
Liquid Software: A New Paradigm
for Networked Systems

John Hartman, Udi Manber,
Larry Peterson, and Todd Proebsting

TR 96-11

Abstract

This paper introduces the idea of dynamically moving functionality in a network—between clients and
servers, and between hosts at the edge of the network and nodes inside the network. At the heart of moving
functionality is the ability to support mobile code—code that is not tied to any single machine, but instead
can easily move from one machine to another. Mobile code has been studied mostly for application-level
code. This paper explores its use for all facets of the network, and in a much more general way. Issues of
efficiency, interface design, security, and resource allocation, among others, are addressed. We use the term
liquid software to describe the complete picture—liquidsoftware is an entire infrastructure for dynamically
moving functionality throughout a network. We expect liquid software to enble new paradigms, such as
active networks that allow users and applications to customize the network by interjecting code into it.

Department of Computer Science
The University of Arizona

Tucson, AZ 85721



1 Introduction

The dramatic success of the World-Wide Web can in large part be attributed to its ability to provide location-independent
access to data—with the click of a button a user can access information stored across the country as easily as that stored
on his or her own computer. No longer must the user differentiate between data stored locally and that stored remotely
and use different tools and methods to access the two; indeed the user need not know where any of the data are actually
stored.

Although the benefit of location-independent data access can be measured by the tremendous growth in the Web,
the underlying functionality of the Web is relatively static. It supports a finite set of protocols to move data between
computers. One’s local computer can only manipulate the data in a fixed number of ways, determined by its current
software configuration. If a user lacks a particular application needed to properly access or view a data file the user
must manually install the needed application. Thus, while location-independent data access is a wonderful thing, it is
only the tip of the iceberg of possibilities opened by the Web. One can imagine location-independent (mobile) code—
code that is not tied to any particular location in the Web, and whose actual location is not a concern of the users. Code
located remotely can be executed as easily as code stored locally. This freedom of code location is the true promise of
the Web—users are no longer constrained by the physical boundaries of their computer, neither in the code it can run
nor the data it can access.

Location-independent code requires dynamically moving functionality around in a network—between clients and
servers, and between hosts at the edge of the network and nodes inside the network. At the heart of moving functionality
is the ability to support mobile code—code that is not tied to any single machine, but instead can easily move from one
machine to another. In addition to mobile code, a system that dynamically moves functionality must also address the
efficiency, interface, security, and resource allocation concerns that mobile code raises. We use the term liquid software
to describe the complete picture—liquid software is an entire infrastructure for dynamically moving functionality.

Making software more liquid seems to have several potential advantages. On the one hand, the ability to move
software simplifies many tasks that today are awkward at best, and impossible at worst. For example, liquid software
simplifies remote execution since it gives one site the ability download the modules it needs to access the resources at
another site. Remote execution, in turn, makes it possible to do software installation, diagnostics, and maintenance at a
distance. As another example, liquid software facilitates seamless updates, thereby supporting just-in-time download-
ing of software updates, as well as the evolution of software over time. As a final example, liquid software makes it
possible for clients (users) to customize the service provided by different servers they contact.

On the other hand, if instead of thinking in terms of how the ability to move code makes things we do today easier
we start from first principles and ask ourselves what functionality is and is not tied to a particular location, then we can
imagine countless ways in which we can exploit liquid software. For example, while a certain number of cycles have to
be available at the end-user’s host—to execute the display-specific aspects of the GUI and to encrypt/decrypt data that
is sent over the network—most information is not location-dependent. The predominate reason information is today
tied to a particular location (machine) is that we cannot flexibly move the code that can manipulates the data to some
other location.

Our approach to developing liquid software as a paradigm for networked systems has three major thrusts. First,
we are developing an enabling technology—fast compilation of machine-independent code—that will facilitate liquid
software. Second, we are implementing an application—mobile searching—that can benefit from mobile code, and use
it as a driving force in exploring the viability of liquid software. Finally, we are building a demonstration system that
integrates our compiler technology and our searching application on an OS platform that is tailored to support liquid
software. This demonstration will necessarily require that we flesh out a complete system infrastructure that supports
liquid software.

2 Gigabit Compiler

Liquid software presents research challenges that naturally or traditionally have been attacked by compiler technology.
Truly mobile code must run on a heterogeneous collection of machines, and therefore must be a machine-independent
representation. Liquid software must not corrupt the execution state of the host computer. Liquid software must exe-

1



cute efficiently on the host. Each of these three concerns conflicts with the others. For instance, the host would most
efficiently execute binaries of its own machine language, not some machine-independent form that must suffer the over-
head of interpretation, or the latency of translation (compilation) to native code. New compiler techniques are therefore
needed that minimize the negative effects of these constraints. The goal is to compile liquid software as fast as it can
be transmitted over the network—that is, to build a gigabit compiler.

For initial evaluation, Java bytecode is being used for the machine-independent code representation [jav95]. Sun
Microsystems developed Java bytecode to support mobile code on the World Wide Web. The bytecode achieves ma-
chine independence by fixing the byte-ordering, data alignment, calling conventions, data layouts, and so on, to a fixed
standard. The bytecode is based on a small stack-oriented instruction set that is easy to interpret and should be simple
to translate to native code. Java bytecode was designed so that it can be statically checked to determine if it meets a
rigid set of security requirements.

The current method of enabling heterogeneous hosts is to have each run a Java bytecode interpreter and verifier.
After code arrives at the host, it is verified once and subsequently interpreted as many times as needed. To add a new
type of host architecture, one need only port the verifier, interpreter and API. If the host’s verifier, interpreter and API
are trustworthy, the mobile code can be executed safely on the new host. Creating a portable verifier is not difficult.
Neither is porting such an API. Unfortunately, interpreters always add a level of indirection, which must add overhead.
To get the machine’s native speed, you must directly execute its native code.

To get maximum possible performance, the Java bytecode must be translated on the host to the host’s native machine
language. To avoid a severe latency problem—this compilation is on the critical path between receiving and executing
the mobile code—translation must be done very quickly. Fast code generation techniques, which can generate millions
of instructions per second on today’s 200MHz processors, will allow us to keep pace with Java bytecode arriving at
network rates approaching 1Gbps on the next generation of processors. We will compile the bytecode as it arrives—in
the time it takes it to arrive—for immediate execution.

Ultra-fast compilation requires that all compiler components be designed for raw speed. Every compilation phase—
from reading bytecodes to emitting native code—must be as fast as possible. Two approaches to developing fast com-
pilers seem necessary: (1) automated tools that generate highly optimized compiler components from concise spec-
ifications, and (2) modifications to the Java bytecode distribution format to decrease the overhead of processing the
bytecodes.

2.1 Retargetable Compiler Issues

If the host receives machine-independent liquid software, but must execute at native speeds, the mobile code must be
translated dynamically to native code [EP94]. The problem of dynamic translation of Java bytecode to native code is
complicated by the need to have a (necessarily machine-dependent) translator for every host architecture.

Quickly generating machine code requires three fast compiler components: fast instruction selection, fast instruc-
tion assembly, and fast address relocation. Instruction selection is the process of determining which machine instruc-
tions will correctly (and efficiently) evaluate the computation expressed by the bytecode. Instruction assembly is the
bit-twiddling required to construct machine code instructions from their various field encodings (e.g., opcodes, regis-
ters, immediate values, addresses, etc.). Address relocation is the back-patching of address fields in previously emitted
instructions when the actual physical locations become known. All of these components are machine dependent. With
special attention to details, all can be done efficiently.

Instruction Selection: Efficient instructionselection presents a tradeoff between the importance of generating instruc-
tions quickly and generating efficient instruction sequences. It is expensive to generate very efficient instruction
sequences (for particular bytecodes), but the resulting code would execute quickly. On the other hand, simple,
but fast, techniques could quickly generate instructions that would yield slightly slower execution. Optimiz-
ing code quickly requires making tradeoffs of analysis time against anticipated efficiency gains—a tradeoff that
historically has been made in favor of efficiency gains, which may not make sense when analysis time is indis-
tinguishable from run-time.

Fortunately, retargetable code-generator generator systems can help here [Pro95a]. Code-generator generators
can produce optimized code generators for various target architectures from concise machine specifications. We

2



plan to build code-generator generators that produce the code generators that occupy different points along the
compile-time/execution-time spectrum—from ultra-fast compile times with modest execution times to fast com-
pile times with excellent execution times.

Liquid software presents some challenges that we are attacking: how to select and emit native instructionsquickly,
how to optimize code quickly, how to incrementally compile on-demand, and how to produce code reliably. Pro-
ducing native instructions quickly requires a fast mechanism for selecting, assembling, relocating and emitting
them—problems that have only recently been approached. Producing code incrementally will greatly increase
perceived program speed—if program chunks are compiled on-demand, no time is wasted on unexecuted code.

Instruction Assembly and Relocation: Instructionassembly is inherently machine-dependent. To assemble machine
instructions, the appropriate encodings of the various instruction fields must be stitched together to create the
desired instruction. This can be straightforward on RISC machines that have notably few instruction formats.
For RISC machines, assembling instructions amounts to a sequence of shifts, masks, and OR’s at fixed offsets.
For the complicated instruction formats that characterize most CISC machines, instructionencodings are far more
complicated. The most difficult aspect of CISC encodings is the fact that instructionshave many different formats
with operands of varying shapes and sizes.

Fortunately, only a finite number of encodings exist for any instruction set. To ensure that our compiler can en-
code instructions quickly, we are creating a tool that generates optimized instruction assemblers from concise
specifications of instruction set formats. (Non-optimizing tools with the same functionality exist [RF95], but
they make no effort to optimize the instruction assembler.) These specifications are being coordinated with the
specifications used for instruction selection to enable the instruction selector to directly assemble and emit in-
structions without any delays from intermediate representations.

It may be necessary to assemble instructions before all their fields have been have been instantiated. For instance,
a jump instruction may need to be built and put into the instruction sequence before the address of its target is
known. Once the target is known, the instruction’s field must be updated with the correct value. The instruction-
assembler generator produces the necessary routines to efficiently patch previously assembled instructions with
such late-binding values.

Just-In-Time Compilation: One obvious way to increase perceived compilation speeds and hence decrease latency
is to defer compilation until code sequences are actually needed. One technique for deferring compilation would
be to initially compile each routine into a trivial, short stub routine that would compile that routine when it is first
called. This would spread the cost of compilation out over the execution of the program. A similar technique
could be utilized at the basic-block level.

2.2 Fast Interpretation

This focus on fast compilation should not be taken to imply that interpreters for liquid software are not interesting. They
are extremely important for a variety of reasons: interpreters enable quick porting to new architectures, interpreters can
readily provide diagnostic/debugging support that translation systems cannot, and interpreters are easier to verify. We
intend to also pursue interpreter-related research, focusing our efforts on the speed and portability of interpreters for
liquid software. Interpretation often results in slowdowns of 10-1000� relative to native execution speeds.

Our research indicates that optimizing code-generation techniques can be applied to interpreter generation to con-
sistently get slowdowns of less than 10� [Pro95b]. These efficient interpreters rely on techniques normally applied
to compilers. Techniques include the efficient register use, the efficient instruction schedules, and efficient instruction
selection. Other efficiency enhancing techniques are more specifically applicable to interpreters. Caching the top el-
ements of the interpreter’s evaluation stack in registers can yield impressive speed gains. Building an interpreter that
caches more than just its top value is difficult, however. For this we anticipate building interpreter generators that au-
tomatically build highly-optimized interpreters from target machine specifications.

3



2.3 Verification

Java bytecodes are verified before execution. The verification encompasses a variety of static checks that ensure that
many safety guarantees of the Java language cannot possibly be violated during execution. The most familiar safety
guarantees are those that enforce strict typechecking on the language. For instance, the verifier rejects any program that
might try to forge an object reference from an integer or from a differently typed object reference. These guarantees,
combined with policies enforced by the API, eliminate the chance of a Java program corrupting the state of the net-
work appliance. Java programs from untrusted sources must be verified. Unfortunately, this verification must precede
execution and is, therefore, on the critical path between retrieval and subsequent execution. Any decrease in the time
it takes to verify an program would translate directly into decreased latency.

2.4 Scanning and Parsing

The Java-bytecode compiler has a tremendous speed advantage over traditional compilers: the bytecode compiler does
not have to preprocess, scan, or parse a readable ASCII program representation. The bytecode distribution format was
developed to be a compact, efficient representation of program objects, their types, and the methods (i.e., code) that
operate on them. This format should be fast to read and process, but special attention is necessary to read the byte-
codes quickly enough to allow gigabit translation speeds. For example, the Java distribution format fixes the internal
representation of all integers to be big-endian, but it does not guarantee any alignment restrictions for integer values. To
read these values quickly, they must be marshalled efficiently. We plan to automatically generate marshalling code op-
timized for each target machine, to ensure efficient (and accurate) reading of unaligned data. Experiments have shown
that general-purpose marshalling routines used in network protocols can increase speeds by 20� [OPM94].

2.5 Symbol Tables

Both the verifier and the bytecode compiler must maintain symbol-table information in order to properly process the
bytecode. The current Java-bytecode distribution format contains enough information to efficiently resolve all symbol
table references within a given class. Unfortunately, many references must be resolved between classes, and this re-
quires costly hash-table maintenance. For each inter-class name reference, a hash value must be computed, a lookup
must be performed, and any collisions must be eliminated via costly name comparisons. Computing hash values is
not cheap. String comparisons to eliminate false collisions—distinct names that have the same hash value—are very
costly.

A simple extension to the distribution format could eliminate almost all of this unnecessary overhead. By including
a precomputed hash value with every name in the symbol table the work of computing the hash function would be
effectively moved from the bytecode compiler/verifier to the originator of the program. Furthermore, making the hash
function large (e.g., 32 bits) would virtually eliminate the possibility of a false collision. To keep the hash table size
down it could be indexed by the low-order bits of the pre-computed hash value, but the initial comparisons of the name
with collisions could be done very cheaply with the full hash value. Only when the full hash values agree does the
actual character-by-character comparison need to be done.

3 Mobile Search Applications

The second thrust of the liquid software project is to develop mobile search as an application of liquid software. Cur-
rently, searching for information on a network is performed almost exclusively through a client/server environment,
where the client supplies the query and the server supplies the user interface, the search engine, and the data. All three
of these features can be implemented as liquid software. The following discussion concentrates on the mobility of the
search engine; we briefly consider the user interface and the data at the end of this section. Having the search engine
originate from the user and run as liquid software on the nodes in the network opens the door to many advantages. We
plan to explore these advantages and use search as a testbed for this technology.

Servers can support search without providing any software facilities other than agreeing to run liquid software.
When a user initiates a search from a certain document, the user’s own search code is transferred to the server, com-

4



piled (which is why fast compilation is essential), and then executed. The input to the search could be, for example,
the current page plus all the pages pointed to from the current page. Or it could be all pages that can be obtained by
following no more than two links, excluding links outside that site and links that the user has already seen (given by
the user’s recent history file). Or it could be all documents at that site that were updated after a certain date. Or it could
be the inverted index supplied by the site. These are just four examples of options specified by the user through the
user’s own search program. Notice that options can take advantage of quite a bit of information about the user, such
as actions already taken (e.g., sites seen), preferences (e.g., case sensitivity), and scope of search (e.g., only new .html
files). The user gains much more control over the search process, saves time for adjusting to new interfaces or new
search engines, and loses no control over the browsing process. The server provides only the data and the cycles, plus
the ability to restrict the search by limiting the amount of time, the number of files opened, and so on. The following
summarizes the main advantages of using mobile search code.

Familiarity: Getting used to a search engine to the point of being able to perform effective powerful searches takes
time and experience. The current situation on the web where almost each search facility uses a different search
engine with different interfaces makes this much harder for users. Allowing users to employ their own search
can reduce the learning curve significantly.

Customization: If the search originates from the user, it can be customized much better to that user. Information such
as “user profile,” “user history” (so that only new results are asked for), and “user preferences” can be sent along
with the search. Options such as case sensitivity or size of the output can also be sent automatically.

Post Processing of Results: Some of the search steps can be moved and performed at the user site, reducing the server
load. The most obvious one is the output of results. Currently, search facilities spend considerable time on the
formatting or presentation of answers. For example, putting the right words in bold font, adding HTML for-
matting, or inserting anchors to lead to the exact place of the match. Furthermore, users often need the answers
in a different format and they repeat some of the work. They need to issue a “save as” command to store such
answers, and then they may need to convert the answers to a different format (e.g., to include it in another docu-
ment). With liquid software, the answers can be sent in raw format, formatted on the fly, and merged into the right
place by the client machine according to the user’s specifications. Furthermore, results of searches from different
places using different access methods can be merged together. Not only does this save server resources, but it
also makes it possible to customize the answers.

Using Different Search Engines and Simpler Servers: The same information can be searched by different search
engines, depending on the users’ needs (e.g., flat text search or complex database analysis). By supplying the
search engine, users can utilize the same data in many ways. This also relieves the servers from the duty of
providing multiple services to multiple needs. One experience we have of running a search server is that we
receive too many requests for too many options. With mobile search code, servers can become very simple.
They can contain only the raw data in an acceptable format, leaving the task of defining the search to the users.
This will also enormously simplify the task of maintaining the data.

Combining and Chaining Results: Users can tie search results from several sources more seamlessly, because they
control how the search is done and what is to be done with the results. Furthermore, results of one search can
be used as part of another search. We foresee mobile search codes travelling from place to place, collecting and
analyzing data, and updating their tasks. The current approach to searching more than one place is to do it in
parallel, which is very easy on the web. But this approach does not scale, and if everyone sends their queries
to all search facilities at the same time, we would wasting too many resources. A more polite approach would
be to send the queries in a chain, with the most likely place first, stopping the process when enough results are
collected. This is not only more efficient in terms of resources, it is also much easier to stop (by sending a kill
request to places in the middle). When someone by mistake sends a parallel query for a common word to hundreds
of servers, all of them may be tied up. We plan to design search algorithms that can travel from place to place
and adapt their requirements depending on partial results.

5



Rapid Prototyping and Adapting to Change: Once a server-based search facility is established it is difficult to change
any of its features. If the search comes from the users, it will be much easier for them to incorporate new algo-
rithms or new features, because such changes do not affect anyone else.

3.1 Browsing and Searching

Another aspect of mobile search that we plan to experiment with is the combination of browsing and searching. Brows-
ing and searching are the two main paradigms for finding information on line. The search paradigm has a long history;
search facilities of different kinds are available in all computing environments. The browsing paradigm is newer and
less ubiquitous, but it is gaining enormous (and unexpected) popularity through the World-Wide Web. Both paradigms
have their limitations. Composing search queries that produce the desired results is difficult. Search is also often seen
by users as an intimidating “black box” whose content is hidden and whose actions are mysterious. Browsing can make
the content come alive, and it is therefore more satisfying to users who get positive reinforcement as they proceed. How-
ever, browsing is slow, consumes a lot of compute resources, and users tend to get disoriented and lose their trains of
thought and their original goals.

These two paradigms are used separately by most systems. We argue that what is really needed is a combination of
the two in a fully dynamic and customizable way. We envision a system where both paradigms are offered all the time.
In such a system, one would be able to browse freely—the usual hypertext model—and then be able to search from
any point. The search will cover only material related to the current document. How to define “related to” is a difficult
question. Ideally, one would want to analyze all documents and determine which ones are related, but there could
be many different relationships and any such semantic analysis is always very difficult. Running concept similarity
filtering on-the-fly may take too much time. In addition, different users may want to define “related to” differently
based on needs.

We are currently experimenting with combinations of browsing and searching through our GlimpseHTTP
(http://glimpse.cs.arizona.edu/ghttp) and WebGlimpse (http://glimpse.cs.arizona.edu/webglimpse) packages, both of
which concentrate on the server side. We plan to provide mobile search code that explores similar ideas from the user
side. This will allow us to support several different notions of relationships, different user interfaces, and different a
comparison between the two approaches.

3.2 Preprocessing

One of the important issues that large-scale deployment of liquid software will face is how to deal with pre-processing
steps. Many applications perform pre-processing to save time or other resources later on. For example, search engines
may build indexes to facilitate faster search. A search program that arrives as liquid software will not be able to take
advantage of such indexes unless the code is compatible with them. Providing facilities to address such compatibility
issues, and in general, to facilitate interaction between liquid software and existing pre-processed information is a major
part of this research. Even if there is no one standard for search indexes (and the chances of such a standard are not high
at the moment), the mobile search code can understand several indexes, at least to the point of being able to provide
minimum facilities, and negotiate the search process with the server. Some servers may opt to provide only one central
index for the whole site, and the search code can query that index limiting the search to the relevant URLs. For example,
Glimpse and other engines already have facilities to limit search based on file names and switch on-the-fly between
indexed and non-indexed search.

3.3 Software Agents

The whole notion of server versus client can be reversed with liquid software: the “servers” may contain some specific
information (e.g., employees reports), and the “client” can be a powerful analysis software that gathers all the reports,
analyzes them (on the “server” machines), and deposits the results somewhere. In the most general scenario, this client
is a software agent, completely independent of the servers. Software agents have become quite popular recently, be-
cause of many of the same reasons liquid software seems so attractive.

6



A particular interesting application is one we call Information Matching. Think of the problem of finding relevant
information as a matching problem between a large set of people and an even larger set of information items. Right now,
all searching applications perform the matching by keywords. (That is not to say that they use only Boolean queries,
but that the input is only keywords.) Suppose that we construct a set of user preferences, and ask people to evaluate
the information they see based on their preferneces. Then, before we match information to people, we match people to
people. Given the evaluations and preferences, we can determine that a group of people see things similarly (at least
in some limited domain). We can then use the evaluations of some members of the group to suggest that information
to other members. If the group is large enough, only a few members will have to evaluate each piece for many more
to benefit. This process can be dynamic and self-adjusting. Groups will be changed and reformed; preferences will be
adjusted; weights assigned to different attributes will evolve; and so on.

There are obviously many problems that need to be solved to make information matching possible. Two of the most
important ones are security and scalability. People will not participate if their privacy is not be ensured, and a central
control of the process will not scale. Liquid software has the potential to address both problems.

Our effort concentrates on specific applications—those related to search and retrieval—but in general, our goal is
to build the right infrastructure so that agents can be implemented efficiently. We are using the search applications as
a vehicle to perform large-scale experiments with liquid software, and at the same time provide very useful tools for
others. This follows naturally our work on Glimpse [MW94] and Harvest [BDH+95].

4 System Infrastructure

We are building a complete system to demonstrate liquid software. The system supports the mobile search application
implemented in Java and a fast and dynamic compiler for Java bytecode, all running on top of Scout—a communication-
oriented OS explicitly designed to support customization [MMO+95]. Once completed, this platform will be used to
experiment with liquid software as an approach to building large-scale, dynamically-customizable networks.

Our main objective in pursuing this demonstration system is to gain experience with liquid software. While we
expect the unexpected, we do foresee two specific issues that must be addressed: (1) the definition of the interface
between the framework that supports mobile code (e.g., Java) and the base system (i.e., the underlying OS), and (2)
how the OS on each node protects its resources from erroneous and malicious programs. These issues are crucial to the
successful deployment of liquid software, and they are the part of the system that is least understood. The experience
we gain implementing and using the demonstration system will add significantly to our understanding of these issues.
Consider each issue, in turn.

4.1 Liquid Software API

In contrast to traditional Remote Procedure Calls (RPC) systems, in which the interface between clients and servers
is static and fixed, liquid software promises greater flexibility by allowing the application itself to define the interface
between the client and the server. One way to view liquid software is as a dynamically configurable RPC system. The
client defines the interface and semantics of the RPCs by downloading the appropriate code onto the server. Thus the
application can tailor the client/server interface to the task at hand, avoiding the need for a single, complicated, and
inflexible RPC interface.

While much of the current rhetoric surroundingsystems that support mobile code has focused on their ability to pro-
vide flexible client/server interfaces, there is a danger in assuming that such a system automatically solves the inflexible
interface problem. In reality it does not, and in fact, it may exacerbate the situation by pushing the problem down to
the lower levels of the system where it is not as readily apparent. At some level the system must provide interfaces that
are static, on top of which the dynamic interfaces are constructed. For example, the infrastructure for liquid software
must provide an interface that is used by the applications to install software on a remote machine. This interface sits
“below” the liquid software, and therefore cannot be extended or modified using liquid software.

The danger in designing a liquid software system is in failing to recognize that not only do static interfaces exist,
but that they are also crucial to the success of the system. If the static interfaces are not designed correctly they may
unintentionally limit the functionality and performance of the software that uses them. Micro-kernel operating systems

7



offer a concrete example of this peril. Touted as a mechanism for implementing flexible operating system services, in
reality they created lower-level static interfaces of their own that often proved inadequate [Kup93].

The static interface of primary concern for liquid software is that of the application programmer’s interface, or API.
The API is the interface to the services provided by the underlying operating system. Since liquid software is not used
to implement the underlying system the API is necessarily static, and hence may limit the functionality of the liquid
software if not designed properly. Thus, when designing the API, care must be taken to ensure that it is complete,
minimal, portable and properly addresses security concerns. The API should be complete so that it does not prove to
be a limitation in the future, yet it should be minimal lest it become cumbersome to use.

Consider an application that needs to know the last time a file was modified, or the type of graphics device installed
in the machine. If the API does not provide this information, there is little the application can do to rectify the problem.
On the other hand, adding every conceivable routine to the API is not a reasonable option either. There is certainly
no way to design an API and prove that it is both complete and minimal; the best we can hope for in this area is to
experiment with liquid software enough to gain insight into what the API should contain. Many of the good ideas in
operating system design should also carry over. The API problem is made even worse, however, in that defaulting
to the “least common denominator” often does not suffice. UNIX, for example, does not enforce a format on a file it
stores, simply treating it as a string of bytes. This does not mean, however, that such a file does not contain an internal
structure that must be understood by the applications that use it. A prime example of this problem is the index files
used to improve search performance, as described in the previous section. The internal structure of these index files
defines an interface outside of the system to which the software must adhere in order to interact.

The liquid software API must also be portable, as well as complete and minimal. Liquid software is intended to
run on a heterogeneous collection of machines, encompassing many different architectures and operating systems. All
of the functions provided by the API must therefore be implementable on each of these different platforms. Certainly
there may be platforms that are too limited to support the full API (e.g., a network video camera may only support a
subset), but the full API should work on all current and future standard computing platforms. Care must be taken so that
current operating system idiosyncrasy, such as limits on file name lengths, number of processes, etc. are not hard-wired
into the API such that they eventually cripple it.

Finally, the liquid software API must address security. As described in the following subsection, there is a synergy
between verification and trust techniques and the API. Security is provided through their interaction, and shifting the
security functions among them can have dramatic effects on performance and flexibility. For example, one way to pro-
vide security within the file system is to disallow liquid software from using files by not having any file access routines
in the API. This solution is high performance, but is inflexible and perhaps overly constraining. At the other extreme
protection can be provided through verification and trust, which is highly flexible but requires verification checks to be
performed before running the software. The most desirable solution is for the API to provide the underlying security
mechanisms, while the verification layer implements the policies that use the mechanisms. There are many considera-
tions that must be addressed, however, including what are the proper abstractions for the API to provide (e.g., does file
protection based on user ID make sense for liquid software?) and the need for the API to be portable (i.e. the API’s
security mechanisms must be implementable using those provided by the underlying OS). As for the completeness and
minimal concerns the answers to these questions can only be had through experimentation.

From all of these considerations, we conclude that liquid software is not a magic bullet—it has simply changed
the nature of the interface design problem, not eliminated it altogether. Liquid software may allow flexibility at the
client/server interface, but it only pushes the problem down to the underlying inflexible API. Therefore, a major focus
our effort is to study the API requirements of liquid software and design an appropriate interface. A demonstration
system consisting of a mobile searching application implemented in Java and running on top of Scout gives us a realistic
environment to conduct this study.

4.2 Safe Liquid Software

The ability of liquid software to readily flow from computer to computer is both a blessing and a curse. It is a blessing
because enables a new computing paradigm—mobile code that dynamically extends the functionalityof the computers
it visits. On the other hand, the very mobility of liquid software is a curse because it opens a huge potential security
hole. Traditionally the outside world can only interact with a computer through well-defined interfaces presented by

8



the fixed set of programs installed on the computer. These restrictions allow the computer to protect itself from external
attack. Liquid software eliminates this protection, however, since the code that the computer runs is provided by the
very external agents from whom the computer should be protected. Without the proper precautions the computer may
import and run unsafe code, thereby opening up the computer to abuse through misuse of its resources, e.g. the code
may consume excessive amounts of memory or CPU, access memory or files which it should not, leak information to
the outside world, and so on.

The solutions to the problem of unsafe liquid software fall into three categories: user control, implicit trust, and
verified access. User control is the simplest of the three to implement, and is the one currently used in mobile code
systems such as Java. In this solution the user controls the resources that the liquid software may access, either by
setting up access control lists for the resources, or by responding to dialog boxes that describe the type of resource that
the liquid software requires and allow the user to decide whether or not to grant the request. For example, the user may
use access control lists to specify that the default liquid software may not access any files, or perhaps only files in a
temporary directory. Should liquid software attempt to do so it is either terminated, or a dialog box is presented to the
user indicating which file the software is trying to access and asking the user if it should be allowed to do so.

User control of resources is simple to implement because it is only a mechanism and leaves all policy decisions
to the user. There are several problems with this approach, however. First, it may require excessive user interaction
to control the resources available to the liquid software. If the user is presented with too many dialog boxes and must
make too many changes to the access control lists there is a danger that either the user will decide not to use the liquid
software in question (thus defeating its purpose) or the user may simply circumvent the security system by allowing
access to all resources. Furthermore, it is our assertion that any non-trivial piece of liquid software will need to access
resources in a potentially dangerous fashion. Access to user files is probably the best example of this. What makes user
control difficult is that for the users to make intelligent decisions about which liquid software should be able to access
which files they will need an in-depth understanding of what the software is trying to do and why it needs access to the
files. This implies a high level of technical sophistication on the part of the users, something that we expect the average
consumer of liquid software will not have. Thus user control is not a viable option for making liquid software safe; it
requires high levels of sophistication and interaction on the part of the users.

At the other extreme from user control is that of implicit trust. In this solution liquid software is considered safe
once it is confirmed that the software originated at a trusted entity. Consider a piece of liquid software that computes
the value of one’s stock portfolio. To do this it must not only have access the files that describe the portfolio, but it
also must have access to the network to obtain the latest stock prices. There is no practical way of ensuring that such
software will not abuse the resources it needs to do its job. Once it has access to the files and the network it could leak
one’s portfolio to the world, for example. Clearly it is infeasible for the user to carefully examine the source code to
check its correctness, nor will automatic methods work since this problem is equivalent to the halting problem. The
only feasible way of running this software is to implicitly trust it, and therefore the person or entity that created it.

While it may seem rash to simply trust software based upon its origin, this is exactly what is done today with shrink-
wrapped software. The name on the box tells the consumer who produced the software and therefore is to blame should
there be a problem. With this reassurance consumers regularly install software on their systems without any restrictions
on the resources that the software may access, leaving them totally vulnerable to improper behavior by the software
but confident that they at least know who to hold responsible.

What is needed to obtain this same level of trust in liquid software is the electronic version of shrink-wrap, or in
other words, digital signatures. Liquid software is wrapped in electronic shrink-wrap by having its creator digitally sign
it. When a consumer receives a piece of liquid software this electronic shrink-wrap allows them to make an informed
decision about the origin of the software and whether or not they trust that entity enough to run the software. Thus the
problem of user control over resource access boils down to the user deciding which entities he or she is willing to trust.

Although electronic shrink-wrap allows the liquid software consumer to verify its producer, this does not mean that
it is wise for the consumer to allow the software unrestricted access to the computer’s resources. At the very least there
may be bugs in the software that cause it to behave in unexpected ways. Because of this it is desirable to run a variety
of safety checks on the liquid software to verify its integrity prior to running it, even though its producer is trusted. This
verification spans a spectrum from very low-level checks such as those that must be done on Java bytecode to ensure
that it does not violate the safety guarantees made by the language, to very high-level checks such as those necessary
to ensure that the software does not access inappropriate files. In general, the higher the level of the checks the more

9



complex safety concerns they address. Low-level checks may be sufficient for catching coding errors, but high-level
checks are needed to catch malicious attempts to violate security. It is important to remember that verification cannot
completely replace trust since verification in general is equivalent to the halting problem. Thus truly malicious attempts
to violate security can only be thwarted via electronic shrink-wrap.

One of the interesting possibilities that fall out of the relationship between trust and verification is that it is possible
to do the verification process prior to load-time. To do this a third entity is created whom the consumer trusts, and this
entity verifies the software and adds its own electronic shrink-wrap to signify to the consumer that the software has
been verified. With this assurance in hand the liquid software can be run without re-verification. Once again, while
this approach may seem radical it has a parallel today in the Underwriter’s Laboratory (UL). The UL produces safety
guidelines that manufactured products must follow, thus eliminating the need for the consumer to perform the checks
himself. For example, the UL sticker on a toaster informs the customer that the internal wiring and components meet
basic safety guidelines, therefore the customer does not need to take the toaster apart to ensure that it will not cause an
electric shock or fire. (Note, however, that the UL label does not say anything about the toaster’s ability to make toast).
Through this process the consumer is able to replace the need to personally verify the safety of products with trust in
UL. In a similar fashion we plan to develop a Liquid Software Underwriter’s Laboratory whose purpose is to perform a
set of basic verifications on software and electronically shrink-wrap the result. This reduces the amount of verification
that must be done to run the software to simply validating the integrity of the shrink-wrap.

The liquid software infrastructure we are developing both provides the mechanisms necessary to support implicit
trust and verification, as well as serves as a test-bed for investigating the trade-offs between the two. Our work with
electronic shrink-wrap will primarily be on the infrastructure aspect; we assume that others have adequately addressed
the cryptographic issues associated with digital signatures and we plan incorporate their work into the infrastructure (we
are currentlyplanning on using the PGP package). We are instead turningour attention to the mechanism for distributing
the keys for the shrink-wrap, and the user interface to the the entire shrink-wrap mechanism. By building a working
liquid software system we hope to experiment with the utility of electronic shrink-wrap in general.

On the verification front we are experimenting with the utility of various degrees of verification, the effect that ver-
ification has on the liquid software API, and the benefit of having a centralized Underwriter’s Laboratory for liquid
software. The gigabit compiler effort needs to address the low-level verification required to support Java. We are ex-
tending this verification to the API itself and experiment with the usefulness of verifying different aspects of how the
software uses the API. For example, one possible verification is that the liquid software only modifies files which it
itself created. Once a piece of software passes this test the user can be assured that running it will not modify any ex-
isting data. If the software is question is so complex that the verifier cannot make a determination about its safety the
user will be notified so that he or she can decide whether or not to run it.

We also intend to experiment with the liquid software API and its effect on the verification process. For example,
one could imagine an API that restricted the software to only modifying files that it created. This would eliminate the
need for the verification mentioned above, at the cost of limiting the functionality of the software. Nonetheless, these
tradeoffs need to be examined and experimented with, something the liquid software infrastructure will allow us to do.

5 Related Work

We divide the research related to liquid software into three areas corresponding to the three major themes of our effort:
compiler techniques, mobile search, and system infrastructure.

5.1 Compiler Techniques

Dynamic code generation—the generation of code at run time for subsequent execution—is currently a popular research
area. Dynamic code generation is routinely studied as it relates to generating highly specialized routines optimized with
respect to values that could only be known at run time. Leone and Lee’s system automatically generates specialized
routines for a functional language, Fabius [LL94]. Their system does not expose any details of the code generation to
the user, and operates relatively efficiently.

10



Engler and Proebsting took a more nuts-and-bolts approach to dynamic code generation with their DCG system
[EP94]. At run time users specify code to be emitted in a machine-independent tree format which is subsequently
translated by DCG to binary code for immediate execution. The translation is efficient, executing about 300 instructions
for every instruction generated. The DCG system is constructed by tools that translate machine specifications into
the necessary routines for dynamic code generation. The machine specifications indicate the translation from the tree
format to machine instructions, and the binary format of those instructions. Porting DCG to a new platform requires
creating new machine specifications.

Engler has created a newer, more efficient dynamic code generation system called VCODE [Eng96]. VCODE is a
machine-independent intermediate representation that resembles 3-address code for a RISC-like instruction set archi-
tecture. The VCODE is simple to translate (suboptimally) to machine code. The translation system requires about 20
instructions per instruction generated. Like DCG the VCODE system is built with tools that process machine specifica-
tions. VCODE is currently the target of a high-level language, ‘C, that is designed to ease the development of programs
that rely on dynamic code generation [PEK96].

Ramsey and Fernandez have developed the New Jersey Machine Code Toolkit, which translates a specification of
a machine’s instruction set into C routines that can assemble and disassemble binary images of those instructions. The
generated routines can also handle the relocation of addresses within previously assembled instructions. Unfortunately,
the generated routines, while useful, are not optimized for speed.

Franz developed a system for generating code “on the fly” for Oberon programs [Fra94]. Like Java, Oberon mod-
ules load dynamically, piece by piece. Franz’s system loaded compiled modules as abstract syntax trees for immediate
translation to machine code. Because the system read modules from (slow) disks, the trees were much more compact
than the resulting object code, and his code generator was very fast, it was actually faster to read and compile the trees
than to simply read object code directly.

Many people have worked on making interpreters fast. Much of the work has centered around the time/space trade-
offs for various encodings of the interpreted code (e.g., direct-threaded vs. indirect threaded)[Pit87, Kli81]. Ertl demon-
strated the speed advantages and complexities involved in caching multiple stack elements in registers in a stack-based
interpreter [Ert95].

5.2 Mobile Search

The closest area to mobile search is the area of intelligent information agents, which have received a lot of deserved
attention lately [CAC94, WJ95]. Attempts to combine several search engines has been carried out most prominently
by the meta-crawler [SE95]. Wiederhold [Wie92] (and many others) suggest mediators, which mediate between the
users, their data, and their application software. These mediators are assumed to reside in the servers, but they could
also be implemented as liquid software.

Using user preferences and histories has been incorporated into several search applications including NetAgent
[PC95], which allows users to share common views and feedback throughcollaborative indexing (they used our Glimpse
system for their indexing), INFOSCOPE [FS91], which makes suggestions based on previous usage patterns, and the
Expertise Locator [KMS95] of Bell Labs for locating experts in any particular topic (they also use our Glimpse system).
Our work with Glimpse is described in the next section.

5.3 System Infrastructure

While the machine-independent bytecode aspects of liquid software has received considerable attention recently, com-
paritively little effort has been put into the system-related issues. There is little experience—beyond simple “toy”
demonstrations—with the Java API, and the Java protection mechanisms are crude at best (security is either turned
on or off). A major thrust of this effort is to implement a realistic application using liquid software so we can gain
experience with these issues.

OS support for liquid software is also a mostly unexplored area. The most commonly employed strategy, as exem-
plified by Sun Microsystems, is to pare back a full-fledged operating system (e.g., Solaris), and use it as a Java kernel.
This is a short-term solution, at best, considering the unweildy nature of modern day operating systems. In contrast,

11



Scout will allow us to configure precisely the modules required by the Java API. In other words, one can configure a
Scout kernel to support exactly the Java API.

References

[BDH+95] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The Harvest information
discovery and access system. Computer Networks and ISDN Systems, 28:119–125, 1995.

[CAC94] Special issue on intelligent agents. Communications of the ACM, 37, July 1994.

[Eng96] D. R. Engler. VCODE: a retargetable, extensible, very fast dynamic code generation system. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation, May
1996. To appear.

[EP94] Dawson R. Engler and Todd A. Proebsting. DCG: An efficient, retargetable dynamic code generation sys-
tem. In International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 263–273, October 1994.

[Ert95] M. Anton Ertl. Stack caching for interpreters. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 315–327, June 1995.

[Fra94] Michael Steffan Oliver Franz. Code-Generation On-the-Fly: A Key to Portable Software. PhD thesis,
Swiss Federal Institute of Technology Zurich, 1994.

[FS91] G. Fischer and C. Stevens. Information access in complex, poorly structured information spaces. Human
Factors in Comp. Sys. (CHI91) proc, pages 63–70, 1991.

[jav95] The JAVA language: A white paper. Technical report, Sun Microsystems, 1995.

[Kli81] Paul Klint. Interpretation techniques. Software Practice and Experience, 11(10):963–973, October 1981.

[KMS95] H. Kautz, A. Milewski, and B. Selman. Agent amplified communication. AAAI Spring Symposium Series
on Information Gathering from Distributed, Heterogeneous Environments, 1995.

[Kup93] Michael D. Kupfer. Sprite on Mach. Proceedings of the Third USENIX Mach Symposium, pages 307–322,
April 1993.

[LL94] Mark Leone and Peter Lee. Lightweight run-time code generation. In Proceedings of the ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program Manipulation, pages 97–106, June 1994.

[MMO+95] A. Montz, D. Mosberger, S. W. O’Malley, L. Peterson, and T. Proebsting. Scout: A communications-
oriented operating system. In Proceedings of the Fifth HotOS Workshop, May 1995.

[MW94] U. Manber and S. Wu. GLIMPSE: A tool to search through entire file systems. In Usenix Winter 1994
Technical Conference, pages 23–32, January 1994.

[OPM94] Sean O’Malley, Todd A. Proebsting, and A. Brady Montz. USC: A universal stub compiler. In Proceed-
ings of SIGCOMM 94 Conference on Communications Architectures, Protocols and Applications, pages
295–306, August 1994.

[PC95] Taeha Park and Kilnam Chon. Netagent: A global search system over internet resources by distributed
agents. In INET’95 Hypermedia Proceedings, 1995.

[PEK96] Massimiliano Poletto, Dawson R. Engler, and M. Frans Kaashoek. tcc: A template-based compiler for ‘C.
In Proceedings of the Workshop on Compiler Support for Systems Software, pages 1–7, February 1996.

12



[Pit87] T. Pittman. Two-level hybrid interpreter/native code execution for combined space-time program effi-
ciency. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 150–152, June 1987.

[Pro95a] Todd A. Proebsting. BURS automata generation. ACM Transactions on Programming Languages and
Systems, 17(3):461–486, May 1995.

[Pro95b] Todd A. Proebsting. Optimizing an ANSI C interpreter with superoperators. In Annual Symposium on
Principles of Programming Languages, pages 322–332, January 1995.

[RF95] Norman Ramsey and Mary F. Fernandez. The New Jersey machine-code toolkit. In Proceedings of the
1995 Usenix Winter Conference, January 1995.

[SE95] Erik Selberg and Oren Etzioni. Multi-service search and comparison using the metacrawler. In Proceed-
ings of the 4th World Wide Web Conference, pages 195–208, 1995.

[Wie92] G. Wiederhold. Mediators in the architecture of future information systems. IEEE Computer, pages 38–
49, March 1992.

[WJ95] M. Wooldridge and N. R. Jennings, editors. Intelligent Agents - Theories, Architectures, and Languages,
volume 890. Springer-Verlag, 1995.

13


