), µ + || X −µ || p .n 1/p 2
X ∈ R−α (α > 1) ∼ Γ(1 − α− 1) cX (n) (cX (n) ∈ R 1/α) 3
X ∈ R−∞ ∼ cX (n) (cX (n) ∈ R 0) 4
X ∈ E1 O(ln n) 5
X ∈ Eβ O(ln n) β 6

Notes:
(1). An example d.f. in this class is F(t) = t− 1 (ln t) − 2 for t ≥ e.

(2). See [Arn85] and [Dow90a]. The o bound assumes a fixed parent d.f. F that is independent
of n, while the (weaker) bound allows F to depend on n, but has the advantage of explicit
coefficients. Here || Y || p := (E[Yp])1/p is the Lp norm.

(3). The characteristic maximum function cX (n) is (roughly) the solution to F(x) = n− 1; see
[Res87]. An example is the empirical distribution of Unix process times [Lel86], found to be
F(t) = 0.241t− 1.122. This yields cX (n) = 0.281n 0.891 and so EX (n) ∼ 0.281n 0.891. As anoth-
er example, if F(t) = t− 2 (ln t) − 1 for t ≥ e, then EX (n) ∼ √πn/ ln n .

(4). Any d.f. in the domain of attraction D(Λ) of the double exponential extreme value distribu-
tion belongs to R−∞ [Res87]. For example, the exponential d.f. F(t) = e − t /µ yields
EX (n) ∼ µ ln n.

(5). See [Dow90b]. E1 is the class of random variables dominated in convex ordering [Ros83,
Sto83] by some exponentially distributed variate. E1 is a very large class of random variables,
including all those [Dow90b] that are Coxian or of Phase (PH) type, those with bounded mean
residual life, those that are New Better Than Used in Expectation (NBUE), and all subclasses
[Ros83] of the latter, such as Increasing Failure Rate (IFR) and Increasing Likelihood Ratio
(ILR) variates.

(6). Eβ is the class of variates Xβ for some X in E1. An example is the Weibull
F(t) = exp(−λt 1/β).

Table 1. Summary of EX (n) Bounds

References

[Arn85] B.C. ARNOLD, 1985. p-norm bounds on the expectation of the maximum of a possibly dependent
sample, J. Multivariate Anal. 17, 316-332.

[Ber97] K.A. BERMAN and J.L. PAUL. 1997. Fundamentals of Sequential and Parallel Algorithms, PWS
Publishing Company, Boston, MA.

[Bin87] N.H. BINGHAM, C.M. GOLDIE and J.L. TEUGELS, 1987. Regular Variation, volume 27 of The Ency-
clopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, England.

[Dow90a] P.J. DOWNEY, 1990. Distribution-free bounds on the expectation of the maximum with scheduling
applications, Operations Research Letters 9, 189-201.

[Dow90b] P.J. DOWNEY and R.S. MAIER, 1991. Stochastic orderings and extreme moment growth, Technical
Report 90-9, Department of Computer Science, University of Arizona, Tucson, AZ.

- 9 -

[Dow91] P.J. DOWNEY and R.S. MAIER, 1991. Stochastic orderings and the mean growth of extremes, Techn-
ical Report 91-13, Department of Computer Science, University of Arizona, Tucson, AZ.

[Dow93] P.J. DOWNEY and R.S. MAIER, 1993. Orderings arising from expected extremes, with an application.
Stochastic Inequalities, IMS Lecture Notes - Monograph Series, vol. 22, Institute of Mathematical
Statistics, Hayward, CA, pp. 66-75.

[Dow95] P.J. DOWNEY, 1995. Bounds and approximations for overheads in the time to join parallel forks,
ORSA Journal on Computing 7, 125-139.

[Lel86] W.E. LELAND and T.J. OTT, 1986. Load-balancing heuristics and process behavior, Performance
Evaluation Review 14, 1(May 1986), 54-69.

[Res87] S.I. RESNICK, 1987. Extreme Values, Regular Variation and Point Processes, Springer-Verlag, New
York, NY.

[Ros83] S.M. ROSS, 1983. Stochastic Processes, Wiley, New York, NY.
[Sto83] D. STOYAN, 1983. Comparison Methods for Queues and Other Stochastic Models, Wiley, New York,

NY.

- 10 -

