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ABSTRACT

Rectangles with dimensions independently chosen from a uniform
distribution on [ 0 , 1 ] are packed on-line into a unit width strip under a
constraint like that of the Tetris game: rectangles arrive from the top
and must be moved inside the strip to reach their place; once placed,
they cannot be moved again. Cargo loading applications impose similar
constraints. This paper assumes that rectangles must be moved without
rotation. For n rectangles, the resulting packing height is shown to have
an asymptotic expected value of at least ( 0. 31382733 ...) n under any
on-line packing algorithm. An on-line algorithm is presented that
achieves an asymptotic expected height of ( 0. 36976421 ...) n. This algo-
rithm improves the bound achieved in Next Fit Level (NFL) packing, by
compressing the items packed on two successive levels of an NFL pack-
ing via on-line movement admissible under the Tetris-like constraint.
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Packing Rectangles in a Strip

1. Introduction

A variant of the classical bin-packing problem is two-dimensional strip-packing,
in which rectangles of width and height bounded by 1 are packed into a semi-infinite
strip of width 1, imagined to form a vertical bin. Packings must be such that no rec-
tangle overlaps another’s area, and the sides of the rectangles are parallel to the strip
sides. The objective is to minimize the height of the packing in the strip, for a given
sequence of n rectangles†. The optimum packing is elusive and technically intractable,
so most attention focuses on heuristic packing algorithms. Deterministic or probabilis-
tic analysis can assess how closely such algorithms approach the optimum in either an
absolute or ratio sense.

In this paper, we study the strip-packing problem under two constraints on the
allowable packing algorithm:

• The packing algorithm must be on-line: the algorithm must inspect rectangles
(also referred to as items) one at a time, make a placement decision for each rec-
tangle at the time it is inspected, and must not later renege on that placement
even in light of subsequent information.

• The packing algorithm must obey a Tetris-like constraint [AE96]: rectangles
descend from the top of the strip, and must be moved within the strip horizon-
tally and vertically to reach their final placement, and may not overlap the area of
any other rectangle during this movement.‡ In this paper, rotation of rectangles
during placement is not allowed.

In the original formulation of the strip-packing problem [BCR80], an on-line packing
algorithm was allowed to consider rectangles as being initially outside of the two-
dimensional strip; rectangles could then be placed wherever they fit. The Tetris con-
straint removes many such space utilization opportunities, when algorithms must
operate on-line. See Figure 1 for an example.

_ ______________
†The term two-dimensional bin-packing is often reserved for the variant of this problem in which
horizontal boundaries are placed at integer strip heights, and rectangles are forbidden to overlap
these ‘‘bin’’ boundaries. This paper studies the less restrictive strip packing problem. Many au-
thors refer to the strip as a bin.
Tetris is a registered trademark of The Tetris Company.
‡Tetris, arguably the most popular video game in the world, was created by Alexey Pajitnov in
1985. The allusion to the Tetris game in strip-packing comes from the requirement that rectangles
drop from the top of the strip and avoid already placed rectangles. However, the objective of
strip-packing—height minimization—is different from the Tetris game’s objective.
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Constraints similar to the Tetris packing restriction arise in warehousing and
cargo container loading applications, where the objective is to minimize wasted storage
area. The on-line Tetris constraint corresponds to requiring that each item (e.g., box)
be stored before a new item arrives, and that physical access to each item’s storage
location exists at the time of its arrival. A requirement to unload in reverse order of
on-line arrival also imposes the Tetris constraint.
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Figure 1: If the items depicted arrive on-line in the order 1 , 2 , ..., they can be packed
on-line using a First-Fit Level heuristic [Hof80, CL91] as shown at left.
Under the Tetris constraint, the best possible on-line packing is shown at
right.

In This Paper

The objective of the strip packing problem is to pack a list L n of n rectangles in such
a way as to minimize the height of the packing. After all rectangles in L n have been
placed, the height of the packing is the maximum distance from the strip bottom to the
top of any packed rectangle.

The packing problem can be studied under deterministic or probabilistic assump-
tions about the rectangle widths and heights. Here we examine the probabilistic model
in which the n given rectangle widths and heights (W i , H i ) , i = 1 , 2 , ... , n are 2n
independent draws from a uniform distribution on [ 0 , 1 ]. We are interested in the
expected height of the packing, asymptotically for large n. For this model it is shown
that

• No on-line algorithm∗ operating under the Tetris constraint can achieve a lower
expected height, asymptotically, than ( 2 ln 2 − π2 /12 − 1/4 ) n = ( 0. 323827 ...) n.

_ ______________
∗A distinction can be made between packing algorithms that enforce ‘‘gravity’’ and those that do
not. If gravity is in effect, rectangles must be placed with their bottoms abutting the top of a previ-
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• An algorithm exists (a variation of the Next Fit Level (NFL) algorithm [Hof80])
that achieves the expected height of ( 0. 369764 ...) n. Since NFL is an on-line
algorithm that obeys the Tetris constraint, this result improves the NFL bound of
( 0. 381338 ...) n.

Problem History

The problem of two-dimensional strip packing has had a long history of development
since [BCR80]; for a comprehensive overview of the subject, see [CS90]. The taxon-
omy of strip packing divides naturally into the study of off-line algorithms (regarding
which a large literature exists) and on-line algorithms (about which a good deal less is
known). This paper considers on-line algorithms, and specifically those related to
level algorithms, defined below. Within this class, we are interested in the effect of
the Tetris constraint on packing density, and on average-case analysis of the problem.
We will confine this brief review to the on-line strip packing literature, beginning with
deterministic results and and concluding with probabilistic results.

In the deterministic literature regarding approximation algorithms, the quality of
algorithms is most commonly measured by the asymptotic worst case ratio RA

∞ of the
algorithm, defined as follows. Let A(L) be the height used by algorithm A in packing
the rectangles in list L, and let OPT(L) denote the minimal height used by any algo-
rithm of the class of algorithms under study (e.g., on-line, on-line with lists sorted by
height, etc.). Then the asymptotic performance ratio is:

RA
∞ =

n→ ∞
lim
_ __

L = n
sup

OPT(L)
A(L)_ _______

The asymptotic ratio is an appropriate measure of performance when the number of
rectangles is large; when n is small, the absolute worst-case ratio R A =
sup L A(L) / OPT(L) is used.

Lower bounds for on-line strip packing algorithms were first explored by Brown,
Baker and Katseff [BBK82], who proved a number of lower bounds on the absolute
worst-case ratio and showed, using a bin-packing result of Liang [Lia80], that any on-
line algorithm A for strip packing must obey RA

∞ ≥ 1. 536 .... Van Vliet [Van92] later
improved this to RA

∞ ≥ 1. 540 .... These lower bounds hold even if algorithms are
allowed to pre-sort rectangles by height or width. In [BS83], Baker and Schwarz
introduced on-line shelf algorithms, which allocate levels of different heights into
which items can be packed, demonstrating an algorithm FIRST FIT SHELF having
asymptotic performance ratio RFFS(r)

∞ arbitrarily close to 1. 7 (as the shelf parameter
r → 1). Csirik and Woeginger [CW97] show that any on-line shelf algorithm A must
obey RA

∞ ≥ 1. 691 ..., and that the Harmonic shelf algorithm S(k , r) has asymptotic per-
formance ratio RS(k , r)

∞ arbitrarily close to the lower bound, with proper choice of
parameters k and r.

_ ______________
ously packed rectangle, or the bottom of the strip. Our lower and bound applies whether or not
gravity is in effect, and the Compression Algorithm (which does not enforce gravity) provides an
upper bound in both cases.
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The above shelf algorithms, however, do not adhere to a Tetris constraint, which
imposes further restrictions upon on-line placement of rectangles. Deterministic pack-
ing under the Tetris constraint was introduced by Azar and Epstein [AE96], who found
that, for widths W i chosen from [ε , 1 ] ∪ [ 0 , 1 − ε], and arbitrary rectangle heights
H i (not limited to [ 0 , 1 ]), there is a lower bound of Ω( log

1⁄2 ( 1/ε) ) on the asymptotic
performance ratio for any deterministic or randomized algorithm. This rules out any
competitive algorithm for the deterministic model. They present a level algorithm that
achieves an asymptotic performance ratio of O( log ( 1/ε) ), for widths chosen as above.
If rectangles have both their widths and heights bounded by 1, and can be rotated so
that their smaller dimension becomes the width, then there is a shelf algorithm with
performance ratio 4 relative to the optimum [AE96].

Moving now to stochastic models of two-dimensional strip packing, we are given
a list L n of n items (or rectangles) (W i , H i ), with widths and heights sampled from
populations with a given probability distribution. The objective criterion is now
E[A(L n ) ], the expected height of the packing after all n items have been packed by
algorithm A. For stochastic models, performance of an algorithm is commonly
assessed by giving the absolute value E[A(L n ) ] as a function of n (exactly or asymp-
totically), rather than in terms of a performance ratio. Progress in probabilistic strip
packing has been made under the assumption that the W i and H i are 2n independent
U[ 0 , 1 ] random variables.

Under this uniform model, a lower bound for any packing—on or off-line—can
easily be derived. The height of the packing must be at least as large as the total area
of the rectangles, so that E[OPT(L n ) ] ≥ n /4. It must also be as large as the the total
height of rectangles with width exceeding 1⁄2 ; use of this latter fact improves the lower
bound [CL91] to E[OPT(L n ) ] = n /4 + Ω(n

1⁄2 ). It is interesting to compare this
absolute lower bound with that for algorithms having a Tetris constraint, derived in
Theorem 1 below.

If the packing algorithm is allowed to know the number of items to be packed
and the distribution of item heights, then a shelf algorithm can be used to pack the
items on-line. The algorithm Best Fit Shelf [CS93] operates on-line and achieves the
result E[BFS(L n ) ] ∼ n /4. It does not adhere to the Tetris constraint.

A class of packing algorithms, called level algorithms, pack rectangles into hor-
izontal strips, or levels, where level 1 is the bottom of the strip and level i is a hor-
izontal base line drawn through the top of the tallest rectangle on level i − 1. Level
algorithms are especially appropriate when there is no information available a priori
about the rectangles to be packed, and the packing must be on-line. The Next Fit
Level (NFL) algorithm was analyzed in [Hof80], and is most relevant to our results
because (a) it is on-line, (b) it obeys the Tetris constraint and (c) it forms the starting
point for our improved bound. We will therefore take some time to describe the NFL
algorithm and its analysis.

In packing L n , NFL starts out by placing items left justified along level 1 (the
bottom of the strip). If an item I i is encountered that is too wide to fit in the remain-
ing space on a level j, I i is placed left justified on a horizontal baseline drawn through
the top of the tallest rectangle on level j, thus opening a new level j + 1. If all items
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are packed by level m, the height of the packing is at the height reached by the tallest
item of that level.

Analysis of NFL uses results on one-dimensional bin-packing originally proved
for the Next Fit (NF) bin-packing algorithm [CSHY80, Hof84]. The process by which
successive levels are filled with items in NFL is identical to the process by which suc-
cessive bins are filled in NF. Consider the sequence W 1 , W 2 , ... of item widths
packed level by level into the strip of unit width. If Y i is the width used by all items
at the ith level, then the Y i form a continuous-state Markov process [CSHY80] with
transition kernel

K(x , y) = P[Y i + 1 ≤ y  Y i = x] = 1 −
x

1 − y_ _____e x − ( 1 − y) , 1 − x < y ≤ 1 ,

and zero elsewhere. This kernel can be readily calculated from the uniform assump-
tions made on the W i . The process {Y i } is ergodic [CSHY80] and the distributions
of the Y i converge at a geometric rate to an equilibrium distribution F Y (y). If we
imagine the NFL algorithm proceeding to equilibrium (large n), it is established that
the process tends toward stable behavior characterized by three equilibrium random
variables involving the widths of items (see Figure 2).

• The equilibrium level width Y is the amount of the available unit width that is
utilized in each level, at equilibrium. It has the distribution function on [ 0 , 1 ]
given by

P[Y ≤ y] = F Y (y) = y 3 . (1.1)

• The equilibrium level number M is the number of items that will fit in each level,
at equilibrium. It has the probability mass function

P[M = m] = p M (m) = 3
(m + 3 ) !

m 2 + 3m + 1_ ____________ . (1.2)

• The first item packed at each level has a width that is conditioned by the fact that
it failed to fit in the space 1 − Y remaining on the level below. It is no longer a
uniform random variable, but is positively width biased with expected value 5 /8.
This equilibrium leading item width Z has a distribution function on [ 0 , 1 ] given
by

P[Z ≤ z] = F Z (z) =
2
3_ _




z 2 −

3
z 3
_ __





. (1.3)

From (1.1) we have EY = 3/4, and the sum of the n rectangle widths has expectation
n /2; from these facts it follows [CSHY80, Hof84] that

E[ number of levels ] =
3

2n_ __ . (1.4)

Based on the above process involving only the sequence of widths
W 1 , W 2 , ... , W n , the independent heights H i can be used to obtain the height of a
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Figure 2: The Next Fit Level (NFL) packing process at equilibrium, showing two adja-
cent levels. The leading item width Z is distributed as in equation (1.3). The
level width Y is distributed as in equation (1.1). The remaining widths W i
are U[ 0 , 1 ].

level at equilibrium. It is clearly the extreme

H (M) = max (H 1 , H 2 , ... , H M )

where the H i are i.i.d. U[ 0 , 1 ] variates and M is the (random) number of items at a
level. Conditioned on M = m, the expectation of such a uniform maximum is
m /(m + 1 ), and so using (1.2) one obtains the equilibrium level height in terms of the
exponential integral [AS70] and Euler’s constant, making it readily calculable:

EH (M) =
m≥1
Σ m + 1

m_ _____p M (m) (1.5)

=
4
27_ __ − 3e +

2
3_ _ 

 Ei(1) − γ 
 = 0. 57200 77418 ...

The expected height of the NFL packing is thus finally by (1.4) and (1.5)

E[NFL(L n ) ] ∼
3

2n_ __ .( 0. 57200 77418 ...) (1.6)

∼ ( 0. 38133 84945 ...) n (n → ∞ ) .
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2. The Lower Bound

For each list L n of rectangles, there is some on-line Tetris packing (sequence of rec-
tangle placements) that produces the minimal height among all on-line packings of L n
obeying the the Tetris constraint. Let OPT denote an algorithm that, for each L n , pro-
duces one such minimal height packing. Let EOPT(L n ) be the expected height pro-
duced by OPT in packing the n rectangles in list L n , under the uniform model. Then
the packing constant, i.e., the asymptotic expected height of the optimal packing per
additional item, is given by

γ = lim_ __ n→ ∞ n

EOPT(L n )__________ .

Theorem 1

γ ≥ 2 ln 2 −
12
π2
_ __ −

4
1_ _ = 0. 31382733 ... (2.1)

Proof: Consider the subsequence of rectangles in L n having widths greater than 1 /2,
and let I 1 and I 2 be two successive rectangles in the subsequence, having widths x
and y, respectively. Let C be the (possibly empty) collection of rectangles in the full
sequence L n between I 1 and I 2, and having a width exceeding 1 − min (x , y). No
rectangle in C can be moved past either of I 1 and I 2 under the Tetris constraint. Let
H be the height of the tallest rectangle in C, with H = 0 if C = ∅. There is an aver-
age of n /2 rectangles wider than 1/2 and the average height of each such rectangle is
1/2, so for large enough n, EOPT(L n ) is at least ( 1 /2 + EH) n /2, i.e.,

γ ≥ 1/4 + EH /2 .

Another look at (2.1) shows that it is now sufficient to prove that
EH = 4 ln 2 − 1 − π2 /6.

Define z = min (x , y) so that all rectangles in C have widths exceeding 1 − z. To
find P[C = k], focus on the subsequence of rectangles with widths in [ 1 − z , 1 ].
We identify the event [C = k] with the occurrence in this subsequence of exactly k
rectangles with widths in [ 1 − z , 1 /2 ] from one rectangle wider than 1/2 to the next
such rectangle, i.e.,

P[C = k] = p k ( 1 − p) , k = 0 , 1 , ... ,

where p = [ 1/2 − ( 1 − z) ] / z = 1 − 1/( 2z) is the conditional probability that a width
is at most 1 /2 given that it exceeds 1 − z.

The tallest of C = k rectangles has expected height k /(k + 1 ), so the expected
height of the tallest rectangle in C is

EH xy =
k≥0
Σ k + 1

k_ ____p k ( 1 − p) = 1 −
k≥0
Σ k + 1

1_ ____ p k ( 1 − p)

= 1 −
p

1 − p_ _____
k≥0
Σ k + 1

p k + 1
_ ____ = 1 −

p
1 − p_ _____ ln

1 − p
1_ _____

= 1 −
2z − 1

1_ ______ ln 2z .
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Without loss of generality, assume that x ≤ y (z = x), so that to obtain EH we need to
average EH xy over the (conditional) uniform distribution in the triangular region
1/2 ≤ x ≤ y ≤ 1. The density in this triangle (with area 1 /8 that of the unit square) is
8, since we are conditioning on an outcome occurring there. So

EH = 8
1/2
∫
1

x
∫
1 



1 −

2x − 1
ln 2x_ ______





dy dx = 8
1/2
∫
1

( 1 − x)



1 −

2x − 1
ln 2x_ _____





dx

= 2
0
∫
1

( 1 − v)



1 −

v
ln (v + 1 )_ _________





dv (v = 2x − 1 )

= 2
0
∫
1 



1 −

v
ln (v + 1 )_ _________ − v + ln (v + 1 )





dv

= 4 ln 2 − 1 −
6

π2
_ __ (see e.g., [GR80, p. 555]).

3. The On-Line Compression Algorithm

In this section we describe an on-line algorithm which improves on the packing
done by the Next Fit Level algorithm. The Compression Algorithm is motivated by
the observation that a large proportion of levels (over 70%) in the NFL algorithm, at
equilibrium, contain only one or two items. In any two adjacent levels, it is likely that
some of the items from the upper level can be dropped down and repacked into holes
in the lower level. (Confining attention to levels with at most two items makes the
analysis of the Compression Algorithm tractable.)

The repacking and compressing of adjacent levels of the NFL packing described
above must first be shown to be possible by an on-line algorithm. In describing how
the Compression Algorithm operates on-line, it will be easier to describe first a variant
of the NFL packing algorithm—called Bi-level NFL—that has identical probabilistic
properties at equilibrium.

Bi-level NFL (BNFL), like NFL, packs items into levels, opening new packing
levels at the high point of the old level as soon as a rectangle arrives that will not fit.
As its name indicates, it packs two levels at a time. We will call the first of the two
levels the lower level, and the second the upper level. After packing two levels, Bi-
level repeats the pattern described below.

Bi-Level NFL (BNFL):

Lower Level: When a new bi-level is opened, BNFL places the first rectangle I 1 left-
justified in a newly opened level (the lower level). If the next rectangle
I 2 does not fit into the lower level, BNFL proceeds to the Upper Level
stage, described below.
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If I 2 fits into the lower level, BNFL right-justifies it there. As long as
subsequent items will fit on the lower level, BNFL packs them right
justified against the last item packed. As soon as an item arrives whose
width will not fit into the lower level, the packing proceeds to the
Upper Level stage below.

Upper Level: Let I j , j ≥ 2 be the first item that will not fit into the lower level.

If j = 2 and there is only one item in the lower level, BNFL packs I 2
left justified above I 1.

If j ≥ 3, BNFL packs I j above the shorter of items I 1 and I 2 and
justified against the nearest strip wall.

Each of the items I j + 1 , ... is packed on the upper level, justified against
the last item packed there, as long as it fits.

As soon as an item I k arrives that will not fit into the upper level, a
new bi-level is opened, and BNFL repeats its packing cycle, beginning
with I k .

Observe that BNFL is on-line, has the same items in the same levels as NFL, and that
both utilize the same amount of width (Y) at each level at equilibrium. The first item
packed at each level is identical in BNFL and NFL (although in BNFL that first item
may be right justified if it occurs in an upper level of a bi-level). Therefore the equili-
brium processes described for NFL also apply to BNFL. Also note that the expected
height of a bi-level in BNFL, at equilibrium, will be twice the expected height of an
NFL level, as given in (1.5).

Next we describe the Compression Algorithm. This algorithm proceeds as in
BNFL, but takes advantage of certain patterns of items in a bi-level, repacking these
patterns to reduce the height of the bi-level. In order to make the analysis tractable,
only those bi-levels containing exactly 3 or exactly 4 items will be repacked by the
Compression Algorithm.†

Compression Algorithm (CA):

Lower Level: The algorithm proceeds to pack the lower level exactly as for BNFL. If
only one item fits at the lower level, it is left justified. If there are at
least two items that fit at the lower level, CA leaves the lower level
with I 1 left justified and I 2 right justified.

Upper Level: Let I j , j ≥ 2 be the first item that will not fit into the lower level.

If j = 2 and there is only one item packed in the lower level, CA left
justifies I 2. If I 3 will not fit in the upper level, this completes a bi-
level for CA. If I 3 fits in the upper level, CA right justifies it, and if I 3
can be slid down to the bottom of the lower level by a legal Tetris
move, CA does so. Otherwise CA continues exactly as for BNFL.
Items I 4 , ... that fit in the upper level are packed exactly as for BNFL.

_ ______________
†Bi-levels with exactly 2 items cannot be improved by compression.
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If j = 3, I 3 is justified over the shorter of I 1 and I 2. If I 3 can be slid
down to abut the top of the shorter of I 1 and I 2 using a legal Tetris
move, CA does so, justifying I 3 against the nearest strip wall. If there
is an item I 4 that can be slid down to fit with I 3 on the same base line,
CA does so. Otherwise I 4 is packed in the same position as BNFL
would pack it. Items I 5 , ... that fit in the upper level are packed exactly
as for BNFL.

If j > 3, then CA operates exactly as BNFL in the upper level.

As soon as an item I k arrives that will not fit into the upper level, a
new bi-level is opened, and CA repeats its packing cycle, beginning
with I k .

As for BNFL, the distribution of widths of items packed by CA is exactly the same as
for NFL. The only change is that with positive probability, I 3 and possibly I 4 may be
slid downward in the CA packing. This will result in a certain overall expected
compression in the height of a bi-level that will be analyzed in section 4 below.

There are three patterns of items in a bi-level that will lead to a positive expecta-
tion of height compression by CA. (There may be more such patterns, but we have
limited ourselves to these three to make analysis tractable—they are the patterns of
highest probability.) These three patterns are shown in Figure 3, and consist of
numbers of items in the lower and upper levels corresponding to 2–2, 2–1, and 1–2.
The figure also suggests how CA can realize compression, provided the widths of indi-
vidual items are amenable.

4. Upper Bound Analysis

In this section, we take in turn each of the patterns of Figure 3, calculate the probabil-
ity of occurrence of these patterns, and compute the expected compression in the
height of a bi-level that will ensue. At the end of the section, we accumulate these
expected rewards and compute the asymptotic expected height of the packing for the
Compression Algorithm.

4.1. Two Items in the Lower and Two Items in the Upper Level

The four events whose probability and expected compression we wish to calculate are
depicted in Figure 4. In each case, one must imagine another item of width W 5,
marking the beginning of the next bi-level, and placed left justified on a line through
the highest point of the bi-levels shown.

Although cases 1a and 2a are symmetric (and likewise cases 1b and 2b), their
probabilities differ. This is because at equilibrium the distribution of the first item
packed Z 1 is not uniform; it is given in equation (1.3). Variates with the distribution
(1.3) will be denoted Z in the sequel, and variates with U[ 0 , 1 ] distributions will be
denoted W.
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Lower level: 1 item/Upper level: 2 items
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3

NFL CA

11

NFL CA

1

1

4

3

2 1
2

3
1

Figure 3: Bi-level patterns in NFL packings that will lead to a positive expectation of
compression under the CA algorithm. These bi-level events are disjoint at
equilibrium.

4.1.1. Event Probabilities

Variates Z have pdf f Z (z) = ( 3/2 ) ( 2z − z 2 ) on [ 0 , 1 ], and variates W have pdf
f W (w) = 1 on [ 0 , 1 ].

In all four cases, we have the following conditions, which together form an event
we shall call A:

Z 1 + W 2 ≤ 1 — I 1 and I 2 fit on the lower level
Z 1 + W 2 + W 3 > 1 — I 3 does not fit on the lower level
W 3 + W 4 ≤ 1 — I 3 and I 4 fit on the upper level
W 3 + W 4 + W 5 > 1 — I 3 and I 4 are alone on the upper level

Case 1a: In addition, we have the conditions that I 1 and I 3 can fit together across the
strip, but that I 4 will not fit with them. We also have that the (independent) heights
of the first two items make I 1 the taller:

P[ Case 1a ] = P[H 2 < H 1 ] .P[A , Z 1 + W 3 ≤ 1 , Z 1 + W 3 + W 4 > 1 ] (4.1)
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W 2Z 1

W 3 W 4

W 2

W 3

Case 1a Case 1b Case 2a Case 2b

W 4

Z 1Z 1

Case 1: Item 1 taller than Item 2 and

Item 2 fits with Item 3

Case 2: Item 2 taller than Item 1 and

Item 1 fits with Item 3

W 2

W 4 W 3

W 2Z 1

W 4 W 3

Figure 4: Two items on the lower level and two items on the upper level, shown as
compressed by CA. The captions summarize the conditioning on the widths
of items, and on the relative heights of items 1 and 2 that allow compression
to take place. Not shown is an item of width W 5 that marks the start of the
next bi-level above the one depicted.

=
2
1_ _ .

0
∫
1

f Z (z 1 ) dz 1
0
∫

1 − z 1

dw 2
1 − z 1 − w 2

∫
1 − z 1

dw 3
1 − z 1 − w 3

∫
1 − w 3

dw 4
1 − w 3 − w 4

∫
1

dw 5

=
2
1_ _

35
1_ __ =

70
1_ __ .

Case 1b: In addition to event A, we have the conditions that I 1 and I 3 can fit together
across the strip, and that I 4 will also fit with them†. We also have that the I 1 is taller
than I 2:

P[ Case 1b ] = P[H 2 < H 1 ] .P[A , Z 1 + W 3 ≤ 1 , Z 1 + W 3 + W 4 ≤ 1 ] (4.2)

=
2
1_ _ .

0
∫
1

f Z (z 1 ) dz 1
0
∫

1 − z 1

dw 2
1 − z 1 − w 2

∫
1 − z 1

dw 3
0
∫

1 − z 1 − w 3

dw 4
1 − w 3 − w 4

∫
1

dw 5

=
2
1_ _

280
3_ ___ =

560
3_ ___ .

Case 2a: In addition to event A, we have the conditions that I 2 and I 3 can fit together
across the strip, but that I 4 will not fit with them. In this case we have that item I 2 is
_ ______________
†No use is made of the potential gap between items 1 and 2. A similar remark applies in Case 2b.
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taller than I 1.

P[ Case 2a ] = P[H 2 ≥ H 1 ] .P[A , W 2 + W 3 ≤ 1 , W 2 + W 3 + W 4 > 1 ] (4.3)

=
2
1_ _ .

0
∫
1

f Z (z 1 ) dz 1
0
∫

1 − z 1

dw 2
1 − z 1 − w 2

∫
1 − w 2

dw 3
1 − w 2 − w 3

∫
1 − w 3

dw 4
1 − w 3 − w 4

∫
1

dw 5

=
2
1_ _

420
13_ ___ =

840
13_ ___ .

Case 2b: In addition to event A, we have the conditions that I 2 and I 3 can fit together
across the strip, and that I 4 will also fit with them. Also I 2 is taller than I 1:

P[ Case 2b ] = P[H 2 ≥ H 1 ] .P[A , W 2 + W 3 ≤ 1 , W 2 + W 3 + W 4 ≤ 1 ] (4.4)

=
2
1_ _ .

0
∫
1

f Z (z 1 ) dz 1
0
∫

1 − z 1

dw 2
1 − z 1 − w 2

∫
1 − w 2

dw 3
0
∫

1 − w 2 − w 3

dw 4
1 − w 3 − w 4

∫
1

dw 5

=
2
1_ _

560
17_ ___ =

1120
17_ ____ .

4.1.2. Expected Compressions

The compression achieved in the four cases depends entirely upon the independent
U[ 0 , 1 ] heights H i , i = 1 , 2 , 3 , 4. Compression is better in the "b" cases, where
items I 3 and I 4 can be treated as a unit. See Figure 5.

Lemma a

In cases 1a and 2a, provided H 3 > H 4 , the compression is ∆ a = min (R 12 , R 34 ),
where the R i j are i.i.d. ranges of a 2-sample:

R 12 = max (H 1 , H 2 ) − min (H 1 , H 2 ) , R 34 = max (H 3 , H 4 ) − min (H 3 , H 4 ) .

Thus

E∆ a =
10
1_ __ . (4.5)

Proof: The depth of the ‘‘hole’’ into which I 3 can be slid is R 12. However, since I 4
is not slid down in these cases, compression is zero if H 3 ≤ H 4 and is at most R 34 if
H 3 > H 4. See Figure 5.

The d.f. of R i j is 1 − ( 1 − t)2 [Dav81], so P[ min (R 12 , R 34 ) > t] = ( 1 − t)4,
with an integral of 1 /5. Since P[H 3 > H 4 ] = 1/2, the expected compression is
1/10.

Lemma b

In cases 1b and 2b, the compression is ∆ b = min (R 12 , H ( 2 : 2 ) ), where R 12 is the
range of a 2-sample, and H ( 2 : 2 ) is the maximum of an independent 2-sample:
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R 12 = max (H 1 , H 2 ) − min (H 1 , H 2 ) , H ( 2 : 2 ) = max (H 3 , H 4 ) .

Thus

E∆ b =
10
3_ __ . (4.6)

Proof: The depth of the ‘‘hole’’ into which I 3 and I 4 can be slid is R 12. However,
at most H ( 2 : 2 ) gain can be realized, since the top of I 1 is fixed. See Figure 5.

The d.f. of H ( 2 : 2 ) is t 2, so P[ min (R 12 , H ( 2 : 2 ) ) > t] = ( 1 − t)2 .( 1 − t 2 ), with
an integral of 3 /10.

Case 1b: CompressedCase 1b: NFL

43

Case 2b is similar

1
2

4
3

2
11

4

3

2 1

2

3

4

Case 2a: NFL

1

3

4

2
1

Case 2a: Compressed

Case 2a: NFL

4
3

2

Case 2a: Compressed

Illustrates H 3 ≤ H 4
Case 1a is similar

Case 1a is similar
Illustrates H 3 > H 4

Figure 5: Illustrating the compression gained in various cases, where NFL packs two
items in the lower level and two in the upper.
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4.1.3. Overall Expected Compression: 2 Lower and 2 Upper

For the above patterns, a weighting of the individual expected gains from (4.5) and
(4.6) with their probabilities from (4.1)–(4.4) yields

E∆ 2 , 2 =
70
1_ __

10
1_ __ +

560
3_ ___

10
3_ __ +

840
13_ ___

10
1_ __ +

1120
17_ ____

10
3_ __ (4.7)

=
33600
307_ _____ = 0. 00913 69047 ...

4.2. Two Items in the Lower and One Item in the Upper Level

The two events whose probability and expected compression we wish to calculate are
shown in Figure 6. In each case, there is another item of width W 4, not shown, mark-
ing the beginning of the next bi-level.

Cases 1 and 2 are symmetric, but their probabilities differ, since Z 1 is width-
biased longer than a uniform variate like W 2.

Z 1

W 3

W 2

Z 1W 2

W 3

W 2Z 1

W 3

W 3

Compressed NFL Compressed NFL

Case 1: Item 1 taller than Item 2 and

W 2

Z 1

Item 2 fits with Item 3 Item 1 fits with Item 3
Case 2: Item 2 taller than Item 1 and

Figure 6: Two items on the lower level and one item on the upper level, shown before
compression (as NFL packs them), and shown as compressed by CA. The
captions summarize the conditioning on the the heights and widths of items 1
and 2 that allow compression to take place. Not shown is an item of width
W 4 that marks the start of the next bi-level above the one depicted.

4.2.1. Event Probabilities

In both cases, we have the following conditions, which together form an event we
shall call B:

Z 1 + W 2 ≤ 1 — I 1 and I 2 fit on the lower level
Z 1 + W 2 + W 3 > 1 — I 3 does not fit on the lower level
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W 3 + W 4 > 1 — I 3 is alone on the upper level

Case 1: In addition to event B, we have the conditions that I 1 and I 3 can fit together
across the strip. We also have that the (independent) heights of the first two items
make I 1 the taller:

P[ Case 1 ] = P[H 2 < H 1 ] .P[B , Z 1 + W 3 ≤ 1 ] (4.8)

=
2
1_ _ .

0
∫
1

f Z (z 1 ) dz 1
0
∫

1 − z 1

dw 2
1 − z 1 − w 2

∫
1 − z 1

dw 3
1 − w 3

∫
1

dw 4

=
2
1_ _

24
1_ __ =

48
1_ __ .

Case 2: In addition to event B, we have the conditions that I 2 and I 3 can fit together
across the strip. In this case we have that item I 2 is taller than I 1.

P[ Case 2 ] = P[H 2 ≥ H 1 ] .P[B , W 2 + W 3 ≤ 1 ] (4.9)

=
2
1_ _ .

0
∫
1

f Z (z 1 ) dz 1
0
∫

1 − z 1

dw 2
1 − z 1 − w 2

∫
1 − w 2

dw 3
1 − w 3

∫
1

dw 4

=
2
1_ _

80
7_ __ =

160
7_ ___ .

4.2.2. Expected Compressions

The compression achieved in the two cases depends entirely upon the i.i.d. U[ 0 , 1 ]
heights H i , i = 1 , 2 , 3. As the reasoning here is similar to that in Lemmas a and b of
section 4.1, no figure is provided.

Lemma c

In cases 1 and 2, the compression is ∆ = min (R 12 , H 3 ), where R 12 is the range of a
2-sample, and H 3 is an independent uniform random variable:

R 12 = max (H 1 , H 2 ) − min (H 1 , H 2 ) .

Thus

E∆ =
4
1_ _ . (4.10)

Proof: The depth of the ‘‘hole’’ into which I 3 can be slid is R 12. However, at most
H 3 gain can be realized, since the taller of I 1 and I 2 has its top at a fixed height.

The d.f. of H 3 is t, so P[ min (R 12 , H 3 ) > t] = ( 1 − t)2 .( 1 − t), with an
integral of 1 /4.
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4.2.3. Overall Expected Compression: 2 Lower and 1 Upper

For the above patterns, a weighting of the individual expected gains from (4.10)
together with their probabilities from (4.8) and (4.9) yields

E∆ 2 , 1 =
48
1_ __

4
1_ _ +

160
7_ ___

4
1_ _ (4.11)

=
1920
31_ ____ = 0. 01614 58333 ...

4.3. One Item in the Lower and Two Items in the Upper Level

The event whose probability and expected compression we wish to calculate is shown
in Figure 7. There is another item of width W 4, not shown, marking the beginning of
the next bi-level.

Only the case shown, where I 3 is taller than I 2, is of any interest. This is
because, in any on-line algorithm, we will not be able to repack I 2, should it prove to
be taller than I 3. In the event that happens, repacking I 3 does not reduce the height
of the bi-level.

Z 1

W 2
W 3

W 3

Case 1: Item 3 taller than Item 2

Compressed NFL

Z 1

W 2

Figure 7: One item on the lower level and two items on the upper level, shown before
compression (as NFL packs them), and shown as compressed by CA. Only
when H 3 > H 2 is any compression realized. Not shown is an item of width
W 4 that marks the start of the next bi-level above the one depicted.
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4.3.1. Event Probabilities

The event of interest is C, the conjunction of the following:

Z 1 + W 2 > 1 — I 1 is alone on the lower level
W 2 + W 3 ≤ 1 — I 2 and I 3 fit on the upper level
W 2 + W 3 + W 4 > 1 — I 2 and I 3 are alone on the upper level

Case 1: In addition to event C, we have the conditions that I 1 and I 3 can fit together
across the strip. We also have that the (independent) heights of items I 2 and I 3 make
the later arriving item I 3 the taller. The two constraints on W 3 together imply that
W 3 ≤ min ( 1 − W 2 , 1 − Z 1 ), as seen in the integral below:

P[ Case 1 ] = P[H 2 < H 3 ] .P[C , Z 1 + W 3 ≤ 1 ] (4.12)

=
2
1_ _ .

0
∫
1

f Z (z 1 ) dz 1
1 − z 1

∫
1

dw 2
0
∫

min ( 1 − w 2 , 1 − z 1 )

dw 3
1 − w 2 − w 3

∫
1

dw 4

=
2
1_ _

384
29_ ___ =

768
29_ ___ .

4.3.2. Expected Compression

The compression achieved in case 1 is calculated exactly as for Lemma c in section
4.2.2, with result E∆ = 1/4.

4.3.3. Overall Expected Compression: 1 Lower and 2 Upper

Weighting the expected gain with the probability from (4.12) yields

E∆ 1 , 2 =
768
29_ ___

4
1_ _ (4.13)

=
3072
29_ ____ = 0. 00944 01041 ...

4.4. Expected Height of the Compression Algorithm

Now that we have the expected bi-level height compressions from (4.7), (4.11) and
(4.13), we use them to obtain the asymptotic expected height of a packing by the
Compression Algorithm.

Theorem 2

E[CA(L n ) ] ∼ ( 0. 36976 42137 ...) n (n → ∞ ) (4.14)

Proof: Since the expected number of levels in NFL is 2n /3, the expected number of
bi-levels in BNFL, and hence in CA, is n /3.

Since the expected height of a level in NFL is 0. 57200 77418 ..., the expected
height of a bi-level in BNFL is 1. 14401 54836 .... From the sum of (4.7), (4.11) and
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(4.13), the expected savings in bi-level height achieved by CA is

33600
307_ _____ +

1920
31_ ____ +

3072
29_ ____ =

537600
18667_ ______ = 0. 03472 28422 ...

The expected height of a compressed bi-level is thus

E[ compressed bi-level height ] = 1. 14401 54836 ... − 18667/537600

= 1. 10929 26413 ...

Multiplying this new expected height by n /3 yields the result.

Comparison of Theorem 2 with equation (1.6) shows that the Compression Algo-
rithm is an on-line algorithm that improves over NFL by an amount ( 0. 01157 ...) n.
The gap between this upper bound and the lower bound of Theorem 1 remains
( 0. 05593 ...) n.

All the multiple definite integrals in this section were verified by the Mathematica
System [Wol91]. Mathematica directly evaluated each integral as written here, with
the exception of (4.12), where the region of integration needed first to be decomposed
to eliminate the minimum function occurring in the limits of integration.

5. Conclusion and Further Work

Other directions can be explored, with a view to improving the bound of
0. 36976 ... of Theorem 2.

For example, Theorem 2 improves the equilibrium NFL process by operating two
levels at a time. One can attempt to exploit compressible patterns at each individual
NFL level at equilibrium. The difficulty here is assuring disjointness of the events
that form compressible patterns. When the single pattern of a level with 2 pieces fol-
lowed by a level with 1 piece is applied at every matching level at equilibrium, the
result is an expected height of ( 0. 37058 ...) n. This is a simple way to improve over
NFL’s ( 0. 38134 ...) n, but is not as good as Theorem 2.

Another tack is to take items k at a time, pack them in an optimal or at least very
dense way, then begin again with k more items at the height of this packing. For such
group packing algorithms, only the case k = 3 has been worked out in detail. While
the analysis is simple, the resulting expected height of ( 37 /96 ) n =
( 0. 38541 66666 ...) n, is worse than NFL. The group packing algorithm with k = 4 is
more complex to analyze, and its expected height is not known.
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