
INTEGRATING CONTENT-BASED ACCESS

MECHANISMS WITH HIERARCHICAL FILE SYSTEMS

by

Burra Gopal

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Ful�llment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

1 9 9 7

INTEGRATING CONTENT-BASED ACCESS

MECHANISMS WITH HIERARCHICAL FILE

SYSTEMS

Burra Gopal, Ph.D.

The University of Arizona, 1997

Director: Udi Manber

We describe a new �le system that provides, at the same time, both name and content

based access to �les. To make this possible, we introduce the concept of a semantic

directory. Every semantic directory has a query associated with it. When a user creates

a semantic directory, the �le system automatically creates a set of pointers to the �les in

the �le system that satisfy the query associated with the directory. This set of pointers

is called the query-result of the directory. To access the �les that satisfy the query, users

just need to de-reference the appropriate pointers. Users can also create �les and sub-

directories within semantic directories in the usual way. Hence, users can organize �les

in a hierarchy and access them by specifying path names, and at the same time, retrieve

�les by asking queries that describe their content.

Our �le system also provides facilities for query-re�nement and customization. When

a user creates a new semantic sub-directory within a semantic directory, the �le system

ensures that the query-result of the sub-directory is a subset of the query-result of its

parent. Hence, users can create a hierarchy of semantic directories to re�ne their queries.

Users can also edit the set of pointers in a semantic directory, and thereby modify its

query-result without modifying its query or the �les in the �le system. In this way, users

can customize the results of queries according to their personal tastes, and use customized

results to re�ne queries in the future.

Our �le system has many other features, including semantic mount-points that allow

users to access information in other �le systems by content. The �le system does not

depend on the query language used for content-based access. Hence, it is possible to

integrate any content-based access mechanism into our �le system.

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial ful�llment of the requirements for an
advanced degree at The University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, pro-
vided that accurate acknowledgement of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript in whole or in part may be
granted by the head of the major department or the Dean of the Graduate College when
in his or her judgement the proposed use of the material is in the interests of scholarship.
In all other instances, however, permission must be obtained from the author.

SIGNED:

4

ACKNOWLEDGMENTS

I could not have completed this work without the help of many people. I wish to
thank:

Udi Manber, my advisor, for showing me the right way to approach and deal with
challenging situations,

Larry Peterson and John Hartman, my committee, for taking time to evaluate and
discuss my work with me,

The lab-sta� of the department for helping me with every problem I had,
And most of all, my mother, my wife Renu, and my brother Raghu, for their love and

support.

5

TABLE OF CONTENTS

LIST OF FIGURES . 8

ABSTRACT . 9

CHAPTER 1: INTRODUCTION . 10

1.1 Name and Content Based Access . 10

1.2 Combining Name and Content Based Access 11

1.3 Goals of our File System . 13

CHAPTER 2: SURVEY OF SOME EXISTING SYSTEMS 15

2.1 Harvest Information Discovery and Access System 15

2.2 Scatter/Gather Browsing . 16

2.3 GlimpseHTTP and WebGlimpse . 17

2.4 MIT Semantic File System . 19

2.5 Multistructured Naming . 21

2.6 Nebula and Synopsis File Systems . 23

2.7 Jade File System . 25

2.8 Prospero File System . 26

CHAPTER 3: DESIGN OF THE HAC FILE SYSTEM 29

3.1 Basic Assumptions . 29

3.1.1 Hierarchical File Systems . 29

3.1.2 CBA Mechanisms . 30

3.2 One Name Space per User . 30

3.3 One CBA Mechanism per File System . 31

3.4 UNIX-like Interface to CBA Mechanisms . 31

6

TABLE OF CONTENTS | Continued

3.5 Syntactic and Semantic Commands . 32

3.6 Queries Associated with Directories . 32

3.7 Query Results Associated with Sets of Symbolic Links 33

3.8 Sub-directories and Scope of Queries . 35

3.9 Editing Query Results and Scope of Queries 36

3.9.1 Scope Restrictions and Scope Consistency 37

3.9.2 Advantages of the Scope Consistency Algorithm 39

3.9.3 Other De�nitions of Scope . 40

3.9.4 Scope Provided by Directory Independent of its Children 41

3.10 Modifying Files and Consistency of Query Results 41

3.11 Using Existing Query Results in New Queries 42

3.11.1 Consistency of Query Results Revisited 44

3.11.2 Uses of Path name Based Scoping . 45

3.12 Illustrative Example . 46

3.12.1 Queries and Query Results . 46

3.12.2 Sub-directories and Scope of Queries 50

3.12.3 Editing Query Results and Scope of Queries 52

3.12.4 Modifying Files and Consistency of Query Results 56

3.12.5 Using Existing Query Results in New Queries 58

3.13 Discussion: Does HAC Satisfy Our Goals? .61

3.14 Comparison with Other Systems . 63

3.14.1 Browsing and Searching in GlimpseHTTP, WebGlimpse and HAC . 63

3.14.2 Scatter/Gather Browsing and HAC . 64

3.14.3 Queries and Path Names in MITSFS and HAC 64

3.14.4 Multistructured Naming and HAC . 65

3.14.5 Views in Nebula and Semantic Directories in HAC 66

3.14.6 User-de�ned Filters in Prospero and Queries in HAC 67

7

TABLE OF CONTENTS | Continued

CHAPTER 4: ACCESSING NAME-SPACES AND CBA-MECHANISMS 70

4.1 Identifying HAC File Systems and CBA Mechanisms 71

4.2 Accessing one File System from Another . 72

4.3 Accessing Di�erent CBA Mechanisms and File Systems74

4.3.1 Local and Remote Semantic Mount Points 74

4.3.2 Multiple Semantic Mount Points . 75

4.3.3 Illustrative Example . 77

4.4 Index Caching. 79

4.5 Consistency in the Presence of Mount Points 81

CHAPTER 5: IMPLEMENTATION AND PERFORMANCE 87

5.1 The Modules in HAC . 87

5.1.1 C System Call Library . 87

5.1.2 Semantic File System . 88

5.1.3 Interface to Content Based Access Mechanisms 89

5.2 Experiments . 89

5.2.1 Syntactic File System Overhead . 90

5.2.2 CBA Mechanism Overhead . 92

CONCLUSIONS AND FUTURE WORK . 95

APPENDIX A: APPLICATION PROGRAMMER INTERFACE 97

APPENDIX B: BRIEF DESCRIPTIONS OF USER COMMANDS 102

REFERENCES. .107

8

LIST OF FIGURES

3.1 Files, Symbolic Links and Directory Hierarchies : : : : : : : : : : : : : : : : 69

4.1 Syntactic Mount Points in UNIX and Jade : : : : : : : : : : : : : : : : : : 83

4.2 Syntactic Mount Point in HAC : 84

4.3 Linking up Di�erent HAC File Systems : 84

4.4 Semantic Mount Points : 85

4.5 Scope of Semantic Mount Points : 85

4.6 Multiple Semantic Mounts : 86

4.7 Using Both Semantic and Syntactic Mount Points : : : : : : : : : : : : : : 86

5.1 Interaction Between Modules in HAC : 94

9

ABSTRACT

We describe a new �le system that provides, at the same time, both name and content

based access to �les. To make this possible, we introduce the concept of a semantic

directory. Every semantic directory has a query associated with it. When a user creates

a semantic directory, the �le system automatically creates a set of pointers to the �les in

the �le system that satisfy the query associated with the directory. This set of pointers

is called the query-result of the directory. To access the �les that satisfy the query, users

just need to de-reference the appropriate pointers. Users can also create �les and sub-

directories within semantic directories in the usual way. Hence, users can organize �les

in a hierarchy and access them by specifying path names, and at the same time, retrieve

�les by asking queries that describe their content.

Our �le system also provides facilities for query-re�nement and customization. When

a user creates a new semantic sub-directory within a semantic directory, the �le system

ensures that the query-result of the sub-directory is a subset of the query-result of its

parent. Hence, users can create a hierarchy of semantic directories to re�ne their queries.

Users can also edit the set of pointers in a semantic directory, and thereby modify its

query-result without modifying its query or the �les in the �le system. In this way, users

can customize the results of queries according to their personal tastes, and use customized

results to re�ne queries in the future.

Our �le system has many other features, including semantic mount-points that allow

users to access information in other �le systems by content. The �le system does not

depend on the query language used for content-based access. Hence, it is possible to

integrate any content-based access mechanism into our �le system.

10

CHAPTER 1

INTRODUCTION

1.1 Name and Content Based Access

There are two well known ways of accessing information: (i) by specifying names that

uniquely identify objects that contain the information, or (ii) by describing some char-

acteristics of the information (other than unique identi�ers) in the form of a query that

retrieves objects by content. Name-based access is available in hierarchical �le systems like

UNIX [39], graph-structured information repositories like the World Wide Web (WWW,

[2]), Distributed Information Systems like Gopher [29], and Object Oriented Database

Systems [17]. In �le systems, to access objects by name, we specify path names to �les.

Each path name points to �le or group of �les (directory) 1. Path names allow us to

group related �les together and organize them in a directory hierarchy. This makes it

easier to browse through the �les and access relevant information. However, it may be

di�cult to classify all the �les in a single directory hierarchy, since some �les can belong

to several categories. Another drawback of using path names is that it is often di�cult to

�nd relevant information in a repository, since we have to explicitly traverse path names

to discover objects that contain this information. To avoid traversing path names all the

time, we must remember the names of the objects we are interested in, but this may be

di�cult if the total number of objects in the repository is very large.

To access objects by content, we specify queries in a known format called the query-

language. Queries describe some properties of the information present in these objects.

Queries can extract the relevant information from a �le system, or return sets of �les that

contain the information that matches these queries, or both. Content-based access (CBA)

can be very useful in a large and diverse information repository where it may be easier

to retrieve objects by asking queries rather than remembering their names or discovering

1Though more than one path name can point to the same �le, every �le has at least one path name

that uniquely identi�es it.

11

them by browsing the repository. CBA is available in:

� Search engines that provide a \quick and dirty" context for viewing results of queries

[28].

� Information discovery tools that allow us to do focused search on speci�c targets,

e.g., host machines or �le systems [21, 3].

� Relational Database Systems [17] that allow us to create, access, and manipulate

information by specifying complex queries in languages such as SQL [17]. (We do

not consider Database Systems any further since our focus is on �le systems where

�les are treated as uninterpreted sequences of bytes, and there is no knowledge of

any logical relationships between the data stored in them.)

We shall use the term \CBA mechanism" to refer to any system that provides CBA to

information. The main drawbacks of CBA are: (i) we must be aware of the query-language

used for CBA, (ii) we must have some idea about the kind of information that is stored in

the repository in order to formulate queries that return more or less what we are looking

for, and (iii) it is di�cult to group-together and organize a set of objects based on the

queries they satisfy, since di�erent queries can return di�erent subsets or supersets of a

given set of objects. Though we may �nd it relatively easy to learn a new query language,

we may have to browse through the repository �rst before we know how to formulate

meaningful queries. However, browsing may be di�cult if the objects in the repository

are not organized in a meaningful way.

1.2 Combining Name and Content Based Access

The main goal of our research is to combine name and content-based access together and

explore the bene�ts of doing so. In this dissertation, we describe a new approach for

combining path name based access in hierarchical �le systems with query based access

in CBA mechanisms. The main motivation behind our work was to examine whether

it is possible to organize both �les and results of queries using a single hierarchical �le

system. In our approach, we de�ne a uniform interface that allows us to integrate any

12

CBA mechanism into a hierarchical �le system. We rejected the opposite approach of

extending a given CBA mechanism to be able to access �les [13, 22], because hierarchical

�le systems have proven to be simple and e�ective ways to organize information retrieved

by name, and we believe that they can also be used to organize information retrieved by

content. We focus on hierarchical �le systems because:

� They are simple and easy to use.

� They usually have well de�ned user-command and application-programmer inter-

faces. Such interfaces give us very good starting points and can serve as models

when we are trying to design a new interface for accessing CBA mechanisms.

� They usually have mechanisms to go beyond the strict hierarchy of objects in the

�le system (e.g., symbolic links and mount points in the UNIX �le system [39]).

Hence it is possible to extend hierarchical �le systems to support a variety of ways

of organizing information, e.g., arbitrary graph structures like the WWW. (We shall

return to graph-structured information repositories in Chapter 6.)

Our work was also motivated in part by some existing systems that provide limited

ways to access information by name and content. For example:

� WWW browsers (e.g., Mosaic [1], Netscape [20]) allow us to access hypertext-based

information [15] and search facilities (e.g., InfoSeek [44], Yahoo [19]) using the same

naming mechanism, i.e., using Uniform Resource Locators (URLs, [15]). The result

of a search is also a hypertext document that we can browse in the usual way.

Hence, WWW browsers allow us to access information by name and by content

using a uniform interface.

� Tools like GlimpseHTTP allow us to browse-through a hierarchical �le system as

usual, but have search facilities that restrict the �les that are searched to those

present within the current directory we are browsing and all its sub-directories re-

cursively [27]. That is, GlimpseHTTP allows us to use the underlying organization

of information to control the \scope" of our search.

13

� Semantic �le systems allow us to access �les by asking queries. They allow us to

create virtual directories where each virtual directory can have pointers to the actual

�les in the �le system that satisfy a query [32, 23, 6, 8]. Semantic �le systems also

allow us to derive the set of pointers in a virtual sub-directory from the set of

pointers in its parent, and thereby build a \personal" virtual directory hierarchy

that classi�es the results of our queries.

1.3 Goals of our File System

The main goals of our �le system are:

1. Integration of CBA mechanisms: Our �le system should have a well-de�ned

interface to CBA mechanisms. That is, it should map (associate) queries and query-

results onto (with) some hierarchical �le system abstractions, so that queries their

results can be accessed and manipulated using the usual �le system operations.

Moreover, if a query or a query-result is mapped onto an existing �le system ab-

straction, there should be no restriction on the usual �le system operations that can

be applied to that abstraction. If any special operations on queries or query-results

are required, they should be intuitive extensions of existing �le system operations.

2. Full power of hierarchical naming: All the �le naming facilities that are present

in hierarchical �le systems should also be present in our �le system. For example,

users should be allowed to give mnemonic aliases to queries and their results, and

access them by specifying path names. Users should also be able to use the same �le

system to organize �les (the information retrieved by name) and results of queries

(the information retrieved by content). Moreover, di�erent users should be able to

organize a given set of �les in di�erent ways and share their organization of �les

with others.

3. Customization of query results: Users should be allowed to modify results of

queries using their judgement and discretion, so that they can customize these results

according to their tastes. They should also be allowed to use possibly customized

query results in future queries, so that they can re�ne queries according to their

14

tastes. Users should not depend solely on the query language to achieve these

objectives.

4. De�nition of consistency model: Our �le system must have a consistency model

that de�nes how query results are kept consistent with the corresponding queries

when users modify (i) the �les in the �le system, and (ii) the query-results themselves

(without changing the query or the �les in the �le system).

5. Independence from CBA mechanisms: Our �le system should not be tailored

for a particular CBA mechanism or query language, because we believe that the

type of query language that is most appropriate for a given set of objects depends

on the information they contain. For example, if the information is well structured

as in a data-base, then powerful query languages like SQL may be more appropriate.

However, if the information is in the form of unorganized text, tools like Glimpse

[28] may prove to be more useful. We therefore believe that the choice of the CBA

mechanism should be left to the user | it should not be built into the design of the

�le system (see sections 2.4 and 3.14.3).

In the remainder of this dissertation, we describe the design and implementation of a

new hierarchical �le system, HAC (an acronym for Hierarchy And Content), into which

it is possible to integrate any given CBA mechanism. We begin with a survey of some

existing systems in Chapter 2, and show that there is a need for a new �le system that

satis�es the above goals. In Chapters 3 and 4 we discuss the principles behind the design

of HAC. With the help of an illustrative example, we show that HAC allows us to organize

both �les and results of queries using a single �le system. We also show that it satis�es all

the above goals. In Chapter 5, we describe the implementation and performance of HAC.

Finally, in Chapter 6, we discuss some important research issues raised by our work and

mention some possible future improvements to HAC.

15

CHAPTER 2

SURVEY OF SOME EXISTING SYSTEMS

In this chapter, we present a brief survey of some existing systems that form the

background for our work. In sections 2.1 to 2.3 we describe some systems that provide

both name and content-based access to information. In sections 2.4 to 2.8, we discuss

some �le systems that are relevant to HAC.

We start with the survey of an information discovery tool that allows users to gather,

search and share information distributed in repositories across a network. Then, we de-

scribe systems that allow users to both search and browse the information in a repository.

Then, we discuss some semantic �le systems that allow users to search, browse, and orgnize

their �les in a hierarchical directory structure. Towards the end of this chapter, we describe

some virtual �le systems that allow di�erent users to build di�erent personal classi�cations

of the same underlying information, and share their classi�cations with others. During our

discussion, we shall evaluate each system based on whether it satis�es the goals mentioned

in section 1.3, and try to justify that there is a need for a new �le system that satis�es

these goals.

2.1 Harvest Information Discovery and Access System

Harvest [5, 3, 4] provides a set of customizable tools to gather information from diverse

repositories across a wide-area network, possibly summarize this information, build topic-

speci�c indices to search this information, replicate and share this information, cache

information as it is retrieved from the network, and keep the cache consistent. Harvest

allows users to construct diverse types of indices so that they can use search engines of

their choice to retrieve information by content.

Harvest software is divided into two major parts: the Gatherer and the Broker. The

Gatherer collects information from di�erent sites in the network and possibly summarizes

16

it. The Broker collects information from many Gatherers, indexes the collected informa-

tion at the local site and provides a query interface to it. The Gatherer can feed the

information it collects to more than one Broker, and thus save collection costs at these

Brokers. A Broker can also collect information (and the corresponding index) from other

Brokers in the network, and possibly summarize it. This allows users to focus their search

on the information they �lter from the network. Harvest also provides a top-level Broker

called the Harvest Server Registry (HSR Broker), which registers information about each

publicly accessible Harvest Broker and Gatherer in the network. The HSR Broker allows

users to locate Brokers and Gatherers that deal with the topics they are interested in.

Harvest is an excellent tool to discover and share useful information in the network.

As far as we know, it is the only tool that tries to provide a uniform interface to retrieve

information from various autonomous repositories, and allows users to collect, summarize,

index, search, replicate and share this information. None of the existing tools, including

Gopher, Archie, Netscape and WAIS, have all these facilities. However, Harvest has

one drawback: it does not allow users to organize information according to their personal

tastes. Hence, it does not satisfy goals (2) and (3) mentioned in section 1.3.

2.2 Scatter/Gather Browsing

Document-clustering is a technique to partition documents into disjoint groups (clusters),

where each cluster has documents whose contents are similar in some way. In earlier

systems, clustering was used to make searching large repositories more e�cient. However,

these systems were not very successful since the clustering algorithms themselves were

ine�cient [11]. The Scatter/Gather system [11, 12], on the other hand, uses document-

clustering as tool to make browsing large repositories easier. It automatically clusters

(scatters) documents in the repository, and for each cluster, it outputs (i) the keywords

that occur most frequently in the documents in that cluster, and (ii) the titles of some

representative documents of that cluster. Users are free to browse the above output,

chose (gather) one or more clusters of interest, and recursively apply the Scatter/Gather

technique on the documents in these clusters, until they arrive at clusters that have one

document each. Note that when users scatter the documents in a subset of a given set

17

of clusters, they do not get back the clusters they started with. This property gives

the recursive Scatter/Gather technique enormous power since users can discover fresh

classi�cations of the same information as they narrow down (re�ne) their choice to the

documents (clusters) they are really interested in.

The Scatter/Gather system applies di�erent clustering algorithms at di�erent scatter-

ing steps so that it can assign each document to the cluster that best describes its contents.

These algorithms run in linear/near-liner time unlike quadratic time clustering algorithms

of earlier systems. This is extremely important since the Scatter/Gather technique has to

cluster documents \on-the-y" while users are browsing these documents: it cannot a�ord

to use slower algorithms even if they produce more accurate clusters. The paper contains

a user session that clearly illustrates the merits of using this technique to browse large

repositories.

However, the Scatter/Gather system has some drawbacks. It does not allow users to

interact with the scattering process, i.e., it does not allow them to decide which clus-

ters to create, or which documents to add (remove) to (from) these clusters. The only

user-interaction is during the gathering step where they chose the clusters they want to

re�ne. In other words, the Scatter/Gather system does not satisfy goals (2), (3) and (4)

mentioned in section 1.3. In spite of these limitations, this work is commendable since

the Scatter/Gather system was one of the �rst to recognize that searching and browsing

should be provided together, and the �rst to use fast clustering algorithms to classify

information on-the-y.

2.3 GlimpseHTTP and WebGlimpse

GlimpseHTTP [27, 28, 47] combines browsing and searching in the context of WWW.

It allows users to browse a hypertext-based [15] information base and to search from

any point while browsing such that the search is limited to the area suggested by the

current document. The information base is assumed to be a regular UNIX hierarchical

�le structure. This hierarchy is designed and built by the information provider. To allow

users to search and browse this hierarchy, GlimpseHTTP �rst uses Glimpse [28] to index

these documents and puts the index in the root directory of this hierarchy. Second,

18

GlimpseHTTP constructs automatically, for each directory, an HTML query page that

restricts the search to that directory and all the data below it. (The query page at the

root provides search for the whole data.) In addition, each query page contains hypertext

links to all the �les and subdirectories of the corresponding directory to allow users to

browse them. GlimpseHTTP uses Glimpse since it supports very exible and e�cient

ways to limit searches to only parts of the indexed information.

WebGlimpse [30] is an extension of GlimpseHTTP. It does not assume that the the

information base is a UNIX hierarchical �le structure. Instead, it interprets the �les in

the information base as hypertext documents. For each document, WebGlimpse builds a

neighbourhood �le that contains the names of all the hypertext documents that are related

to this document in some way. Users can browse hypertext documents in the usual way,

and also search the documents in the neighbourhood of the current document at any point

while browsing. WebGlimpse allows the information provider to de�ne neighbourhoods in

exible ways. For example, the neighbourhood of a given document can be:

� All documents reachable within 2 levels of hyperlinks from this document,

� All documents reachable within 3 levels of hyperlinks but within the same host

machine as this document,

� All documents within the same subtree in the directory hierarchy as this document,

and so on. WebGlimpse was designed so that the information provider can modify the

neighbourhood of any document according to his/her personal taste. This allows him/her

to restrict the searches to only those documents that are relevant to the current document

in some way.

Note that though existing WWW browsers (like Netscape-2.0) provide search facilities

(like Yahoo WWWdirectory) at every step of browsing, the searches themselves are always

global. That is, users cannot chose a subset of the information base and restrict their

search to that subset. The same is true for the McKinley Internet Directory [35], Excite

[9], and others. GlimpseHTTP and WebGlimpse are the �rst packages we know of that

combine browsing and searching of hypertext-based information. Note that GlimpseHTTP

and WebGlimpse exploit the existing classi�cation of information to combine browsing

19

and searching, while the Scatter/Gather technique described above classi�es information

automatically to make browsing easier. The Scatter/Gather system does not allow users

to search information by specifying queries of their choice, since it does not allow any

user-interaction during the clustering process.

In spite of their advantages, GlimpseHTTP and WebGlimpse have two drawbacks.

First, they do not allow users to classify the existing information according to their per-

sonal tastes and use this classi�cation to restrict their searches. (WebGlimpse, however,

tries to remove this drawback partially by allowing the information provider to modify the

neighbourhood-�les in any way he/she choses.) And second, though these packages con-

struct HTML pages to display the results of searches, they do not allow users to organize

and re-use these pages in any meaningful way. Hence, GlimpseHTTP and WebGlimpse

do not satisfy any of the goals in section 1.3 except goal (1).

2.4 MIT Semantic File System

The Semantic File System (SFS) developed at MIT [23] is one of the �rst hierarchical �le

systems to provide both name and content based access to �les. It makes this possible by

introducing the concept of a virtual directory. The name of a virtual directory is a query,

and the contents are symbolic links to �les in the actual (physical) �le system that satisfy

its query. The only di�erence between a virtual and a physical directory is that users do

not have to create a virtual directory to access its contents. That is, users can cd into a

query and examine its result by executing the ls command \inside" the query. In other

words, MIT SFS tries to map queries and their results to regular �le system abstractions

so that users can access and manipulate them using existing �le system software.

MIT SFS assumes that queries are boolean AND combinations of \attribute-value"

pairs, where an \attribute" is a typed �eld in the �le system and the \value" is a value this

�eld can have. For example, attributes can be \author", \date", \title", \type" \text",

etc., and the corresponding values can be \Gopal", \6/13/96", \Survey of Semantic File

Systems", \LaTeX-source" and some piece of ASCII text respectively. MIT SFS considers

even a single attribute name like author: to be a query, and interprets it as the name of a

virtual directory that contains one virtual subdirectory for each author in the �le system.

20

Here, author: is called a �eld virtual directory. A name containing an attribute-value pair

like author:/Gopal contains a set of symbolic links to all the �les in the �le system whose

author is \Gopal". Here, Gopal is called a value virtual directory. To combine attribute-

value pairs, users can create �eld virtual subdirectories in value virtual directories. In this

case, MIT SFS interprets the / path name separator as a conjunction operation. Hence,

the virtual directory author:/Gopal/type:/LaTeX-source will contain all the \LaTeX" �les

in the �le system that are written by \Gopal".

MIT SFS has the concept of transducer programs that extract attributes and their

values from the �les in the �le system. MIT SFS uses these attribute-value pairs to index

�les for query processing. Though it has some default transducers that can process most

�les in the �le system, it allows users to write their own transducers for their personal �les.

To avoid re-evaluating queries of virtual directories whenever users access their contents

(say, by doing a cd followed by an ls), MIT SFS maintains a cache that maps virtual-

directory names to the results of their queries. It tries to keep the contents of virtual

directories in its cache up-to-date (consistent) when there are changes to the �les in the

�le system by periodically re-indexing the �les, and re-evaluating the queries of the virtual

directories in its cache.

Though MIT SFS has many novel features, it has some disadvantages. First, it assumes

that queries are always conjunctions of attribute-value pairs, i.e., users cannot integrate

arbitrary CBAmechanisms into the SFS. Second, it is built on top of an existing underlying

physical �le system that contains �les | it is not integrated into the physical �le system.

That is, a virtual directory can contain only queries or results of a queries: it cannot

contain, say, �les or mount points. Hence, users must use virtual directories to organize

results of queries, but use real directories in the underlying �le system to organize the

actual information. And last, MIT SFS does not allow users to modify the results of

queries without modifying queries or �les in the �le system. That is, users cannot use

their judgement to tune the results of queries to suit their personal tastes: they are forced

to restrict themselves to the query language to achieve their objectives. Hence, MIT SFS

does not satisfy goals (2), (3) and (5) in section 1.3.

21

2.5 Multistructured Naming

Multistructured naming [45] tries to remedy some problems in MIT SFS. It tries to blend

hierarchical or graph structured naming (e.g., naming in UNIX) with at attribute or set

based naming (e.g., naming in MIT SFS). The authors of this work argue that though

attribute based naming allows users to retrieve �les using any combination of informa-

tion about them, users lose the \sense of place" that hierarchical naming gives. In other

words, a path name like /u/projects/multi-struct/papers/icdcs/final.tex in a hierar-

chical name space tells users (i) how the information is organized, and (ii) where the

information final.tex is located. However, in an attribute-based name space, the above

path name (or a permutation like /u/projects/papers/multi-struct/icdcs/final.tex) de-

scribes the contents of final.tex, i.e., that this �le is a paper about the project on multi-

structured naming. This is very useful since it allows them to retrieve final.tex without

knowing where it is actually located. However, they lose all information about how the

�les are organized and where they can be found.

Multistructured naming allows users to build personal name spaces to classify infor-

mation in an underlying physical �le system. It assumes that each �le satis�es some

\properties", where a property of a �le is some condition about that �le that can be

evaluated: if the condition is true, then the �le has that property; otherwise it does not.

Multistructured naming also assumes that given a \property", it can be evaluated on all

the �les in the �le system (by contacting a CBA system), and the result is a set of �les

that satisfy the property. The main idea behind multistructured naming is that it allows

users to impose ancestor-descendent relationships on the properties of �les, and selectively

loosen these relationships, so that they can name �les by specifying (i) either their exact

locations, or (ii) a list of properties they satisfy in arbitrary order. This is a two step

process: in the �rst step, users assign aliases (labels) to the properties they want to use in

their path names. A label represents a directory that contains the set of �les that have the

corresponding property. A path name is a series of labels separated by /. In the second

step, they specify a set of rules that determine the relationships among the labels, and

thus the structure of the name-space. These rules can be one of the following:

1 Scoping Rules: These rules tell the naming system which labels are related by an

22

ancestor-descendent relationship, and which are not. In a path name, users must

specify the former in the ancestor-descendent order, while they can permute the

latter in any way they chose. Scoping rules also allow a property P with label lp to

be inherited in the subtree rooted at the label lq . In this case, users have the option

of using lp as a component of all the path names that enter this subtree, i.e., the

path name \/lq/foo" and \lq/lp/foo" will refer to the same �le \foo".

2 Attribute-Value Constraint Rules: Suppose two labels lp and lq can be speci�ed in

any order in a path name after the label lr . Now, suppose users say that all �les

in lr that satisfy the property corresponding to lq must also satisfy the property

corresponding to lp, then they can impose a hierarchical relationship between lp and

lq without imposing any order restriction among them. That is, users must use

either both lq and lp in path names of objects inside lr , or none, but when they use

both labels in a path name, they can specify them in any order.

3 Implicit Value Rules: These rules allow users to specify the values that are automat-

ically assigned to properties. Suppose there is a property P with label lp, and that

lp is a descendent of another label lq in the label-hierarchy. Now, if users assign the

implicit negative value to P, then lq will contain only those �les that do not satisfy

P. And if they do not assign an implicit value to P, then lq will contain �les whether

or not they satisfy P (this is the default and this is what one would normally ex-

pect). In this case, lp can be used as an optional property for �les in lq . Implicit

value rules allow users to disable sets of �les from a label. This in turn allows them

to build some structure into into the label hierarchy which makes browsing easier.

(Note: users can also specify Aliasing Rules that allow them to link up their personal name

spaces with that of other users. See [45] for details.) By using these rules intelligently,

users can build a hierarchical structure into any attribute based naming system. Note

that multistructured naming does not address the issue of how the contents of labels are

kept consistent when users modify �les in the �le system. However, consistency is easy

to ensure if each user runs a \background process" that traverses his/her personal name

space and contacts the CBA system to re-evaluate the properties of each label on all the

�les in the �le system. Hence, multistructured naming provides a novel way to combine

23

searching and browsing in the context of hierarchical �le systems.

The only drawback of multistructured naming is that it does not allow users to delete

or add a set of �les f in a label lq with property Q without specifying some property P

with label lp of f such that P is not satis�ed by any other �le in the �le system. Once they

come up with such a property, they can (i) delete f from lq by giving an implicit negative

value to P and making lp a child of lq , and (ii) add f to lq by changing the property

corresponding to lq from Q to \Q OR P". However, to �nd such a property P, users

must solve the much harder problem of coming up with a query (a list of properties) that

describes a given set of �les (f) uniquely, rather than �nding out which �les satisfy a given

query. (This is related to the clustering problem mentioned in section 2.2.) We believe

that this limitation can prove to be serious if users choose �les in f based on some context-

dependent information or by some reasoning process which cannot be easily expressed as

a property that can be evaluated by a CBA mechanism. However, if we assume that each

�le has a special property (like a name) that describes it uniquely, then P would simply be

a list of names of �les in f. But this can prove to be cumbersome if f is huge. Moreover, the

(unique) names of �les will have no relation to their path names in the �le system (which

are labels separated by /), since users can de�ne hierarchical relationships between labels

independently of the properties the labels represent. We believe that this distinction is

counter-intuitive and makes this system di�cult to use. Hence, multistructured naming

only partially satis�es goal (3) mentioned in section 1.3. However, it satis�es all the other

goals.

2.6 Nebula and Synopsis File Systems

The Nebula �le system [6] allows name and content based access to �les by adding an

object oriented interface that allows a hierarchical �le system to interact with a CBA

mechanism. Nebula assumes that �les are stored in an underlying �le system and are

collections of attribute-value tuples (like MIT SFS), and queries that retrieve �les by

content are expressions involving these tuples. Nebula encapsulates each �le in a �le-object

that contains the attribute-value tuples that describe the �le. Unlike multistructured

naming, Nebula assumes that every �le has a special attribute that identi�es it uniquely.

24

This is its path name in the underlying �le system. Nebula replaces the traditional idea

of a �xed directory hierarchy by dynamic views of this hierarchy that can automatically

classify �les in the underlying �le system. A view is similar to a virtual directory in MIT

SFS and has a query associated with it. It contains �le-objects corresponding to the �les in

the �les system that satisfy its query. These �les are said to be visible in the corresponding

view. (Note that a �le can be visible in more than one view.) Like a directory, a view is

a namable object in the Nebula �le system.

Every view v has a scope that contains a set of views. When Nebula evaluates v's

query, it searches only those �les that are visible from the views in v's scope. In this

case, v is said to depend on all the views in its scope. Nebula therefore allows users

to tune the results of a query by changing the scope of the corresponding view, or by

re�ning the query itself. Whenever the set of �le-objects in a view v changes, Nebula

automatically evaluates the queries of all the views that depend on v, and thereby ensures

that the queries of views and the �le-objects they contain are always consistent. Like MIT

SFS, Nebula periodically re-indexes �les in the underlying �le system, and re-evaluates

the queries of all the views in the Nebula �le system. In this way, Nebula allows users to

build a personal collection of views and organize �les according to their tastes.

The Synopsis �le system [8] is an extension of Nebula that addresses the issue of

scale in a wide-area information system by encapsulating a �le in the underlying �le

system within an object called a synopsis. A synopsis maintains attribute-value tuples

that summarize the contents of the underlying �le. The interface to a synopsis de�nes

operations to update attributes with their new values, generate new attributes and resolve

references to related synopses. A special type of synopsis called a digest de�nes operations

to query the attribute-value tuples that correspond to a collection of synopses. Like

Harvest, the Synopsis �le system has an extensive set of procedures to collect diverse

pieces of information from a wide-area network, summarize this information, update the

summaries when there are changes to the actual information, and allow users to search or

browse this information using an interface similar to that of Nebula. We shall not discuss

the Synopsis �le system any further since it is outside our scope.

Nebula has two advantages over MIT SFS. First, Nebula does not depend on the

query language that used for content based access. Though Nebula has built-in functions

25

to handle arbitrary boolean expressions involving relational operators like =, < and >,

it has an extension language in which functions to handle more complex expressions can

be written (see [6] for details). And second, it tries to go beyond a strict hierarchical

classi�cation of �les by allowing users to chose the scope of a view to be a set of views

rather than a single view. In MIT SFS, the set of symbolic links in a virtual directory is

always a subset of the set of symbolic links in its parent.

However, Nebula still su�ers from the following limitations: (i) Nebula does not allow

users to modify the contents of a view without modifying its scope, its query, or the �les

in the �le system, and (ii) Nebula is not integrated into the underlying �le system, i.e.,

users must use views to organize results of queries but use actual directories to organize

data. Hence, Nebula does not satisfy goals (2) and (3) of section 1.3.

2.7 Jade File System

The Jade �le system [38] provides a uniform way to name and access �les in an internet

environment. Jade is a logical (virtual) �le system that integrates a collection of existing

�le systems that provide di�erent ways to name �les, share them, cache their contents,

maintain cache-consistency, etc. Because each existing �le system is autonomous, Jade

is built with the restriction that none of these �le systems can be modi�ed. Jade uses

the concept of a Uniform File System Interface to provide transparent access to �les in

di�erent �le systems. Jade users build their personal virtual �le systems by chosing the

physical �le systems they want to access, and gluing these systems together using mount

points. All the information required to \mount" existing �le systems onto a user's virtual

�le system is maintained by Jade | none of these �le systems are aware that they have

been mounted by a user. Jade also allows users to create �les, directories, etc. within

their personal name spaces in the usual way. Hence, a Jade �le name, rather than being

global (like a name in UNIX or AFS [41]), has a scope relative to the virtual name space

of a particular user. That is, di�erent users can name the same physical �le in di�erent

ways.

Jade's virtual name space has two novel features: it allows multiple �le systems to

be mounted under one directory, and it permits one virtual name space to mount other

26

virtual name spaces. To facilitate this, Jade has the concept of a skeleton directory. A

skeleton directory de�nes a boundary between one Jade �le system and other physical

or Jade �le systems. A Skeleton directory d within the virtual �le system of a user u

supports three main types of mounts:

� Simple Mounts: This allows a directory in a physical �le system F to be mounted

on d | u can access �les in this directory without referring to F, i.e., transparently

through d. This is similar to mount points in UNIX.

� Logical Mounts: This allows a directory in another user's virtual (Jade) �le system

to be mounted on d | u can access �les in this directory transparently through d.

� Multiple Mounts: This allows directories in more than one physical or virtual �le

system to be mounted on d. The contents of d are the set of �les and directories that

are present in all the directories that are mounted. Figure 4.1 in section 4 shows

a multiple mount point. Note, however, that multiple mounts can lead to name

conicts if two mounted directories have same name, say /bin. When more than

one object has the same name in a multiple mount point, to avoid name conicts,

Jade choses one of these objects based on an internal order of priority, and discards

the rest (see [38] for details and illustrative examples).

Jade also addresses other issues like caching, cache-consistency, path name resolution

and access control that are relevant in an internet-wide �le system. We will not go into

them here since they are outside our scope. To conclude, Jade allows users to organize their

personal information, and the information that exists in di�erent autonomous physical and

virtual (Jade) �le systems, according to their individual tastes. Though Jade does not

allow users to retrieve information by content, it has many features including per-user

virtual name spaces, and logical and multiple mount points, that provide novel ways to

retrieve information by name.

2.8 Prospero File System

The Prospero �le system [32] is based on the Virtual System Model [33]. In this model,

each user creates a virtual �le system which is a directed graph built on top of a physical

27

graph-structured information repository. In these graphs, nodes are used to store �les and

links are used to connect nodes with each other. That is, nodes are similar to UNIX-

directories and links are similar to UNIX-symbolic links. In a user's virtual �le system,

virtual nodes can also contain pointers to the information present in one or more physical

nodes. Users can specify (virtual or physical) path names that go from one node to

another by traversing links. Users can also include other virtual name spaces in their

personal (virtual) name spaces by using union-links. These are similar to UNIX-mount

points. Hence, like Jade, Prospero allows users to build personal virtual name spaces that

use the information present in the physical name space or other virtual name spaces.

However, Prospero has an additional feature that makes it very di�erent from Jade.

Prospero allows users to associate �lters with links. A Filter is a program that can alter

users' perception of the contents of the directory the link points to (this is called the target

directory of that link). The input of the �lter is the target directory and the �les and

links it contains, while the output is a set of links that point to new directories whose

contents are derived from the contents of the target directory. This output is called a view

of the target directory. Note that since a �lter is an arbitrary program, it can access not

only the �les in the target directory, but also follow the links in this directory and access

the �les in other virtual and physical directories as well. Prospero also allows users to

compose the �lter associated with one link with the �lter associated with another link.

This allows users to specify the view of the directory pointed to by the �rst link as a

function of the view of the directory pointed to by the second link. Users can execute

�lters whenever they wish and thereby derive views that classify information in existing

directories according to their personal tastes. Hence, Prospero's �lters are powerful tools

for information retrieval.

The only drawback of Prospero is that �lters must be written and executed by the

user. Prospero does not ensure that the views of target directories are up-to-date when

there are changes to (i) the contents of these directories, (ii) the �lters associated with

links to these directories, or (iii) the �lters of other links that are composed with the �lters

mentioned in (ii). That is, Prospero does not o�er consistency guarantees of any kind |

users must execute the appropriate �lters at the appropriate time to ensure consitency.

Hence, Prospero meets all the goals mentioned in section 1.3 except goal (4).

28

In this chapter, we surveyed some existing systems that provide novel ways to access

information. There are many others systems that have interesting ideas and discuss related

issues [7, 10, 14, 16, 18, 24, 37, 42]. In general, systems that are very exible and powerful

like Prospero do not have a consistency model, and systems that are intuitive and simple

like MIT SFS o�er consistency guarantees but are not as powerful and do not allow users to

organize the information retrieved by name and content using the same �le system. Other

systems like Harvest allow users to retrieve information using di�erent naming schemes,

but they do not allow them to organize this information in any meaningful way. Note that

we did not discuss any database systems in this chapter since they concentrate on how

to provide powerful paradigms to retrieve information by content | they do not discuss

how to integrate these paradigms with mechanisms to retrieve information by name. We

therefore conclude that there is a need for a new �le system that provides both name and

content based access to information, and satis�es all the goals mentioned in section 1.3.

29

CHAPTER 3

DESIGN OF THE HAC FILE SYSTEM

In this chapter, we examine various approaches to the design of a �le system that

provides CBA, and justify why we made certain choices in HAC. Towards the end of

the chapter, we discuss a detailed example of an actual user-session that illustrates the

important features of HAC. We shall also compare HAC with existing systems that provide

name and content based access to information, and try to show that HAC o�ers a good

alternative to these systems.

To simplify our discussion, we shall adopt the following convention in this dissertation:

we shall use (i) bold upper-case F to denote a HAC �le system, (ii) bold upper-case Q to

denote a query, (iii) bold lower-case f to denote a �le, (iv) bold lower-case d to denote a

directory, c to denote a child (sub) directory and p to denote a parent directory, and (v)

bold lower-case l to denote a (UNIX-like) symbolic link.

3.1 Basic Assumptions

To begin with, we mention the assumptions about hierarchical �le systems and CBA

mechanisms that HAC uses.

3.1.1 Hiearchical File Systems

HAC assumes a hierarchical �le system with the following properties:

1. There is a notion of a �le, a unit of data that can be identi�ed uniquely and manip-

ulated independently of other �les in the �le system.

2. There is a notion of a directory, a mechanism to group �les and other (sub) directories

together in a hierarchical fashion, so that �les and directories can be identi�ed using

30

path names that \traverse" directories one by one until they \reach" the appropriate

�le or directory. The �les and sub-directories grouped within a directory are known

as its contents. There is also a notion of a root directory from which all path name

traversals must begin. (A traversal is a logical notion: we may or may not need to

examine the contents each directory in a path name while we are traversing it. For

example, see Pre�x-caching in the Sprite �le system [36].)

3.1.2 CBA Mechanisms

HAC also assumes a CBA mechanism with the following properties:

1. There is a query-language to express queries.

2. The result of a query is a set of pointers to objects that satisfy the corresponding

query. (A \pointer" is an object that contains the identity or name of another

object.)

3. Given a pointer to an object, it is possible to retrieve from that object the information

that satis�es a given query.

Note that we do not assume that hierarchical �le systems have the notion of a \pointer"

to an object. (In the UNIX �le system, pointers are nothing but symbolic links.) It

is su�cient that such a notion is present in CBA mechanisms. We believe that these

assumptions are reasonable since there are �le systems without the notion of pointers to

objects (e.g., MS-DOS �le system), but we have not come across any search engine that

does not allow us to retrieve the names of objects that satisfy a query (without returning

the actual information itself).

3.2 One Name Space per User

HAC is designed so that users can extract and access the �les they �nd relevant. That

is, users are allowed to name the same �les in di�erent ways based on their individual

tastes. Hence, in HAC, the name space within which path names are resolved is di�erent

31

for di�erent users. This is similar to the Jade �le system [38]. We believe that a single

(global) name space for all users makes it harder to �nd relevant information (Chapter

14 of [31]). From this point onwards, we shall use the term \a HAC �le system" or \an

instance of the HAC �le system" to refer to the personal name space of a single user. Note

that HAC manages the �le name space | it does not manage �le data. Hence, we can

think of HAC as a \layer" built on top of an \underlying �le system" (which may or may

not be hierarchical) that manages �le data.

3.3 One CBA Mechanism per HAC File System

Each instance of the HAC �le system has one content-based access (CBA) mechanism

associated with it. HAC uses this CBA mechanism to process queries about all �les in the

corresponding �le system. HAC also allows users to associate di�erent CBA mechanisms

with a given set of �les. However, they must explicitly specify the set of �les and the

CBA mechanism they want to associate with it, and create a new name space (i.e., \�le

system") using the semantic mount operation. We shall discuss this in detail in Chapter

4. For now, it is su�cent to know that HAC uses the same CBA mechanism for all �les in

one �le system. We believe that this design is simple because users can ask queries in one

query language within one �le system, and exible because they can chose di�erent CBA

mechanism for di�erent parts of their �le system if they so desire. Hence, HAC satis�es

Goal (5) mentioned in section 1.3.

3.4 UNIX-like Interface to CBA Mechanisms

We designed HAC's user and application programmer interfaces to CBA mechanisms using

the UNIX �le system as our model. This was because:

� UNIX was the most readily available hierarchical �le system.

� We wanted to test if HAC could be used meaningfully when we mapped queries and

query-results onto �le system abstractions, and at the same time, allowed complex

UNIX-like manipulations of the hierarchy (e.g., by using commands like: mv, mkdir,

creat, rm, rmdir, ln, mount, etc.).

32

� Many hierarchical �le systems that exist today are based on UNIX, and UNIX is

in wide use: this meant that HAC could be extended easily to many of these �le

systems and its development could also be faster.

3.5 Syntactic and Semantic Commands

To integrate CBA mechanisms into �le systems, our approach is to associate queries and

their results with existing �le system abstractions (Goal (1) in section 1.3), and provide

new operations to manipulate queries and query-results. We call these new operations se-

mantic commands. We designed semantic commands to be intuitive extensions of existing

UNIX �le system commands, which we call syntactic commands. In HAC, we can use both

semantic and syntactic commands independently on the same �le system abstractions.

We also de�ne a lower-level application programmer interface for accessing and manip-

ulating queries and their results. The interface consists of intuitive extensions to existing

UNIX �le system calls. We call them semantic functions. In this chapter, we shall in-

troduce some important semantic commands as we go through HAC's design. We shall

not discuss any semantic functions here since they can be derived easily from semantic

commands. We give a detailed explanation of the semantic functions and commands in

HAC in Appendices A and B.

3.6 Queries Associated with Directories

We know that CBA mechanisms can return either the information that matches a query,

or the names of �les that satisfy the query, or both (see section 1.1). We also know that

some CBA mechanisms [11, 12] can group similar �les together in clusters and return the

set of clusters that satisfy the query. In other words, queries in CBA mechanisms allow

us to group related objects together. Note that directories in hierarchical �le systems

also serve the same purpose. Hence, we associate queries with directories in the HAC �le

system. (This approach is similar to MITSFS [23] and Nebula [8].) We call the resulting

directories semantic directories. The command to create a semantic directory is called

smkdir. When a user creates a semantic directory, he/she must specify not only its name,

33

but also a query to be associated with it. Note that a semantic directory is exactly like

an ordinary directory in all other ways. That is, users can access a semantic directory

by specifying its path name, and create, delete, and rename �les and sub-directories, etc.,

within a semantic-directory in the usual way.

3.7 Query Results Associated with Sets of Symbolic Links

In this dissertation, we assume that when a CBA mechanism evaluates a query, the result

is a set of pointers to �les that satisfy the query. The UNIX �le system has the notion of

\symbolic links" which are pointers to (path names of) �les, directories, or other symbolic

links. We extend this notion in HAC and associate the result of a query with a set

of symbolic links. In other words, when a user creates a semantic directory d with a

query Q, HAC automatically creates symbolic links to �les that match Q within the new

directory d. (There is one symbolic link in d for each \pointer to a �le" returned by the

CBA mechanism.) To access the actual �les that match Q, the user can simply traverse

the appropriate symbolic links from d (i.e., de-reference the appropriate \pointers"). From

now on, we shall use the term \symbolic link" to mean both a pointer to an object in a

HAC �le system, and a \pointer to a �le" returned by a CBA mechanism. HAC supports

symbolic links to �les whether or not the underlying �le system supports them.

Note that to map query-results onto a �le system abstractions, there are two other

alternatives. We discuss them below.

1. Instead of creating symbolic links, HAC can create UNIX-like hard links to �les

that match a query. (A hard link is an explicit reference to an object maintained by the

�le system. An object cannot be deleted from the �le system unless all hard-links to it are

explicitly removed.) We know from section 1.1 that it is possible for more than one query

to match a given �le. This means that users cannot delete a �le unless they explicitly

remove the hard links to that �le from all semantic directories in the �le system whose

query-results refer to that �le! This restricts the users' freedom unnecessarily. On the

other hand, if we want HAC to delete the appropriate hard links automatically whenever

a �le is deleted, HAC must distinguish between the hard-links that are created explicitly

by users and those that are created automatically by HAC when users ask queries, so that

34

it can delete a �le if there are no user-created hard-links that point to that �le. But this

means that the links that HAC creates when users ask queries are not explicit references

at all! They are just \pointers" to �les, i.e., symbolic links. Another major problem with

hard-links is that they cannot be maintained if they point to �les in remote �le systems

over which we do not have any control (see Chapter 4 for more details).

2. Given a semantic directory d, HAC can create new �les in d such that each new �le f0

corresponds to one existing �le f that matches d's queryQ, and contains all the information

in f that satis�es Q. That is, HAC does not have to bother about symbolic links, and users

can consider query-results to be just regular �les in the underlying �le system. We rejected

this idea since we wanted to clearly distinguish the data in the �le system from the results

of queries. (The former can be searched by a CBA mechanism, while the latter cannot.)

This allows users to manipulate and tune the results of a query according to their personal

tastes, without (inadvertently) modifying the results of other queries. They can do so by

simply creating and deleting symbolic links in semantic directories. This is one of our

main goals (see (3) and (4) in section 1.3, and sections 3.9 and 3.10 below). This is not

possible if query-results are sets of �les because queries can then match both the \original"

�les (like f), and their \subsets" (like f '). (It is possible to distinguish these two kinds of

�les, but that is extremely cumbersome and counter-intuitive.)

The idea of creating new �les automatically in d is also not very practical since the

query-result in d can contain too much information | users can get overwhelmed by it

and even ignore most of it. HAC can also end up unnecessarily replicating huge amounts

of data whenever users create new semantic directories, and this data can occupy too much

space in the underlying �le system. Sets of symbolic links, on the other hand, occupy very

little space in the underlying �le system (see Chapter 5 for more details). And sometimes,

even the names of �les that match a query (i.e., the symbolic links) can contain enough

information to allow users to re�ne the query. That is why, instead of creating new �les

in d that contain information that matches Q, given a symbolic link l in d, we decided

to provide a special user-command scat to retrieve only the information that matches Q

from the �le l points to. That is, HAC extracts the context of a match from a �le only if

users ask it to do so.

35

3.8 Sub-directories and Scope of Queries

We now discuss what we mean by creating a semantic sub-directory within an existing

semantic directory. To do so, we must de�ne the scope of a query: every query (and

the corresponding semantic directory) has a scope which is the set of �les over which the

query is evaluated. That is, a query does not return symbolic links to �les outside its

scope even if those �les match the query. The scope of a query depends on the parent

of the corresponding semantic directory. If a semantic directory d is created within an

existing semantic directory p, then the scope of d is de�ned to be the �les pointed to by

the existing set of symbolic links in p. This set of symbolic links is also known as the

scope provided by p. However, if d is created within the root (/) of a HAC �le system,

then the scope of d is de�ned to be all the �les in that �le system.

By this de�nition, the scope provided by a newly created child semantic directory is

always a re�nement of the scope provided by its parent (this is similar to [23] and [6]).

When a user creates a semantic subdirectory, the set of symbolic links in that directory

is always a subset of the existing set of symbolic links in its parent. In other words, HAC

treats the sets of symbolic links in di�erent semantic directories as separate entities whose

contents depend on how these directories are related to each other hierarchically. We

chose this de�nition since we wanted to use semantic directories to organize both �les and

results of queries, and classify results of queries in a hierarchical fashion. The example

towards the end of this chapter demonstrates that this is indeed desirable.

When a user creates a semantic subdirectory d within a parent directory p, we have

three options for representing the query result associated with d:

1. We can explicitly copy the appropriate symbolic links from p into d.

2. We can move the symbolic links in p that satis�es d's query from p into d and

maintain additional information so that we can compute the query-result associated

with p whenever necessary (say, if a user wants to create another semantic subdi-

rectory within p). This information can be a list of names of sub-directories of p

whose query-results are also a part of p.

3. Instead of moving symbolic links from p into d, we can maintain additional infor-

36

mation in d that tells us what part (range) of set of symbolic links in p also belong

to d.

We chose the �rst approach since (i) it is easy to implement, and (ii) the sets of symbolic

links in HAC occupy very little space compared to �les (see Chapter 5). The other two

approaches can been used if it is expensive to store sets of symbolic links. The only problem

with our approach is that whenever a user creates a new semantic directory, HAC always

creates a new set of symbolic links in it. That is, HAC may end up creating too many

symbolic links and these might keep recurring in di�erent subdirectories. Symbolic links

can be a nuisance to users when they are browsing a directory hierarchy, since symbolic

links are path names of objects in the �le system, and path names can be very long if the

�le system is large. We get around this problem by providing a special command sls to

display only those symbolic links in a directory that do not occur in any of its children.

Using sls, users can hide the information they are not interested in and concentrate on

what is relevant.

3.9 Editing Query Results and Scope of Queries

We mentioned earlier that users can treat a semantic directory exactly as an ordinary

(syntactic) directory after they create it. This means that in particular, they can modify

the set of symbolic links in a semantic directory by (i) removing some irrelevant links

returned by the query, or (ii) creating new symbolic links to �les that have related infor-

mation but were missed by the query. This helps users tune the contents of a semantic

directory according to their personal tastes.

For example, given a database of businesses in Tucson, users can create the directory

/restaurants/chinese and decide to add a symbolic link Min-Thai inside it since they might

feel that Min-Thai, a Thai restaurant, has a good selection of Chinese entre�es. (Here, for

simplicity, we assume that the query of a semantic directory is the same as its name.)

Of course, users might also try creating /restaurants/fchinese OR thaig, but that will

return symbolic links to all Thai restaurants, not just Min-Thai. As another example, the

user might delete the symbolic link to Seri-Melaka in /restaurants/chinese since they

mostly serve Malaysian food, not Chinese.

37

3.9.1 Scope Restrictions and Scope Consistency

Though it is desirable to allow users to edit the set of symbolic links in a semantic di-

rectory, we are now faced with an additional problem: it is possible for users to create a

hierarchy of directories that violates the restriction that the scope provided by a seman-

tic directory should be a subset of the scope provided by its parent. For example, users

might explicitly add a link to El-Regis Bar within /restaurants/mexican since they serve

excellent margaritas, but El-Regis Bar may not qualify as a \restaurant" according to

the CBA mechanism. Similarly, they might explicitly delete the link to Taco-Bell within

/restaurants since it is a fast-food joint and they want /restaurants to contain symbolic

links to all restaurants where they can host formal dinners. However, they might still con-

sider the symbolic link Taco-Bell to be very much relevant within /restaurants/mexican.

We resolve this issue by de�ning what we mean by a scope-restriction and describing

an algorithm to enforce it. To begin with, we classify the set of symbolic links present in

every semantic directory as follows:

1. The symbolic links that were explicitly added to the directory, i.e., its permanent

symbolic links. (Symbolic links in existing hierarchical �le systems are of this type.)

2. The symbolic links that were obtained by evaluating its query and were not explicitly

added or deleted by users, i.e., its transient symbolic links. (All the freshly created

symbolic links in a new semantic directory are transient.)

Among the symbolic links not present in the directory, we keep track of those links

(whether transient or permanent) that were once present in the directory but were later

explicitly deleted from it. We call them the prohibited symbolic links of the directory.

Hence, given a semantic directory, we associate three disjoint sets of symbolic links with

it: the transient, permanent and prohibited links. Note that given any symbolic link in

the �le system, we can determine if it is in one of these three sets. Now we de�ne the

following: given a semantic directory d that is not the root of a HAC �le system, the

\scope restriction" on the set of symbolic links in d is the invariant that

1. The set of transient symbolic links in d is always a subset of the scope provided by

38

its parent p, and

2. d should have transient symbolic links to all the �les in the scope provided by p that

satisfy d's query, unless symbolic links to these �les are explicitly prohibited in d.

HAC must maintain this invariant for d whenever there is a change in its scope, since

there can be transient symbolic links in d that point to �les that are no longer in its new

scope, and there can be �les in d's new scope that match its query but transient symbolic

links to these �les may not be present in d. In these cases, d's query and its result are

said to be inconsistent with its scope. We call this a scope-inconsistency. This can happen

whenever there is a change in a query, the result of a query, or a change in the structure

of the directory hierarchy. That is, when:

1. A user �nishes editing the set of symbolic links in d's parent p,

2. A user renames d as the child of a semantic directory other than p,

3. There is a change in the scope of p, or

4. A user changes the query of d after he/she creates it. (The user can do this using the

special semantic command smv -q. He/she can also read the current query associated

with a semantic directory using the semantic command sreadln.)

In these cases, HAC re-computes the set of transient symbolic links in d as follows:

�rst, HAC uses the CBA mechanism to re-evaluate d's query on all the �les in its current

scope. Then, from this result, HAC discards the links that occur in d's set of permanent

and prohibited symbolic links. The links that remain are the new transient symbolic links

of d. Note that HAC does not add a prohibited symbolic link to the above result even if

that link points to a �le that is in d's scope and matches its query. Similarly, HAC does

not delete a permanent symbolic link from d even if that link points to a �le that is no

longer in d's scope or does not match its query. Also note that HAC re-computes only

the set of transient symbolic links of d | HAC does not change the set of permanent or

prohibited symbolic links associated with d 1.

1HAC has special API routines eunlink, elink, iunlink, link and symlink to directly modify the set

of permanent and prohibited symbolic links in semantic directories. Sophisticated users can use these

routines to control the behaviour of the scope consistency algorithm. These are described in Appendix A.

39

To conclude: we allow users to edit and �ne-tune the results of queries without mod-

ifying the query since we feel that the query of a semantic directory is not as important

as the set of symbolic links in it: the query is just a quick �rst step to obtain more or

less the information users are looking for. On the other hand, the set of symbolic links in

a semantic directory may be the result of many (possibly time-consuming) browsing and

editing steps. Hence, HAC does not modify this set unless it is explicitly asked to do so.

Moreover, with this design, HAC is responsible only for the transient symbolic links in

the �le system, while users are responsible for all the permanent and prohibited symbolic

links.

3.9.2 Advantages of the Scope Consistency Algorithm

The above de�nition of scope-consistency and the corresponding algorithm have some

important consequences:

1. The above algorithm allows users to organize both �les and results of queries

in a hierarchy, and at the same time, takes care of the cases where strict hierarchical

classi�cation of information is not possible.

2. If users modify the query-result associated with a directory d, the scope consistency

algorithm restricts all changes to the query-results of the directories that are within the

subtree rooted at d. (These directories are said to depend on d.) Hence, users can modify

the query-result associated with d without changing the query-result of its ancestors. This

design is intuitive since even in hierarchical �le systems, the changes within a directory

do not e�ect the contents of its parent in any way. This is also simple to implement due

to our decision in section 3.8 to create fresh symbolic links whenever a user creates a new

semantic directory. If we had used one of the other techniques, we would have to use

complex copy-on-write mechanisms to allow users to modify the query-result of a child

semantic directory without e�ecting its parent.

3. The above de�nition of scope consistency and our decision to distinguish between

syntactic and semantic commands gives users a lot of exibility. For example, if they want

to restrict the scope of a query Q to the set of �les reachable from a given directory d,

they can: (i) create a (syntactic) directory p, (ii) traverse the subtree rooted at d and

40

create permanent symbolic links in p to all the �les encountered within d, and (iii) create

a new semantic directory p/c with query Q. Then, p/c will contain symbolic links to

all �les reachable from d that satisfy Q. In this way, users can exploit both the existing

organization of information, and the power of the CBA mechanism to classify information.

Note that in this example, users can generate the set of symbolic links in p using any

means they like without e�ecting the behaviour of smkdir or other semantic commands.

This does not mean that semantic directories can have arbitrary sets of symbolic links in

them, since HAC always enforces scope consistency. We believe that our design achieves a

good balance between users' freedom on the one hand, and scope-consistency restrictions

on the other.

3.9.3 Other De�nitions of Scope

We de�ne the set of transient symbolic links in a semantic directory d to be a re�nement

of the scope provided by its parent. We rejected the idea of de�ning this set to be, say,

the union of the transient symbolic links in d and the scope provided by all its children.

(In this case, d will depend on its children, not the other way round.) If we use this

de�nition, users can never add a symbolic link l to a child of d such that l does not

automatically belong to the scope provided by d. In other words, we cannot take care of

the possibility that some information cannot be classi�ed in a strict hierarchical fashion.

This is unacceptable. We also rejected the idea of de�ning the set of transient symbolic

links in d to be the union of the transient symbolic links in d and all its children, since

in that case, changes to the set of transient links in a child semantic directory can e�ect

the set of transient links in a parent. This is counter-intuitive since in hierarchical �le

systems, changes to the contents of a subdirectory do not e�ect the contents of its parent in

any way. (Users of hierarchical �le systems are in general more familiar with information

propagating downward to the leaves of a directory hierarchy rather than upward to the

root.)

41

3.9.4 Scope Provided by Directory Independent of its Children

If users remove a semantic directory d, the set of symbolic links in it is lost forever:

however, the set of symbolic links in its parent p is not a�ected. Similarly, if users modify

the set of symbolic links in d or change its parent (i.e., move d to a di�erent position in

the directory hierarchy), the scope provided by p is not a�ected.

Note that due to the above design decision and the decision in section 3.9.3, the

scope provided by a semantic directory remains independent of the scope provided by its

children. This allows users to modify and rename the children without changing their

parent in any way. However, if they modify the set of symbolic links in a semantic

directory, HAC updates all its children. This is intuitive since even in hierarchical �le

systems, changes within a directory are not visible to its parent, but for instance, if users

rename (disable permissions to access) a directory, they implicitly rename (disable access

to) all its descendents.

3.10 Modifying Files and Consistency of Query Results

HAC is a complete �le system in its own right and allows all regular �le system operations

on its objects. Hence, users can not only modify results of queries, they can also create,

remove, rename (move), or modify data in actual �les in the �le system. Then, there is a

possibility that the transient symbolic links in a semantic directory d may not represent

the true result of evaluating its query. That is, there can be a �le f such that the transient

symbolic link l to f is not present in d, and l is not prohibited in d, but f now matches

d's query. Similarly, there may be a �le f0 such that the transient symbolic link l0 to it is

present in d, but f0 no longer exists or no longer matches d's query. In these cases, d's

query and its result are said to be inconsistent with the data in the �le system. We call

this a data-inconsistency.

Though HAC removes scope-inconsistencies from the �le system as soon as possible,

when there are changes to the data (�les) in the �le system, HAC does not remove data

inconsistencies instantly since this can be very expensive | HAC may have to invoke

the CBA mechanism to re-index the whole �le system and re-evaluate the queries of all

42

semantic directories in it. (We assume that the CBA mechanism needs an index of the

information to speed up its information retrieval [28]. We also assume that the CBA

mechanism has a query-processor that answers queries about the �les that were indexed.)

Instead, HAC invokes the CBA mechanism to re-index the �le system periodically (say,

twice a day). Then, HAC traverses all semantic directories in the �le system in a top-down

fashion (from the root down to the leaves) and invokes the CBA mechanism to re-evaluate

the query of each semantic directory it encounters (see section 3.11 for more details). That

is, HAC makes sure that it updates the scope of every semantic directory before the CBA

mechanism re-evaluates the corresponding query. This mechanism is simple and e�cient,

but data-inconsistencies in the �le system can persist for many hours. That is why HAC

also allows users to re-index speci�c parts of the �le system and re-evaluate the queries

of a speci�c set of semantic directories instantly. We are now trying to explore more

sophisticated event-driven/lazy mechanisms to handle data-inconsistencies.

We now wish to mention a subtle point that can arise when we handle data incon-

sistencies. Suppose a user creates a �le f within an existing semantic directory d with

query Q. When the CBA mechanism re-evaluates Q, it can return a symbolic link l to

f if it matches Q. Though there is no real need to \display" l when users are browsing

the contents of d (using commands such as ls and cd, say), it is necessary to retain it in

d since l will be in the scope of the semantic sub-directories of d, and f can match their

queries. In general, we believe that there is no need to display symbolic links within a

semantic direcotry that point to objects within the sub-tree rooted at this directory. We

take care of this problem by modifying the semantic command sls (see section 3.8). When

sls is used to browse the contents of d, it will not display symbolic links such as l that

point to objects within d.

3.11 Using Existing Query Results in New Queries

So far we considered a query to be an attribute of a semantic directory: we did not care

about its internal structure. However, if we assume that:

1. A query is an expression of some kind involving terms, where a term is de�ned to

be the simplest form of a query (e.g., a keyword, an attribute, a value, etc.),

43

2. A term must be evaluated by the CBA mechanism, and the result of this evaluation

is (also) a set of symbolic links to �les that satisfy the term,

3. Sets of symbolic links (whether they are obtained by evaluating terms and queries,

or from existing semantic directories) can be combined using operators (like AND,

OR, <, �, etc.),

4. HAC knows how to use the query language parser of the CBA mechanism to split

queries into its constituent terms and operators, and

5. HAC knows how to use the query language interpreter of the CBA mechanism to

combine sets of symbolic links using operators,

Then, it is possible to use the name of an existing directory instead of a term in a query

Q. Let us see how: whenever HAC wants to evaluate Q, it �rst invokes the query-language

parser of the CBA mechanism to construct some form of intermediate code (say, a parse

tree) for Q. We assume that it is possible to modify the parser to distinguish between

terms and names of directories that appear in Q. (This can be a very simple modi�cation,

for instance, we can use back-quotes (`)s to enclose names of directories in queries. See

the example in section 3.12.) HAC then invokes the query language interpreter on this

intermediate code. We assume that when the interpreter comes across a term, it can con-

tact the query-processor of the CBA mechanism to evaluate it, and when it comes across

the name of an existing directory d, it can call an external HAC-function to \evaluate" d.

In this function, HAC directly accesses the existing set of symbolic links in d and returns

that as the result of \evaluating" d. Note that HAC does not (recursively) invoke the

interpreter to evaluate the query associated with d | that is similar to aliasing and not

very interesting.

In the above discussion, it is possible for Q to be composed solely of directory names,

i.e., Q need not have any terms at all! Moreover, d can be an ordinary (syntactic)

directory without an associated query | HAC can still access its existing set of symbolic

links to �les, and combine it with search-expressions (terms) or edited query-results in

semantic directories in the �le system. (Note that HAC ignores symbolic links that point

to �les that were not indexed. It also ignores symbolic links that point to other �le system

44

abstractions.) The resulting \hybrid" query language can be more expressive than the

query language of the CBA mechanism alone. For example, we implemented HAC using

Glimpse [28] which has a simple query language but the result was su�ciently powerful

for many purposes, including the example in section 3.12.

3.11.1 Consistency of Query Results Revisited

We now address the issue of consistency of queries and their results when queries are

allowed to contain names of other semantic directories. Suppose the query of a directory

c contains the name of a semantic directory d (that is not necessarily an ancestor of c).

Now if there is a change in the scope provided by d, we must re-evaluate c's query to

reect this change. In this case, we say that c depends on d or c refers to d. That is, the

scope of c contains the scope provided by d. (Note that as we mentioned in section 3.9.1,

the children of d always depend on d since the transient symbolic links in the children are

always within the scope provided by d.) This set of dependencies gives rise to a directed

graph which we call the dependency graph. (Note that if we did not allow queries to refer

to names of other semantic directories, this graph would be an `up' tree starting at the

root of the �le system 2.) We do not allow cycles to exist in this graph. The order in which

we must update the set of symbolic links in di�erent directories is given by a topological

sort of the dependency graph. Note that the root of a HAC �le system always occurs �rst

in this order since all directories depend on it and the root does not depend on any other

directory (the root does not have a query associated with it). HAC uses the top-sort order

to re-evaluate queries of semantic directories whenever there are changes to the �le system

that can e�ect the scope provided by these directories. That is, whenever:

1. HAC wants to re-index the �le system,

2. A user wants to re-index a speci�c set of �les and/or re-evaluate a speci�c set of

queries,

3. A user �nishes editing the set of symbolic links in a semantic directory,

4. A user renames a directory in the naming hierarchy, or

2Each node in an up-tree has one link pointing to its parent, except the root which has no links.

45

5. A user changes the query of a semantic directory after he/she creates it using the

smv -q command.

(Note that (1) and (2) handle data inconsistencies, and (3), (4) and (5) handle scope

inconsistencies.) This shows that HAC has a consistency-model and satis�es goal (4) in

section 1.3.

3.11.2 Uses of Path name Based Scoping

Before we end this section, there is one important point we must mention. Suppose a

user creates a semantic directory /c whose query is a boolean AND of the path names of

two other directories /d and /p. (For simplicity, we assume that all these directories are

children of the root of a HAC �le system.) Then, the set of symbolic links in /c will be

identical to the set of symbolic links in the semantic directory /p/c, say, with the query

/d (the path name of this directory). So, it is possible to argue that there is no need to

de�ne the scope of queries based on path names if it is possible to specify directory names

in queries. However, we feel that query-re�nement based on path names is important

for two reasons. First, it is simple to understand and it can be used even if HAC does

not know anything about the query-language parser. And second, the user might have

created all the links in two directories /p/c and /p explicitly, and decided to "keep" c

within /p (instead of p within /c, say) for reasons that may not be easy to express using

a query. This also allows the user to derive a new directory hierarchy p0 from the existing

hierarchy p by using the names of directories in p in queries of semantic directories in p0

| he/she does not have to modify the structure of p in any way. We believe that the

structure of a directory hierarchy contains important organizational information, and that

HAC should not consider two di�erent structures that give rise to identical query results

as equivalent.

46

3.12 Illustrative Example

We now illustrate the important features of HAC through an interactive user-command

session 3 over a HAC �le system containing summaries of about 1000 personal computer

(PC) software programs. (This information was gathered from the World Wide Web.) We

wish to mention that the reader can skip the entire example without any loss of continuity

since we do not present any new information here. However, we believe that the example

clari�es some important issues discussed earlier in this chapter, and shows that we can

use HAC to access and organize information in a better way.

In this example, user-commands are shown in the normal-typewriter font, while

HAC-output is shown in the small-typewriter font. The root of our HAC �le system is

in /export/home /local/bgopal /phd/debug. We shall use \..." as an abbreviation for this

path name. In this �le system, the summary-database is in the directory .../pcindex 4.

We use the Glimpse search engine [28] to provide content based access to �les in HAC.

Queries in Glimpse are boolean (AND, OR) combinations of keywords. A keyword is any

set of alphanumeric characters. The AND operation is denoted by `;' and an OR operation

by `,'. Glimpse also handles regular expressions and wild-cards. To store the �les HAC

needs to interact with Glimpse, HAC automatically creates internal data structures that

are accessible from the root of the �le system.

[kno] pwd

/export/home/local/bgopal/phd/debug

[kno] ls -F

pcindex/

3.12.1 Queries and Query Results

The command to create a semantic directory is called smkdir. It has two arguments: a

query and a name. If a user do not specify the name of the new semantic directory, smkdir

3We shall discuss the application-programmer interface in Appendix A.
4We did not copy the database into the directory pcindex but \mounted" it there (see Chapter 4).

47

assumes that it is the same as the query. smkdir automatically creates symbolic links to

�les that satisfy the speci�ed query. Note that these symbolic links are di�erent from those

in UNIX in an important way. In UNIX, a symbolic link always has (i) a \name" that

is given by a user who created the link, and (ii) a \content", which is the path name of

the object the symbolic link points to. In HAC, however, a symbolic link that is created

automatically in a new semantic directory d does not have any name 5. It only has a

content, which is the path name of the �le the symbolic link points to, relative to the root

of the HAC �le system, /export/home/local/bgopal/debug. Hence, when a user does an ls

operation on d, HAC directly displays the contents of all freshly created (i.e., unnamed)

symbolic links to the user. (That is, ls on results of queries in HAC behaves like ls -l in

UNIX).

This raises an important issue | since the contents of symbolic links (i.e., path names

of �les) can have "/"s in them, HAC must distinguish between path names that actually

traverse the directory hierarchy rooted at d from path names that represent results of

queries in d. To do so, HAC prepends a pair of `:'s to all path names that represent

results of queries. That is, HAC de�nes the name of an automatically generated symbolic

link to be two `:'s followed by its content. (These :s can be considered to be an abbreviation

for the root of the HAC �le system, i.e., equivalent to \...". This notation will become

clearer in Chapter 4.) Note that instead of modifying the UNIX �le-naming convention

in this way, we could have:

1. De�ned the name of an automatically generated symbolic link to be the same as its

content except that every / is replaced with another character, say a #, or

2. Automatically generate a mnemonic name (that does not have a / in it) for an

unnamed symbolic link.

We rejected the �rst solution since the character # itself can appear anywhere in

the content of a symbolic link, and we could not �nd a clear-cut way to deal with this

situation. Though our solution modi�es the UNIX naming convention, we believe that it is

intuitive since even in a hypertext-document, hyper-links (names of hypertext-documents)

5Users can give a mnemonic name to such a symbolic link if they wish.

48

are enclosed within the well known delimiters (< and > respectively), but the hyper-link

itself is not modi�ed in any way. We rejected the second solution because we could not

�nd an easy way to generate mnemonic names automatically so that no two symbolic links

in d have the same name. We plan to look for a better solution to this problem in future.

We now return to our example and show how to use the smkdir command.

[kno] smkdir network net-files

[kno] ls -F

net-files/ pcindex/

[kno] ls net-files

::pcindex/ftp.cdrom.com/network/README

::pcindex/ftp.uml.edu/apogee/1rott13.zip

::pcindex/ftp.uml.edu/3drealms/tvdwango.zip

::pcindex/ftp.uml.edu/epic/tyrdemo.zip

[kno] ls -F net-files

::pcindex/ftp.cdrom.com/network/README@

::pcindex/ftp.uml.edu/apogee/1rott13.zip@

::pcindex/ftp.uml.edu/3drealms/tvdwango.zip@

::pcindex/ftp.uml.edu/epic/tyrdemo.zip@

[kno] rmdir net-files

[kno] smkdir children

[kno] ls children

::pcindex/ftp.uml.edu/MVP/gb30.zip

::pcindex/ftp.uml.edu/apogee/1math.zip

::pcindex/ftp.uml.edu/apogee/1rescue.zip

::pcindex/ftp.uml.edu/epic/amath.zip

::pcindex/ftp.uml.edu/epic/tddemo.zip

::pcindex/info.rutgers.edu/games/children/README

::pcindex/info.rutgers.edu/programming/children/README

49

[kno] cat children/::pcindex/ftp.uml.edu/MVP/gb30.zip

File: gb30.zip Size: 410763 14-Mar-95

GameBuilder Lite v3. Create graphics adventure games with no

programming. Your games can include 256 color graphics, main

character and background animation, masking, object inventory and

detection, music and sound effects, and more, with a powerful point

'n click interface just like the pros use! Easy enough for

children; sophisticated enough for savvy gamers. Supports CGA, EGA,

VGA; mouse recommended.

[kno] scat children/::pcindex/ftp.uml.edu/MVP/gb30.zip

children; sophisticated enough for savvy gamers. Supports CGA, EGA,

Now, we might realize that the existing program /home/bgopal/pcgames/hangman is

suitable for children, and therefore might like to move it into the new semantic directory

.../children.

[kno] mv /home/bgopal/pcgames/hangman children

[kno] cat > children/README

This directory has some programs suitable for growing children.

[kno] ls -F children

::pcindex/ftp.uml.edu/MVP/gb30.zip@

::pcindex/ftp.uml.edu/apogee/1math.zip@

::pcindex/ftp.uml.edu/apogee/1rescue.zip@

::pcindex/ftp.uml.edu/epic/amath.zip@

::pcindex/ftp.uml.edu/epic/tddemo.zip@

::pcindex/info.rutgers.edu/games/children/README@

::pcindex/info.rutgers.edu/programming/children/README@

README

hangman*

From these examples, it is clear that semantic directories allow us to access information

by both name and content.

50

3.12.2 Sub-directories and Scope of Queries

Now, we show how to create subdirectories with smkdir. The set of symbolic links in a

new semantic directory is always a subset of the set of symbolic links in its parent.

[kno] ls -F

children/ pcindex/

[kno] smkdir VGA

[kno] ls VGA

::pcindex/ftp.uml.edu/MVP/1arcy.zip

::pcindex/ftp.uml.edu/MVP/1cf2.zip

::pcindex/ftp.uml.edu/MVP/1cru116.zip

::pcindex/ftp.uml.edu/MVP/1derby.zip

::pcindex/ftp.uml.edu/MVP/1flash.zip

... and so on ...

[kno] rmdir VGA

[kno] cd children

[kno] smkdir VGA

[kno] ls VGA

::pcindex/ftp.uml.edu/MVP/gb30.zip

::pcindex/ftp.uml.edu/epic/amath.zip

::pcindex/ftp.uml.edu/epic/tddemo.zip

[kno] smkdir math

[kno] ls math

::pcindex/ftp.uml.edu/apogee/1math.zip

::pcindex/ftp.uml.edu/epic/amath.zip

51

Figure 3.1 shows the semantic directory hierarchy corresponding to the above examples.

Since .../pcindex/ftp.uml.edu/epic/amath.zip matches the queries \math" and \VGA"

the symbolic link to it occurs in both .../children/math and .../children/VGA. The

following example illustrates how we can use the sls command to hide irrelevant symbolic

links.

[kno] cd /export/home/local/bgopal/phd/debug/children

[kno] ls .

::pcindex/ftp.uml.edu/MVP/gb30.zip

::pcindex/ftp.uml.edu/apogee/1math.zip

::pcindex/ftp.uml.edu/apogee/1rescue.zip

::pcindex/ftp.uml.edu/epic/amath.zip

::pcindex/ftp.uml.edu/epic/tddemo.zip

::pcindex/info.rutgers.edu/games/children/README

::pcindex/info.rutgers.edu/programming/children/README

README

VGA

hangman

math

[kno] sls .

hangman

README

VGA

math

::pcindex/ftp.uml.edu/apogee/1rescue.zip

::pcindex/info.rutgers.edu/games/children/README

::pcindex/info.rutgers.edu/programming/children/README

[kno] ls VGA

::pcindex/ftp.uml.edu/MVP/gb30.zip

::pcindex/ftp.uml.edu/epic/amath.zip

::pcindex/ftp.uml.edu/epic/tddemo.zip

52

[kno] ls math

::pcindex/ftp.uml.edu/apogee/1math.zip

::pcindex/ftp.uml.edu/epic/amath.zip

3.12.3 Editing Query Results and Scope of Queries

In this subsection, we show how we can edit the query-results associated with seman-

tic directories. For example, we can delete the symbolic link to children/::/ pcindex/

ftp.uml.edu/ MVP/gb30.zip since we are not interested in super�cial adventure games. We

can also add a symbolic link to ::pcindex/ ftp.uml.edu/ epic/heart.zip in .../children

since though Glimpse does not �nd it (it does not have the word \children" in it), we

realize that it is clearly a good game for children. (We can continue to edit the set of

symbolic links in .../children until we are satis�ed.)

[kno] cd /export/home/local/bgopal/phd/debug

[kno] cat children/::pcindex/ftp.uml.edu/MVP/gb30.zip

File: gb30.zip Size: 410763 14-Mar-95

GameBuilder Lite v3. Create graphics adventure games with no

programming. Your games can include 256 color graphics, main

character and background animation, masking, object inventory and

detection, music and sound effects, and more, with a powerful point

'n click interface just like the pros use! Easy enough for

children; sophisticated enough for savvy gamers. Supports CGA, EGA,

VGA; mouse recommended.

[kno] rm children/::pcindex/ftp.uml.edu/MVP/gb30.zip

[kno] ls children

::pcindex/ftp.uml.edu/apogee/1math.zip

::pcindex/ftp.uml.edu/apogee/1rescue.zip

::pcindex/ftp.uml.edu/epic/amath.zip

::pcindex/ftp.uml.edu/epic/tddemo.zip

53

::pcindex/info.rutgers.edu/games/children/README

::pcindex/info.rutgers.edu/programming/children/README

README

VGA

hangman

math

[kno] cat ::pcindex/ftp.uml.edu/epic/heart.zip

File: heart.zip Size: 563774

Heartlight, part of Epic's Puzzle Pack. Guide and elf through a

realm of puzzles. Requires 386+. Supports SB/Adlib.

[kno] ln ::pcindex/ftp.uml.edu/epic/heart.zip children

[kno] ls children

::pcindex/ftp.uml.edu/apogee/1math.zip

::pcindex/ftp.uml.edu/apogee/1rescue.zip

::pcindex/ftp.uml.edu/epic/amath.zip

::pcindex/ftp.uml.edu/epic/heart.zip

::pcindex/ftp.uml.edu/epic/tddemo.zip

::pcindex/info.rutgers.edu/games/children/README

::pcindex/info.rutgers.edu/programming/children/README

README

VGA

hangman

math

Now, suppose we come across the �le .../pcindex/ftp.uml.edu/epic/brix.zip while

browsing the PC-database.

cat pcindex/ftp.uml.edu/epic/brix.zip

File: brix.zip Size: 308577

Brix, am arcade style game involving moving various blocks. Requires

VGA and 286 or better. Supports SoundBlaster.

54

Then, we can add the symbolic link to .../pcindex/ftp.uml.edu/epic/brix.zip since it

involves geometrical skills, which are related to math skills. However, brixmay not be suit-

able for small children, i.e., the symbolic link to .../pcindex/ftp.uml.edu/epic/brix.zip

in .../children/math can be outside the scope of the parent directory .../children.

[kno] ls children/math

::pcindex/ftp.uml.edu/apogee/1math.zip

::pcindex/ftp.uml.edu/epic/amath.zip

[kno] ln ::pcindex/ftp.uml.edu/epic/brix.zip children/math

[kno] ls children/math

::pcindex/ftp.uml.edu/apogee/1math.zip

::pcindex/ftp.uml.edu/epic/brix.zip

::pcindex/ftp.uml.edu/epic/amath.zip

[kno] ls children

::pcindex/ftp.uml.edu/apogee/1math.zip

::pcindex/ftp.uml.edu/apogee/1rescue.zip

::pcindex/ftp.uml.edu/epic/amath.zip

::pcindex/ftp.uml.edu/epic/heart.zip

::pcindex/ftp.uml.edu/epic/tddemo.zip

::pcindex/info.rutgers.edu/games/children/README

::pcindex/info.rutgers.edu/programming/children/README

README

VGA

hangman

math

At this point, we can discover that the link .../pcindex/ftp.uml.edu/epic/tddemo.zip

is not meant for young children, so we delete it from .../children. The command to up-

date (synchronize) the sets of symbolic links in the sub-directories of a semantic directory

d once we �nish editing the set of symbolic links in d is called ssync -q. If we use the ssync

55

-q command on .../children, the link to .../pcindex/ftp.uml.edu/epic/tddemo.zip dis-

appears from .../children/VGA. Also, if we create a new subdirectory freetime that has

the query \game OR play" in children, freetime will not have the symbolic link to

.../pcindex/ftp.uml.edu /epic/tddemo.zip.

[kno] smkdir '{game,play}' children/freetime

[kno] ls children/freetime

::pcindex/ftp.uml.edu/MVP/gb30.zip

::pcindex/ftp.uml.edu/apogee/1math.zip

::pcindex/ftp.uml.edu/apogee/1rescue.zip

::pcindex/ftp.uml.edu/epic/amath.zip

::pcindex/ftp.uml.edu/epic/tddemo.zip

::pcindex/info.rutgers.edu/games/children/README

[kno] rmdir freetime

[kno] cat ::pcindex/ftp.uml.edu/epic/tddemo.zip

File: tddemo.zip Size: 293826

Traffic Department 2192 Demo. An intense journey through a new world

of corruption and deceit. Not for young children. Great graphics

and plenty of playing enjoyment. Requires VGA, 286+. Supports

SB/SBPro.

[kno] rm children/::pcindex/ftp.uml.edu/epic/tddemo.zip

[kno] ssync -q children

[kno] ls children

::pcindex/ftp.uml.edu/apogee/1math.zip

::pcindex/ftp.uml.edu/apogee/1rescue.zip

::pcindex/ftp.uml.edu/epic/amath.zip

::pcindex/ftp.uml.edu/epic/heart.zip

::pcindex/info.rutgers.edu/games/children/README

::pcindex/info.rutgers.edu/programming/children/README

56

README

VGA

hangman

math

[kno] ls children/VGA

::pcindex/ftp.uml.edu/MVP/gb30.zip

::pcindex/ftp.uml.edu/epic/amath.zip

[kno] smkdir '{game,play}' children/freetime

[kno] ls children/freetime

::pcindex/ftp.uml.edu/MVP/gb30.zip

::pcindex/ftp.uml.edu/apogee/1math.zip

::pcindex/ftp.uml.edu/apogee/1rescue.zip

::pcindex/ftp.uml.edu/epic/amath.zip

::pcindex/info.rutgers.edu/games/children/README

We can see the symbolic links which were explicitly added (-i option) or deleted (-e

option) in a semantic directory using the sls command.

[kno] sls -e children

::pcindex/ftp.uml.edu/epic/tddemo.zip

[kno] sls -i children/math

::pcindex/ftp.uml.edu/epic/brix.zip

3.12.4 Modifying Files and Consistency of Query Results

In an earlier example in section 3.12.1, new �les README and hangman were created in the

directory .../children. In the following example, we re-index the �les in the �le system

using the semantic command smount (see Chapter 4 and Appendix B for more details),

57

and re-evaluate .../children's query using ssync -q). When we check the new set of �les

in .../children using ls, we see that the link ::children/README to .../children/README

appears in .../children. This tells us that .../children/README will be within the scope

of all directories in the �le system that depend on .../children. However, if we are only

interested in the information present in the subtree rooted at .../children, then this

link is actually redundant since it points to a �le within this subtree. By using the sls

command, we can make sure that such links are not displayed.

[kno] cd /export/home/local/bgopal/phd/debug

[kno] ls -F

children/ pcindex/

[kno] ls -F children

::pcindex/ftp.uml.edu/apogee/1math.zip@

::pcindex/ftp.uml.edu/apogee/1rescue.zip@

::pcindex/ftp.uml.edu/epic/amath.zip@

::pcindex/ftp.uml.edu/epic/heart.zip@

::pcindex/info.rutgers.edu/games/children/README@

::pcindex/info.rutgers.edu/programming/children/README@

README

VGA/

freetime/

hangman*

math/

[kno] smount -u -n -f `pwd`/ `pwd` `pwd`

... output of CBA mechanism as it indexes files ...

[kno] ssync -q children

[kno] ls children

::children/README

::pcindex/ftp.uml.edu/apogee/1math.zip

58

::pcindex/ftp.uml.edu/apogee/1rescue.zip

::pcindex/ftp.uml.edu/epic/amath.zip

::pcindex/ftp.uml.edu/epic/heart.zip

::pcindex/info.rutgers.edu/games/children/README

::pcindex/info.rutgers.edu/programming/children/README

README

VGA

freetime

hangman

math

[kno] scat ::/children/README

This directory has some programs suitable for growing children.

[kno] sls .

hangman

README

VGA

math

freetime

::pcindex/ftp.uml.edu/epic/heart.zip

::pcindex/info.rutgers.edu/programming/children/README

3.12.5 Using Existing Query Results in New Queries

In the following example, we create the semantic directories space and wargame, and then

create the semantic directory startrek whose query contains the names of directories

space and wargame 6. We also create the semantic directory qstartrek whose query is a

combination of the queries of space and wargame to show that the set of symbolic links in

qstartrek and startrek are not identical.

6The �le ::pcindex/ftp.uml.edu/MVP/1flash.zip satis�ed our query since it has the words

\Software" and \dastardly", which have nothing to do with \war" and \star"! This is one of the reasons

why we believe that the power to edit the result of a query is very important.

59

[kno] pwd

/export/home/local/bgopal/phd/debug

[kno] smkdir '{star,space,planet,galaxy}' space

[kno] ls space

::pcindex/ftp.uml.edu/3drealms/tvshow.zip

::pcindex/ftp.uml.edu/MVP/1cru116.zip

::pcindex/ftp.uml.edu/MVP/1flash.zip

::pcindex/ftp.uml.edu/MVP/3point.zip

::pcindex/ftp.uml.edu/MVP/pickle.zip

... and so on ...

[kno] cat space/::pcindex/info.rutgers.edu/mswindows/README

msdos/mswindows/aplt11.arc 88202 bytes

msdos/mswindows/applet11.zip 80941 bytes

msdos/mswindows/apps.arc 7164 bytes

msdos/mswindows/balloon.arc 9591 bytes

msdos/mswindows/blank2.arc 15280 bytes

... and so on ...

[kno] rm space/::pcindex/info.rutgers.edu/mswindows/README

[kno] smkdir '{war,fight,battle};game' wargame

[kno] ls wargame

::pcindex/ftp.uml.edu/MVP/1cf2.zip

::pcindex/ftp.uml.edu/MVP/1cru116.zip

::pcindex/ftp.uml.edu/MVP/1flash.zip

::pcindex/ftp.uml.edu/MVP/1rapid.zip

::pcindex/ftp.uml.edu/MVP/1sea2.zip

... and so on ...

[kno] ls

60

children space

pcindex wargame

[kno] smkdir '{`wargame`;`space`}' startrek

[kno] ls startrek

::pcindex/ftp.uml.edu/MVP/1cru116.zip

::pcindex/ftp.uml.edu/MVP/1flash.zip

::pcindex/ftp.uml.edu/MVP/pickle.zip

[kno] cat startrek/::pcindex/ftp.uml.edu/MVP/1flash.zip

File: 1flash.zip Size: 578710 25-Jul-95

Jack Flash by MVP Software. Jump into the action with Jack and his

Succ-O-Matic as you try to stop Evil Eddie and his dastardly

"things" from destroying the universe. Parallax-scrolling,

side-splitting humor. More zest than a Microsoft press release. More

action than a Stallone flick, and cuter too! Relive the good old

days when mad scientists threatened mankind and games were fun! Req

386, VGA; supports most sound cards.

[kno] smkdir '{war,fight,battle};game;\

{star,space,planet,galaxy}' qstartrek

[kno] ls qstartrek

::pcindex/ftp.uml.edu/MVP/1cru116.zip

::pcindex/ftp.uml.edu/MVP/1flash.zip

::pcindex/ftp.uml.edu/MVP/pickle.zip

::pcindex/info.rutgers.edu/mswindows/games/README

The following example illustrates that HAC re-evaluates the queries of semantic direc-

tories whenever we rename a directory using mv or change its query using smv -q. We can

use the sreadln command to read the query associated with a semantic directory.

[kno] ls children/math

61

::pcindex/ftp.uml.edu/apogee/1math.zip

::pcindex/ftp.uml.edu/epic/brix.zip

::pcindex/ftp.uml.edu/epic/amath.zip

[kno] mv children/math ./math

[kno] ls math

::pcindex/ftp.cdrom.com/math/README

::pcindex/ftp.uml.edu/apogee/1math.zip

::pcindex/ftp.uml.edu/epic/amath.zip

::pcindex/ftp.uml.edu/epic/brix.zip

::pcindex/info.rutgers.edu/math/README

... and so on ...

[kno] sreadln math

}}

\vspace{-.175in}

\begin{verbatim}

math

[kno] smv -q mathematics math

[kno] ls math

::pcindex/ftp.uml.edu/epic/brix.zip

This concludes our example. We believe that it shows how we can tackle important practical

problems using HAC's user-command interface. We will refer to the PC software database again

in Chapter 4.

3.13 Discussion: Does HAC Satisfy Our Goals?

So far, we discussed the basic design of the HAC �le system with the help of an illustrative

example. We now show that HAC satis�es all the goals we mentioned in section 1.3.

62

In our implementation of HAC, though we use one particular search engine (Glimpse)

to provide content based access, HAC itself is independent of it. This is because the only

interaction between HAC and Glimpse is through queries, and queries are evaluated by

Glimpse, not HAC. Though HAC allows us to use the name of a directory in a query,

HAC does not restrict the query language in any way. The query language parser and

interpreter are provided as external inputs to HAC. Hence, it is possible to integrate any

CBA mechanism into HAC, i.e., it satis�es goal (5).

In the above example we saw that HAC allows us to retrieve summaries of interesting

programs by both name and content, and organize these summaries according to our

taste. This can help us choose the PC software we want intelligently. (Note that in

order to do this, we do not have to make a copy of the summary database. The pcindex

directory is a mount point | see Chapter 4 that describes how we can access other CBA

mechanisms and �le systems from one HAC �le system using mount points. For example,

we can access other summary-databases, access other people's organizations of a given

summary database, or access databases that have related information, e.g., the database

of software vendors or PC-repair shops in the vicinity.) HAC also allows us to use the

above organization of summaries to classify the actual PC-software itself, i.e., it allows us

to store the actual software (hangman) \somewhere near" the summaries of related software

(.../children). In other words, we can use the same �le system to organize both data

and results of queries, and use regular �le system operations to manipulate them. Hence

HAC satis�es goals (1), (2) and (3).

HAC enforces data consistency whenever there are changes to the �les in the �le system.

This feature, for example, allows us to get to know: (i) if new versions of existing programs

are available (i.e., summary-�les in the database are modi�ed), (ii) if any new software is

available (new summary-�les are added to the database), and (iii) if existing software will

no-longer being supported or sold (summary-�les are deleted from the database). HAC

also enforces scope consistency whenever there are changes to queries or their results.

Hence HAC satis�es goal (4). To conclude, it meets all the goals we had in mind when we

started to design a �le system that provides both name and content based access to �les.

63

3.14 Comparison with Other Systems

Now, we would like to compare some important features of HAC with similar features in

other systems that provide both name and content based access together.

3.14.1 Browsing and Searching in GlimpseHTTP, WebGlimpse, HAC

WWW browsers like Netscape o�er facilities to search documents pointed to by URLs.

These search facilities are ad-hoc since the scope of the search, i.e., the set of URLs over

which the search is conducted, is always global. In other words, there is no facility for

users to restrict the scope of their search to a subset of the global collection of URLs.

GlimpseHTTP goes one step further: it assumes that the set of URLs at a WWW site

are classi�ed in a UNIX directory hierarchy by the information provider, and allows users

to restrict the scope of their search to all the URLs reachable from the UNIX directory

that corresponds to the current URL they are browsing. Note that if users search from

the root of this directory hierarchy, the scope of the search is all the URLs in that WWW

site.

WebGlimpse does not assume that the set of URLs are classi�ed in a UNIX directory

hierarchy. Instead, it interprets each �le in the WWW site as a hypertext document.

For each document, WebGlimpse builds a neighbourhood �le that contains the names of

all the hypertext documents that are related to this document in some way. Users can

restrict the scope of their search to the neighbourhood of the current document they are

browsing. WebGlimpse allows the information provider to modify the neighbourhood �le

of each document so that he/she can restrict the scope of the search according to his/her

personal taste.

Both GlimpseHTTP and WebGlimpse have a drawback: they do not allow users to

classify the existing information according to their choice. They can only use the existing

organization of information to restrict the scope of their search. These packages also

do not allow users to organize and re-use the results of queries in any meaningful way.

However, semantic directories in HAC allow users to retrieve information by both name

and content, and allow them to organize this information to suit their individual tastes.

64

It is important to note that HAC does not interpret �les like WebGlimpse does. That

is, WebGlimpse's idea of building neighbourhoods for �les based on their content can be

used even when the �les are stored in the HAC �le system. We believe that these systems

can complement each other in a very useful way.

3.14.2 Scatter/Gather Browsing and HAC

The Scatter/Gather technique [11, 12] applies clustering algorithms to approximately sum-

marize any given set of documents by grouping related documents together. This provides

a good overall picture of the kind of information the documents contain. The only draw-

back of this system is that users have no control over the clustering process | the system

makes all important decisions. In particular, it decides what clusters to create and what

documents to assign to each cluster. However, summaries generated by the Scatter/Gather

technique can be extremely useful when used in conjunction with HAC since HAC does

not have facilities to classify �les automatically based on their content. HAC users can

use the Scatter/Gather technique as the �rst step to decide which queries to ask, and then

create semantic directories of their choice using these queries. Thereafter, users can use

HAC's query-result manipulation power to tune the contents of these directories accord-

ing to their preferences. They can also use the Scatter/Gather technique recursively on

their semantic directories to discover good ways to classify the information the directories

contain. That is, they can use HAC to \gather" the documents they are interested in,

and use the Scatter/Gather system to discover good ways to \scatter" these documents

into related groups. In other words, though Scatter/Gather Browsing and the HAC �le

system attempt to sove di�erent problems, we believe that their combination can result

in a very powerful information retrieval system.

3.14.3 Queries and Path Names in MITSFS and HAC

The query of a semantic directory in HAC is independent of its path name 7. Only the

query-result of a semantic directory depends on its parent, since the transient symbolic

links in the directory are always within the scope provided by its parent. This is intuitive

7However, the query can refer to other paths in the �le system.

65

since the most important use of directories in hierarchical �le systems is to classify �les.

Semantic directories in HAC are an extension of the same idea: they allow users to clas-

sify both �les and symbolic links. Moreover, this design allows them to name semantic

directories in any way they choose. In contrast, MIT SFS de�nes the query of a child to

be \the query of its parent" AND \the name of the child", i.e., it interprets the / path

name separator as the boolean AND operator and does not distinguish between the name

and the query of a directory. It also does not allow users to edit the result of the child's

query. Though this design ensures that the scope provided by a child directory is always

a re�nement of that of its parent (i.e., it is trivial to enforce scope-consistency | it is

a no-op), the query language supported by MIT SFS is very restrictive. Moreover, users

have no freedom to modify the names of directories after creating them. (In particular,

they cannot move directories to di�erent points in the directory hierarchy.) HAC does not

have any of these limitations.

3.14.4 Multistructured Naming and HAC

Multistructured naming tries to blend hierarchical and content-based naming of �les. In

HAC parlance, if we do not allow users to modify the results of a queries, then the query-

result stored in a directory d with query Qd will always be a subset of the query-result

stored in its parent /p with query Qp. In this case, the query-result in the semantic

directory /p/d would be the same as the query-result in some other semantic directory

with a query \Qp AND Qd", or \Qd AND Qp". Hence, there is no point in forcing users

to specify path names in the ancestor-descendent order, i.e., we can allow users to specify

both /p/d and /d/p to locate the same set of �les by content if they wish. With multi-

structured naming, users can do exactly what we described above by specifying rules that

de�ne relationship between queries (see section 2.5). These rules allow users to: (i) per-

mute some components of a path name, omit some components or add extra components

to a path name, (ii) assign implicit values to query-results, and (iii) specify which queries

must be satis�ed simultaneously, so that they can build a hierarchical structure into an

otherwise at content-based naming scheme. This can help them search and browse the

information in the �le system.

Though multistructured naming allows users to retrieve and organize �les by both

66

name and content, it does not allow them to modify the results of queries. Hence, they

cannot tune these results according to their personal tastes. This is one of HAC's main

goals. Continuing with the above example, if there are two other directories /d and /d/p

with queries Qd and Qp respectively, since we allow users to modify results of queries,

the set of symbolic links in /d/p and /p/d (above) may be di�erent. Hence, we sacri�ce

the ability to specify complex structural constraints on the components of path names,

but gain the power to customize query results and use modi�ed results in future queries.

However, if users want both /p/d and /d/p to refer to the same directory, say /d/p, they

can store the path names of all the directories in the �le system (separated by newlines) in

a special �le, invoke a search engine like Glimpse to search and output all the lines in that

�le that match the pattern p;d (the \;" is a commutative AND operation in Glimpse),

and pass on the result of this search to HAC. The above procedure works equally well on

any hierarchical �le system, and we did not feel it was necessary to include it as a part of

HAC's design.

Also note that multistructured naming does not come for \free" | users must specify

rules that describe relationships between the aliases (labels) of queries (attributes), and

this can be a complex task. On the other hand, HAC users just have to organize their

semantic directories in a hierarchical fashion, which is trivial if they are familiar with

hierarchical �le systems. For the above two reasons, we believe that HAC o�ers a good

alternative to multistructured naming.

3.14.5 Views in Nebula and Semantic Directories in HAC

Nebula provides content based access to �les in an existing (underlying) syntactic �le

system by creating views of the �le system. A view in Nebula has a query associated with

it. A view consists of a set of pointers to �les (i.e., �le-objects that encapsulate �les) in

the underlying �le system that match the query. These are called its contents. The query

of a view v cannot refer to names of other views, but users can choose the views within

which the query is evaluated. These views form the scope of v. In this case, v is said to

depend on all the views in its scope. A user can re�ne the contents of a view by re�ning

the query associated with the view or by changing its scope. When the contents of a

view change due to changes in the �les in the underlying �le system, Nebula makes sure

67

that the queries of all views that depend on this view are re-evaluated. This mechanism

is similar to what happens in HAC. Note however that the contents of a view v change

only if the �les in the �le system or views that v depends on change. Nebula does not

allow users to edit the contents of a view, i.e., they cannot change the result of any query

to suit their personal tastes. Also note that unlike HAC, Nebula's views are built on

top of an existing �le system | they are not integrated into the underlying �le system.

That is, views help users organize the information they retrieve by content, but not the

information present in the underlying �le system. For these two reasons, we believe that

HAC compares favorably with Nebula.

3.14.6 User-de�ned Filters in Prospero and Queries in HAC

The Prospero �le system also allows users to associate �lters with links that point to

directories. These are called the target directories. A Filter is an arbitrary program (not

a query in a �xed query language) that can alter the users' perception of the contents of a

target directory. The input of a �lter is a target directory and the output is a set of links

that point to new directories whose contents are derived from the target directory. The

output is called a view of the target directory. Prospero allows users to compose the �lter

associated with a link that points to a directory d with the �lter associated with a link

pointing to another directory d0. This allows users to specify a view of d as a function of

a view of d0. In this case, d is said to depend on d0. (Note that these dependencies can

give rise to an arbitrary graph.) Users can execute �lters whenever they wish and thereby

derive views that classify information in existing directories according to their tastes.

Note, however, that Prospero does not guarantee that the view of a directory d remains

consistent when there are changes to the contents of d, the �lters associated links pointing

to d, or the �lters associated with the directories d depends on. Users have to manually

execute the appropriate �lters at the appropriate time, or write their own programs to

do so. Prospero also does not have the notion of a CBA mechanism: users have to write

programs that interact with di�erent CBA mechanisms on their own and use them as

�lters when necessary.

HAC di�ers from Prospero in many ways. First, HAC associates a query with each

68

semantic directory, not with symbolic links or hard links that point to that directory.

Though both forms are equivalent (we can assume that a link in Prospero is a semantic

directory, and the �lter associated with the link is the query of this directory; we can also

assume that the contents of the target directory form the scope of the above query, and so

on), our design allows users to treat a semantic directory as a unit whose contents do not

depend on who refers to it. We feel that this is intuitive since directories in hierarchical �le

systems are also are interpreted in the same way. Second, queries of semantic directories in

a HAC �le system are like �lters, but their power is restricted to the query-language of the

CBA mechanism associated with the HAC �le system. However, unlike Prospero, HAC

o�ers consistency guarantees when there are changes to the information in the �le system

(see above) and allows users to use arbitrary directory names in queries. Finally, unlike

Prospero, HAC has a well de�ned user-command and application-programmer interfaces

to CBA mechanisms. Due to these reasons, we believe that HAC o�ers a good alternative

to Prospero.

In this chapter, we discussed the principles behind the design of the HAC �le system,

and showed that it is conceptually simple, and at the same time, achieves all our goals.

We also showed that HAC has an interface that is intuitive and easy-to-use. In the next

chapter, we shall discuss how to access di�erent �le systems and CBA mechanisms from

within one HAC �le system.

69

/export/home/local/bgopal/phd/debug

pcindex

ftp.uml.edu info.rutgers.edu ftp.cdrom.com

VGA children

MVP apogee epic

......
games programming network

...
...

gb
30

.z
ip

1a
rc

y.
zi

p

1f
la

sh
.z

ip

am
at

h.
zi

p

R
E

A
D

M
E

1r
es

cu
e.

zi
p children children

R
E

A
D

M
E

R
E

A
D

M
E

math VGA

...

...

... ...

net−files

...

Files

Directories

Symbolic Links

Paths

knoware...

...

... More information

ha
ng

m
an

Figure 3.1: Files, Symbolic Links and Directory Hierarchies

70

CHAPTER 4

ACCESSING NAME-SPACES AND CBA-MECHANISMS

So far, we discussed how one content-based access (CBA) mechanism can be integrated

into a HAC �le system. In this chapter, we discuss how users on one HAC �le system can

access other HAC �le systems and CBA mechanisms. To motivate this discussion, we �rst

explain how users on one �le system can access objects in other �le systems using mount

points.

Mount points exist in many �le systems including UNIX, Prospero and Jade. A mount

point is a directory that is interpreted in a special way by the �le system in which it exists.

A mount point provides an interface for this �le system (the source) to access objects in

other �le systems (the targets). A mount point also allows the �le-naming mechanism

in the source �le system to scale since the source �le system knows exactly what target

name-spaces it must access to resolve path names that \cross" the mount point. The

act of creating a mount point in the source �le system is called mounting the target �le

systems on the source �le system at the mount point. To create a mount point, the source

�le system must know how to identify (name) the target �le systems, i.e., there must be

a well-understood convention for naming �le systems.

Figure 4.1 shows a mount point in UNIX and a multiple mount point in Jade. Details

about di�erent kinds of mount points can be found in [38]. We shall not discuss them

here.

We call mount points in existing �le systems syntactic mount points since they de�ne

the name-spaces within which path names must be resolved. In HAC, we introduce a new

kind of mount point, called a semantic mount point, that de�nes the name-spaces of CBA

mechanisms within which queries must be evaluated. We now describe how semantic and

syntactic mount points in HAC allow users to share their information with each other. In

this chapter, we shall use bold lower-case m to denote a mount-point. We shall also use

71

the term \an instance of a CBA mechanism" to refer to a CBA mechanism that physically

exists and has a query-processor to answer queries about the �les that were indexed.

4.1 Identifying HAC File Systems and CBA Mechanisms

We assume that every instance of a HAC �le system and a CBA mechanism is unique

and has an identi�er associated with it. As we mentioned above, identi�ers are necessary

if we want one HAC �le system to be able to access other HAC �le systems and CBA

mechanisms. In our implementation, we use a common naming scheme for these identi�ers.

In the naming scheme, each identi�er has three components:

1. The host-name or network-address of the machine where the �le system or CBA

mechanism exists,

2. The port-number that should be used to communicate with the �le system or CBA

mechanism, and

3. The type-identi�er that describes the kind of �le system (MS-DOS, UNIX, SUN NFS

[40], AFS [41], etc.) or CBA mechanism (Glimpse [28], WAIS [26], etc.) it is.

Note that the above naming scheme is speci�c to HAC. It may or may not allow us

to identify other types of �le systems (e.g., Jade, SUN NFS, etc.). However, a HAC �le

system can always identify and access objects (�les, directories, etc.) in its underlying

�le system, by specifying the path names of these objects. We believe that this simple

naming scheme is su�cient to illustrate the main ideas in this chapter.

Also note that in this dissertation, we do not discuss how to maintain the database

that maps HAC �le systems and CBA mechanisms to their identi�ers, since it is outside

our scope. However, we do wish to mention that any distributed Naming Service (e.g.,

Grapevine [31]) can be used for this purpose. In our implementation, users can specify

these identi�ers via the UNIX environment, or as options to various semantic commands.

(See Appendices A and B for details.)

72

4.2 Accessing one File System from Another

To access a HAC or underlying �le system F0 from another HAC or underlying �le system

F, a user must mount F0 at a syntactic mount point m in F. All �le system operations

within m are redirected to F0. Once a user creates m, he/she can access resources on F0

transparently by using path names that begin at the root of F (not the root of F0). If F0

is a HAC �le system, users on F can access the CBA mechanism of F0. Figure 4.2 shows

a syntactic mount point m in a �le system F: m points to the root of the �le system F0.

This is similar to syntactic mount points in UNIX (see Figure 4.1). Note that in HAC,

all mount information is maintained in the source �le system F: the target �le system F0

does not have to be modi�ed in any way. This is true for all mount points in HAC.

We now explain in brief how we resolve a path name that begins in a HAC �le system

F and crosses m into another HAC �le system F0. When this happens, F passes on the

unresolved portion of the path name to F0. F0 interprets this path name and returns

the result, which can either be a handle to a �le (or directory, etc.) in F0, or yet another

unresolved path name along with the identity of the HAC �le system F00 which can resolve

it. If the result is a handle, F considers the path to be resolved and contacts F0 for all

�le system operations on the �le (or directory, etc.) that corresponds to the handle. On

the other hand, if the result is another unresolved path, F continues to contact di�erent

HAC �le systems until the path is completely resolved. That is, HAC uses remote iterative

resolution [38] to handle path names that cross syntactic mount points. We plan to use local

iterative resolution and directory-entry caching [38] in future to make path name lookups

in remote �le systems more e�cient. Figure 4.3 shows how we can link up di�erent HAC

and underlying �le systems with each other using syntactic mount points.

In the PC-software example (see section 3.12), we mounted a HAC �le system at

/export/home/local/bgopal/phd/debug (abbreviated \...") by creating a syntactic mount

point in the underlying UNIX �le system at this directory. (See section 5.1.1 for more

details.) We also originally created .../pcindex using HAC's smount command. The -y

option of this command tells HAC that this .../pcindex is a syntactic mount point, and

the -h and -p options tell HAC about the host-name \kno" and port-number \5423" that

identify the the target HAC �le system. (To learn more about these options, please refer

73

to Appendix B.) The following shows how we created .../pcindex:

[kno] smount -y -h kno -p 5423 \

/export/home/local/bgopal/phd/debug/pcindex

[kno] ls -F /export/home/local/bgopal/phd/debug

pcindex/

Once a user mounts the target HAC �le system at .../pcindex, HAC treats it as an

ordinary directory. That is, HAC uses the local CBA mechanism (not the CBA mechanism

of the mounted �le system) to provide CBA to �les within .../pcindex. After HAC

invokes the local CBA mechanism to re-index the �le system at \...", if a user creates a

semantic directory within \...", HAC will return symbolic links to �les in .../pcindex (we

illustrated this in the previous chapter). However, if the user enters (cd-s into) pcindex,

he/she is no longer in the local �le system, but in the mounted �le system. Hence, if he/she

creates a semantic directory within pcindex, HAC will re-direct the smkdir operation to

the the mounted �le system. This �le system will access its CBA mechanism to search

its �les (which are exactly the �les visible from pcindex in \...)", and create the new

directory in its name-space. The name-space of the local �le system at \..." will not be

e�ected in anyway. Therefore, syntactic mount points in HAC make it possible for a user

to use di�erent CBA mechanisms to retrieve the same information by content.

However, to access a CBA mechanism via a syntactic mount point, a user must have

permissions to modify the name-space of the mounted �le system, since he/she must be

able to create a semantic directory there. This is not desirable since each HAC �le system

corresponds to the name-space of a single user, and this user may not want others to modify

his/her name-space (though he/she may want others to access some of his/her �les).

Another undesirable property of this scheme is that a user cannot access an existing CBA

mechanism (that provides CBA to some �les on SUN NFS, or some hypertext documents,

say), unless the CBA mechanism is associated with an existing HAC �le system. The main

reason for these problems is that there is no way we can \decouple" query-processing from

path name resolution if we use only syntactic mount points. That is why, we introduce

semantic mount points in HAC. We discuss them in detail below.

74

4.3 Accessing Di�erent CBA Mechanisms and File Systems

A semantic mount point m in a HAC �le system F allows users to automatically change

the scope of all queries asked within m from the set of �les that exist within F to the set

of �les in the name-spaces mounted on m. Queries asked within m can return symbolic

links to the �les mounted onm, but queries asked outside m cannot. We must distinguish

the �les mounted on m from the �les (and directories, etc.) created within m| the latter

are always reachable from the root of F, i.e., are within the scope provided by the root of

F, but the former need not. The same CBA mechanism that is used to retrieve �les in F

is also used to retrieve �les created in m. However, it is possible to use a di�erent CBA

mechanism to retrieve �les mounted on m. Figure 4.4 makes these notions clear.

4.3.1 Local and Remote Semantic Mount Points

Semantic mount points come in two avors, local and remote. A local semantic mount

point m in a HAC �le system F is one which allows a user on F to mount �le systems of

his/her choice on m, and associate a CBA mechanism of their choice to index and search

the �les in these �le systems. A remote mount point m0 in F, on the other hand, allows a

user on F to mount an instance of a CBA mechanism onm0. It does not allow the user to

specify what �les should be accessed by that CBA mechanism or when those �les should

be indexed. When a user creates a local semantic mount point m, he/she speci�es the

CBA mechanism that should be used for �les mounted onm, and a unique identi�er (host-

name or network address, and port-number) for the instance of that CBA mechanism that

will process queries about these �les. When the user creates a remote semantic mount

point m0, he/she just speci�es the identi�er for the instance of the CBA mechanism that

should be mounted on m0. Local semantic mount points allow a user to associate a set

of �les with a CBA mechanism and \export" this tuple as a new \name-space". Due to

this de�nition, the root of every HAC �le system is also a local semantic mount point,

since every HAC �le system has a CBA mechanism associated with it that answers queries

about the �les in that �le system. Note that a syntactic mount point allows a user to

\import" a whole name-space, while a remote semantic mount point allows him/her to

import only the CBA mechanism associated with a name-space. Hence, a remote semantic

75

mount point allows only content based access to information | for path name based access

to that inormation, the user must create an appropriate syntactic mount point. Also note

that a syntactic mount point allows a user to browse through an existing classi�cation of

information (i.e., semantic directory hierarchy) in a name-space, while a remote semantic

mount point allows him/her to create a personal classi�cation of this information, without

modifying the name-space itself in any way. These ideas are summarized in Table 4.1:

Type of Mount searching browsing Own mounted information

Syntactic (target = HAC) YES YES NO

Syntactic (target 6= HAC) NO YES NO

Local Semantic YES YES YES

Remote Semantic YES NO NO

Table 4.1: Types of Mount Points

4.3.2 Multiple Semantic Mount Points

At semantic mount points such as m, users have the freedom to mount as many �le

systems as they want. The scope of queries asked within m will include all the �les in the

�le systems that are mounted on m. It is possible to use di�erent CBA mechanisms to

process queries about di�erent �les in �le systems mounted onm. In this case,m is called

a multiple semantic mount point. In fact, it is possible to mount both CBA mechanisms

and HAC �le systems on m, since the results of queries asked within both remote and

local semantic mount points are always sets of symbolic links. It is important to note that

the CBA mechanisms that are associated with the �le systems mounted on m, and the

CBA mechanisms directly mounted on m, must have the same query language. This is

because each semantic directory in HAC has one query associated with it. It is possible

to implement \translators" that convert queries from one language to another, but we do

not discuss them here.

When more than one CBA mechanism is used to process queries within m, i.e., m is

a multiple mount point, semantic directories within m will contain two types of symbolic

links: (i) those that point to to �les in the �le systems mounted on m, and (ii) those

76

that are returned by the CBA mechanisms mounted on m. Users can directly traverse

the symbolic links of type (i) and access the �les they point to, but they must create an

appropriate syntactic mount point to be able to traverse the symbolic links of type (ii).

We believe that this interface is adequate since it is simple to create di�erent kinds of

mount points using the smount command (see the example in section 4.3.3 below).

Note that if another mount point m0 exists within m, then the scope of queries asked

within m0 does not include the �les mounted on m, unless of course these �les are also

mounted onm0. (This is shown in Figure 4.5.) Even if the same �le systems are mounted

on both m and m0, the query result of a semantic directory m/d cannot be inuenced by

the query result of any semantic directory in m0 (and vice versa). For example, the query

of m/d query cannot contain names of directories that are not within m, or directories

whose path names cross other mount points (like m0) within m. We chose this design

since mount points in HAC de�ne new name-spaces where queries can be evaluated, and

we wanted these name-spaces to be independent of each other. For example, changes to

the semantic directory hierarchy within one name space does not a�ect the other name

spaces in any way. This restriction, of course, does not apply to the data (i.e., �les)

accessed through these name spaces, since the same set of �les can be mounted on more

than one mount point in HAC. This is similar to existing hierarchical �le systems where

each syntactic mount point changes the set of �les that are accessible from the source

�le system independently. We also do not allow a user to move a directory across a

mount point since this involves changing the �le system in which the query-result of that

directory make sense. The user has to create a new directory within that mount point,

explicitly copy the contents of the source directory into the new directory, and then delete

the source directory. This is exactly what the user must do even in existing hiearchical

�le systems like UNIX. (Note that we do allow directories to be moved anywhere within

a mount point, and we discussed this in detail in section 3.12.1.)

Figure 4.6 shows how we can mount multiple �le systems at the same mount point.

One particular case of multiple mounts is when the �le system F in which the mount point

m exists is also mounted on m. In this case, the same query (F:/m/d in the �gure) can

be used to access �les in both F and F0 by content.

Figure 4.7 shows how we can combine semantic and syntactic mount points. This

77

allows us to browse remote �le systems, and use both the local and remote CBA mech-

anisms to query remote �les. Note that if we have already mounted the �le system (or

CBA mechanism) F0 on m, and created a hieararchy m/d of semantic directories within

m, and if we now mount a new �le system (or CBA mechanism) F00 on m, HAC will

automatically contact F00 to re-evaluate the queries of all the semantic directories within

m/d. HAC will then create the appropriate symbolic links to �les in F00 in m/d without

modifying the existing set of symbolic links in m/d. That is, HAC considers the results

of queries evaluated within di�erent �le systems (or CBA mechanisms) to be independent

of each other. (This is shown in the example in section 4.3.3.) For the same reson, if we

unmount F00 from m, HAC will automatically remove symbolic links to �les in F00 from

directories in m/d, without e�ecting the other symbolic links in these directories.

Now, it is possible to argue that there is no need to create a multiple mount point

such as m if HAC considers the results of queries evaluated within F0 and F00 to be

independent of each other: creating m is conceptually no di�erent from creating two

di�erent mount points m0 and m00 which mount F0 and F00 respectively. However, we

believe that multiple mount points are important because they allow us to treat an existing

semantic directory hierarchy m/d within a multiple mount point m (that mounts F0) as

a �lter that automatically classi�es information in a new �le system (such as F00) when

it is mounted on m. A �ltering operation automatically groups related information in

two di�erent �le systems together, and makes it easier to access this information. For

example, multiple semantic mount points can make it easier to �nd �les that are similar

to each other, if these �les exist in di�erent �le systems.

4.3.3 Illustrative Example

The following is an example of how a remote semantic mount point (garbo.uwasa.fi)

changes the scope of queries to the �les in the name space mounted on it. These �les are the

contents of the underlying (UNIX) directory at $target, i.e., /export/home/ local/bgopal/

phd/experiments/ pcindex.remote/ garbo.uwasa.fi. The CBA mechanism that is used

to process queries about these �les runs on the machine kno at the port number 5555.

When HAC changes the scope of queries to this CBA mechanism, and a user creates a

new semantic directory, say, garbo.uwasa.fi/astronomy, HAC prepends the host-name kno

78

and port-number 5555 of the CBA mechanism (separated by `:'s) to the contents of each

automatically generated (i.e., \unnamed") symbolic link in astronomy, and generates a

unique name for that link. As explained in section 3.12.1, the content of an unnamed

symbolic link is the path name of the �le the symbolic link points to, relative to the

root of the �le system in which that �le exists (the root is $target in this case). In

section 3.12, for simplicity, we omitted the host-name and port-number in the names of

all \unnamed" symbolic links. In the example below, note that the semantic directory

.../garbo.uwasa.fi/ astronomy is within the HAC �le system at \...", but the symbolic

links with the pre�x kno:5555 are not. These links, however, can be accessed as usual

using commands like cat, scat, etc.

[kno] set myroot = '/export/home/local/bgopal/phd/experiments'

[kno] set target = \

"$myroot"'/pcindex.remote/garbo.uwasa.fi'

[kno] smount -q -p 5555 -h kno -f $target/ garbo.uwasa.fi

[kno] cd garbo.uwasa.fi

[kno] smkdir astronomy

[kno] ls astronomy

kno:5555:pc/INDEX

kno:5555:pc/astronomy/00index.txt

kno:5555:pc/astronomy/README

kno:5555:pc/astronomy/starwrk2.zip

kno:5555:pc/gifunid/README

kno:5555:windows/WINDEX

kno:5555:windows/astronomy/00index.txt

kno:5555:windows/astronomy/README

[kno] scat kno:5555:pc/astronomy/starwrk2.zip

starwrk2.zip SVGA/Herc astronomy planetarium simulator, G.Lee

As another example, suppose an instance of a CBA mechanism exists on the machine

named smallalo at port number 2001, and suppose we mount it on the existing mount

79

point garbo.uwasa.fi. This would make garbo.uwasa.fi a multiple semantic mount point.

Then, after an ssync, the semantic directory astronomy within garbo.uwasa.fi will also

have symbolic links to �les indexed by the CBA mechanism at alo:2001 that satisfy the

corresponding query 1.

[kno] set myrroot = '/usr1/bgopal/phd/experiments'

[kno] set rtarget = \

"$myrroot"'/pcindex.remote/oak.oakland.edu'

[kno] smount -q -p 2001 -h alo -f $rtarget/ garbo.uwasa.fi

[kno] cd garbo.uwasa.fi

[kno] ssync -q astronomy

[kno] ls astronomy

alo:2001:SimTel/msdos/astrnomy/README

alo:2001:SimTel/msdos/astrnomy/brungsc1.zip

... and so on ...

kno:5555:pc/INDEX

kno:5555:windows/astronomy/00index.txt

... and so on ...

4.4 Index Caching

Most CBA mechanisms need an \index" of the information to speed up information re-

trieval. The index can be a special set of �les that contain \hints" which tell us where we

can �nd a given piece of information [28, 26]. In the Glimpse CBA mechanism, the size

of the index is a small fraction of the size of the data that is indexed. (In our illustrative

example, the index is just 8% of the actual data.) Glimpse can also answer some queries by

accessing only the index of the information. For example, Glimpse can return the names

of �les that satisfy case-insensitive queries that contain boolean combinations of keywords

(not phrases), using only the index. (See [27] for details.) However, the set of �les that

satisfy the Glimpse phrase-query `word1 word2' is always a subset of the set of �les that

satisfy the Glimpse boolean-query `word1ANDword2'. Hence, the boolean-AND-query

1The spelling error astrnomy exists in the original data collected from oak.oakland.edu.

80

`word1ANDword2' is an approximation to the phrase-query `word1 word2' in Glimpse. In

other words, Glimpse can give exact answers to a some queries, and approximate answers

to others, by using only a small index of the information. In this section, we will generalize

these ideas and introduce the concept of index-caching.

Suppose m is a semantic mount point in F that changes the scope of queries to the

�les in another �le system F0. Also suppose that:

1. It is possible for the CBA mechanism associated with F0 to provide \approximate"

answers to all (or a restricted subset) of queries by using only the index of the �les in F0.

This assumption is reasonable not only in Glimpse, but also in WAIS [26] and Nebula [8].

2. The user wants to get a rough idea of the amount and type of information that

a query will return so that he/she can re�ne the query and narrow down the result to

a manageable level before looking for more accurate results. From our experience with

GlimpseHTTP [27] and Harvest [3] systems, we found that users tend to ignore very large

query-results, especially if the database itself is huge (e.g., a digital library of books on

Science or Engineering, or a medical records of patients in a large hospital, etc.). Users

also get a fair idea of the information contained in �les by just looking at their path names,

sizes, modi�cation dates, and other attributes. Hence, we believe that this assumption is

also reasonable.

3. The CBA access mechanism can provide the user a rough idea of the information

that his/her query will return by using only a small index of the information. This

assumption is valid for the Glimpse search engine.

Then, there is no need for the CBA mechanism of F0 to access the actual �les in F0 to

answer queries. Not only that, if F and F0 have the same CBA mechanism (and hence

the same query language), then F can borrow and cache the index of the �les in F0,

store it locally, and use this index to provide the same answers as above | i.e., the CBA

mechanism of F does not need to access the �les in F0 either. This method of borrowing

an index and using it to answer queries approximately is called index-caching. Index

caching is useful when the size of the index is a small fraction of the size of the �les

that were indexed [28], and F and F0 are separated by a network that has large round-

trip communication delays which make it ine�cient for F to contact F0 to evaluate all

81

queries. In this case, a user on F can use the local copy of F0's index to narrow down

his/her queries, and then send the queries he/she is really interested in over to F0. That

is, index-caching allows a user to trade accuracy for scalability and performance.

In HAC, a user can specify index-caching as an option when he/she creates a remote

semantic mount point in F to mount a CBA mechanism F0. (This is the -r option in the

smount command.) Index caching is obviously not useful if the user has already created a

local semantic mount point for the �le system associated with F0, since there is no need to

use just the index of the �les in this �le system to answer queries approximately, when it

is possible to access these �les directly and answer queries accurately. It is also not useful

if the index is a signi�cant fraction of the actual information | in that case, F can simply

copy the �les in F0 and access them locally. But this may not be feasible if the amount

of data in these �les is huge. This \solution" is certainly not scalable as the amount

data in di�erent �le systems increases. However, F can summarize the information in

F0 and copy the summaries into F. The technique is not new. It has been adopted in

wide-area information retrieval systems like Essence [24], Indie [16, 18], Harvest [3] and

the Synopsis �le system [8]. Some of these systems also have mechanisms to keep the

summary of the information consistent with the actual information. These systems allow

users to browse the summary (F) and �lter-out the information they are really interested

in, and then access the actual repository (F0) to retrieve this information. This not only

reduces the processing load on the actual repository, but also the communication load on

the network. This idea is very similar to index-caching, since both summaries and indices

give us hints about the actual information | indices allow us to search information more

quickly, whereas summaries allow us to browse it more quickly. We shall not discuss the

above technique any more since it is beyond our scope.

4.5 Consistency in the Presence of Mount Points

A syntactic mount point m in a HAC �le system F gives users on F a way to access the

contents of the mounted �le system F0. F redirects all operations on objects within m to

F0. Hence F0 enforces scope and data consistency of directories within m, not F. That is,

in this section, we only need to discuss how to enforce scope and data consistency in the

82

presence of semantic mount points in F.

We mentioned earlier in section 4.3.2 that the query-results within a directory in

a semantic mount point cannot inucence the query-results of directories within other

semantic mount points. Hence, it is su�cient to focus on consistency in the presence of

one semantic mount point m in F.

We also mentioned in section 4.3.2 that given a semantic directory m/d in a multiple

semantic mount point m, HAC operates on the sets of symbolic links in m/d corre-

sponding to each mounted �le system and CBA mechanism of m independently. Hence,

the algorithms to enforce scope consistency remain the same as before, except that they

enforce the consistency of each set of symbolic links independently.

However, we must modify the algorithms to enforce data consistency as follows: when-

ever F reindexes its �les, it also re-indexes the �les in �le systems mounted locally on m.

However, F cannot force the CBA mechanisms that are mounted remotely on m to re-

index their �les. This is because F can abuse this power and bring down their performance

by repeatedly asking them to re-index their �les. Hence, when Fmounts CBA mechanisms

remotely, F has no control on whether their indices are up to date and accurate.

Once F re-indexes the appropriate �les, it can re-evaluate the queries of semantic

directories that exist within m in the usual way.

In this chapter, we described how syntactic mount points allow users to link up their

HAC �le systems with other �le systems, and thereby access the corresponding CBA

mechanisms. We also described how semantic mount points allow users to change the

scope of their queries to �les outside their �le systems, and thereby link up their �le

systems with other CBA mechanisms. We then showed how users can combine syntactic

and semantic mount points, and share the information they retrieve by name and content

with each other. Towards the end of the chapter, we mentioned how HAC maintains

consistency in the presence of mount points. This concludes our discussion of HAC's

design. We shall discuss its implementation and performance next.

83

F F’

a b
m

c
d

c d

/
/

Syntactic −−−> Syntactic Mount Point ‘m’ in UNIX

(F:/m/c is the same as F’:/c)

m

ba

/F / F’

c
d

1:1

1:many

/ F’’

e f

c
d e f

Multiple Syntactic −−−> Syntactic Mount Point ‘m’ in Jade

(F:/m/c is the same as F’:/c and F:/m/e is the same as F’’:/e)

: denotes a mount point

: denotes path−names which
 are the result of mounting

Figure 4.1: Syntactic Mount Points in UNIX and Jade

84

F

F’

m

a b
c d

/ U’p p’/

(F:/p/m/c = F’:/p’/c)

F’: subdirectory in underlying file
system U’ with path−name p’, or
HAC file system mounted at p’ on U’

F: underlying or HAC file
system

Figure 4.2: Syntactic Mount Point in HAC

F F’ F’’

a b c dm m’

/ / /

p p’
p’’

(F:/p/m/m’/c = F’:/p’/m’/c = F’’:/p’’/c)

(F, F’, F’’: HAC file systems or subdirectories in underlying file system)

Figure 4.3: Linking up Di�erent HAC File Systems

85

F F’

d

d

: HAC file system

m : semantic−−>semantic
 mount point (F to F’)

f1

f2

Files mounted
 on m

Note: F:/m/d, F:/m/f1 and F:/m/d/f2 exist within F
Query F:/m/d in m returns links to files in F’, while
F:/d outside m returns links to files in F

F:/d and F:/m/d can use different query languages.

: HAC or
 underlying
 file system

Figure 4.4: Semantic Mount Points

F F’

F’’

m

m’

d

d

d

: HAC file system

files in F

files in F’

files in F’’

F:/d has links to files in F, F:/m/d has links to files in F’,
F:/m/m’/d has links to files in F’’

: HAC or
 underlying

: HAC or
 underlying

Figure 4.5: Scope of Semantic Mount Points

86

d

d

m
F F’: HAC

F:/m is a multiple semantic −−> semantic mount point that mounts both F and F’

Scope of query F:/m/d includes files in both F and F’, but
scope of F:/d only includes files in F

: HAC or
underlying
file system

Figure 4.6: Multiple Semantic Mounts

d

d

dm

m’

F F’ : HAC file system: HAC File System

F’:/d is a semantic directory in F’

(Query language Q) (Query language Q’)

m is a semantic to semantic mount point, m’ is a semantic to syntactic mount point

F:/d and F:/m/d are semantic directories in F

F: /m/d may return different links than F’:/d since the query languages are different

;

Figure 4.7: Using Both Semantic and Syntactic Mount Points

87

CHAPTER 5

IMPLEMENTATION AND PERFORMANCE

HAC has been implemented on SUNOS4.1.3 U1 sun4m, a sparc 5 running SUNOS. The

prototype implementation runs at the user level and requires no kernel modi�cation. The

advantage of a user-level implementation is that it is easier to test di�erent design options

and debug the code. Moreover, the code itself is more portable since it is a UNIX ap-

plication program. The obvious disadvantage is that the performance of HAC will su�er

compared to that of UNIX. We shall discuss HAC's performance in more detail later in

this chapter. First, we shall describe the modules that make up HAC.

5.1 The Modules in HAC

HAC consists of three distinct modules: (i) the C System Call Library, (ii) the Semantic

File System, and (iii) the Interface to CBA Mechanisms. The interaction between the

user, these modules and UNIX is shown in Figure 5.1.

5.1.1 C System Call Library

This module implements all UNIX �le system calls that access objects (�le system ab-

stractions) by name. It also provides additional calls that access objects by content (see

Appendix A for details). All the semantic commands (smv, smkdir, ssync, etc.) de-

scribed earlier (see Chapter 3) were built using this module. The module is in the form

of a library that can be linked dynamically with all UNIX applications that use the SUN

dynamic-linking facility and the C-Library 1. This facility allows us to treat a directory in

the UNIX �le system as the root of a HAC �le system, i.e., it allows us to (syntactically)

\mount" a user-level HAC �le system on UNIX. Hence, all applications that use UNIX �le

1We were not able to dynamically link the UNIX ln and mv commands on our system with the HAC

library. Hence we wrote our own versions of these commands.

88

system calls can access the HAC �le system without any modi�cation or re-compilation.

Note that HAC uses UNIX only as an object store, i.e., HAC uses UNIX to store all its

internal data structures and the data in all the �les in the HAC �le system, but provides

its own interface to locate �les and directories, and manipulate queries and their results.

This module uses shared memory (currently 0.5 megabytes) to store the current state of

each process that is accessing the library. This state includes the set of open �le descriptors,

the current directory of the process, a cache of attributes of all recently accessed �les and

directories, and so on. The state contains all the information that is necessary for this

module to interact with the local UNIX operating system, and the remote HAC �le systems

that are mounted at syntactic mount points. The module also uses shared memory as a

cache for its data structures so that it does not have to access remote HAC �le systems

or UNIX (hence possibly the network and the local disk) during every �le system call.

HAC is a user level �le system. This means that every instance of the �le system is

created by a user on an existing operating system, not by the operating system itself. HAC

provides facilities for this user to access, manipulate and organize his/her information.

Hence, it is up to this user to decide whether he/she wants others to access or manipulate

this information. That is, HAC has no access control mechanism of its own | HAC

borrows it from the underlying operating system.

5.1.2 Semantic File System

This is the most important part of the HAC �le system. It implements all operations that

access and manipulate objects by name and content. It assumes that objects are stored

in a hierarchical �le system, but it is otherwise independent of UNIX. It interprets queries

and their results and enforces scope consistency (see Chapter 3).

We mentioned earlier in section 3.7 that the result of a query is a set of symbolic

links to �les that satisfy the query. We also saw how users could manipulate a whole set

of symbolic links using syntactic and semantic commands. To speed up set operations

like intersection, union, set-di�erence, and so on, the Semantic File System module uses a

compact representation for the query result of a semantic directory. Note that this module

89

does not have to create full-edged directory entries 2 for the symbolic links. It just needs

to keep track of the path-names of the �les that match the query. Also note that these

�les must have been indexed by the CBA mechanism, Glimpse. When Glimpse indexes

�les, it stores the path-names of these �les in an ordered set. The Semantic File System

module exploits this fact and represents a set of symbolic links using a bit map. If the

i-th bit in a particular bit map is 1, it means that the i-th �le that was indexed is present

in the corresponding query result. This module transparently converts path-names to bits

and vice-versa so that users need not bother about the internals of Glimpse when they

are manipulating query results. (For e�ciency, this module uses hash tables during these

translations.)

The Semantic File System module also implements syntactic and semantic mount

points, interacts with the Content Based Access mechanism of the HAC �le system, and

decides when to re-index �les and re-evaluate queries of semantic directories. That is, it

also enforces data consistency.

5.1.3 Interface to CBA Mechanisms

This module provides an application programmer interface (API) to Glimpse. The inter-

face was designed in such a way that the the rest of the implementation can be independent

of Glimpse. In future, when we integrate other CBA mechanisms into HAC, all we need

to do is re-write this module. The module has only about 2000 lines of C code | less

than 10 % of the total. It has routines to parse a query, to do the union, intersection and

set di�erence operations on bit maps, to communicate with CBA mechanism using RPCs

and to start the indexing process. Note that the module assumes that the indexer and

the query processor of the CBA mechanism (see section 3.10) are already available.

5.2 Experiments

HAC is built on top of UNIX and uses Glimpse as the CBA mechanism. HAC adds more

power to both (i) the �le-naming facility in UNIX, and (ii) the indexing and searching

capabilities of Glimpse. In this section, we describe two experiments that determine the

2with corresponding UNIX-like inodes

90

price we have to pay for this additional power. In the �rst experiment, we measured

the overhead when we used HAC as a syntactic �le system like UNIX, and did the same

operations on the same data in both �le systems. In the second experiment we measured

the overhead when we ran Glimpse to index and search the same data in both HAC and

UNIX.

5.2.1 Syntactic File System Overhead

In this experiment, we ran the Andrew Benchmark [25] on HAC and UNIX. The Andrew

Benchmark has been used as a standard to evaluate the performance of many new �le

systems [38]. The input to the benchmark is a read-only source directory hierarchy of

an application program and contains about 70 �les and occupies about 200 KB. The

benchmark has 5 distinct phases:

1 Makedir: Constructs a destination directory hierarchy that is identical to the source

directory hierarchy.

2 Copy: Copies each �le in the source hierarchy to the destination hierarchy.

3 Scan: Recursively traverses the whole destination hierarchy and examines the status

of every �le in the hierarchy without reading the actual data in the �le.

4 Read: Reads every byte of every �le in the destination hierarchy.

5 Make: Compiles and links the �les in the target hierarchy.

Table 5.1 compares the performance of HAC and UNIX for each phase of the bench-

mark. From this table, we see that phases 1 and 2 have the maximum overhead. It

can be as high as 80 - 100 %. This is because in phase 1, when HAC creates a new

directory, it also creates and initializes (to \empty") the data structures that store its

query, its query-result, and its set of permanent and prohibited symbolic links. And in

phase 2, when HAC creates a new �le, it also initializes the open �le-descriptor and the

attribute-cache for that �le. This helps to speed up Scan and Read operations on that

�le. Phases 3 and 4 have a 60 - 75 % overhead. This is because in both phases, HAC

must map the shared memory region into every UNIX process that is running. In phase

91

3, HAC accesses the attribute-cache to retrieve the appropriate status information, and in

phase 4, HAC accesses and update the per-process �le-descriptor table to implement the

read-operation. Phase 5 has the least overhead since it is computationally intensive. On

the whole, HAC is about 46 % slower than UNIX. From Table 5.2 HAC is only slightly

slower than the Jade [38] and Pseudo [46] �le systems (both of which are user-level �le

systems like HAC). We believe that HAC's performance is quite reasonable since unlike

the other two �le systems, HAC must create and maintain additional data-structures that

provide content-based access to �les. We believe that we can improve HAC's implementa-

tion by using better caching strategies (e.g., pre�x-caching like the Sprite �le system [36])

and more compact data-structures (e.g., sparse-arrays instead of bit-maps to represent

query-results).

File System Makedir Copy Scan Read Make Total

UNIX 2s 5s 5s 8s 19s 39s

HAC 4s 9s 8s 14s 22s 57s

Table 5.1: Results of Andrew Benchmark

File System % Slowdown

Jade FS 36

Pseudo FS 33-41

HAC FS 46

Table 5.2: Comparison with other File Systems

We also calculated the extra disk-space HAC needs to store its data structures when

both HAC and UNIX are used to store the source code of the Andrew Benchmark. We

found that (i) HAC has a �xed space overhead of 10 KB, and (ii) the Andrew Benchmark

occupies 212 KB when stored in HAC while it occupies 210 KB when stored in UNIX.

Hence the space overhead in HAC is around 5 %, which is negligible.

92

5.2.2 CBA Mechanism Overhead

In the �rst part of this experiment, we used Glimpse to index a database consisting of

over 17000 �les that occupy about 150 MB. We ran the indexing mechanism directly over

UNIX to get an estimate of the time taken to index the database and the space needed

to store the index. We then indexed a di�erent copy of the same database by using the

HAC �le system library instead. The results are shown in Table 5.3.

No. of �les 17154

Size of �les 149 Megabytes

Size of UNIX index 10 Megabytes

Size of HAC index 11.5 Megabytes

Time taken in UNIX 25 min

Time taken in HAC 31 min 48 sec

Table 5.3: Results of Indexing

We see that HAC has needs 6 min 48 sec more than UNIX, and UNIX takes 25 min

to index these �les. Hence, HAC has a 27 % time overhead. We also calculated the

extra space HAC needs to store the hash tables that help in translating bit-maps to path-

names and vice-versa (see above). These are not required for a regular UNIX index. We

found that HAC needs about 1.5 MB more than UNIX and the UNIX-index is about 10

MB. Hence, HAC has a 15 % space overhead. We believe that both these overheads are

reasonable.

In the second part of this experiment, we used the smkdir command in HAC to create

a semantic directory with a query Q. We also ran Glimpse through UNIX to search the

above database for the same query Q. We chose three kinds of queries: (i) those that

matched very few �les, (ii) those that matched a lot of �les, and (iii) those that matched

an intermediate number of �les. (We believe that queries of type (iii) correspond to real

usage, since most semantic directories in the example in section 3.12 have query results

that point to about 1/10-th to 1/20-th of the total number of �les in the pcindex database,

and 98 is just about 1/20-th of 17154.) The results are shown in Table 5.4.

We see that for queries that matched very few �les, Glimpse running on UNIX is more

93

No. of �les that matched 1 6556 98

Time taken in UNIX .45 sec 4 min 23 sec 7 sec

Time taken in HAC 2 sec 4 min 28 sec 8 sec

Table 5.4: Results of Searching

than 4 times as fast as HAC. This is because to interact with the CBA mechanism in

HAC, we must create a semantic directory. We do not incur this overhead when we run

Glimpse on UNIX. The overhead of creating a semantic directory, however, reduces as the

number of �les that match the query increases. For queries that match an intermediate

number of �les, the overhead is about 15 %. For queries that match a lot of �les, the

overhead is only 2 %, which is negligible.

The drawback of our implementation is that we need to store the result of the query of

each semantic directory. The extra space we need per semantic directory is 1/8-th of the

number of �les that are indexed, i.e., about 2 KB in this experiment. We plan to improve

this in future by using sparse-array representations.

To summarize, the HAC �le system has small overheads compared to UNIX. Its per-

formance is actually quite good when we consider the fact that it combines the exibility

of hierarchical �le systems with the power of CBA mechanisms, and allows users to access

and organize their information in a better way (see section 3.12).

94

User

C System Call Library

Semantic File System

Interface to CBA

CBA

Mechanism

Shared

Memory
Remote

HAC

FS Local

UNIX

FS

: Module maintained by HAC

: Module outside HAC

: Information flow in HAC

Figure 5.1: Interaction Between Modules in HAC

95

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

HAC demonstrates that it is possible to integrate any content-based access mechanism

into a hierachical �le system in such a way that the full power of hierarchical and content-

based naming is always available. The notions of semantic directories, semantic commands

and semantic mount points in HAC show that hierarchical and content-based naming can

not only complement each other, but also enhance each other's capabilities in useful ways.

This is the main contribution of our research.

Our work on HAC, however, is far from complete. HAC has some limitations and there

are many interesting research questions yet to be answered. Some of them are mentioned

below:

1. HAC does not have a mechanism to match a given query against the queries of

existing semantic directories in the �le system, and retrieve those directories whose queries

are similar (or identical) to the given query. This would be an interesting extension since

search engines of today just retrieve �les based on their content: not other �le system

abstractions.

2. HAC does not automatically classify a set of �les based on their content. Classi-

�cation must be done by the user or the information provider. Hence, it would be very

rewarding to integrate automatic classi�cation schemes such as Scatter-Gather (see section

2.2) into HAC.

3. HAC integrates CBAmechanisms into hierarchical �le systems. Nowadays, however,

emphasis is shifting toward graph-structured information repositories like the World Wide

Web. To integrate CBA mechanisms with these repositories, we can use Prospero [34],

but we must remember that it provides no consistency guarantees. Hence, the �rst step in

this direction would be to de�ne a useful consistency model for queries and their results

in a graph-structured information repository.

96

4. On the other end of the spectrum, Relational data-base systems [17] have more

complex set-manipulation operations than selection (smkdir), intersection (smv, ssync)

and union (using names of directories in queries) operations de�ned in HAC. To allow more

sophisticated content-based information retrieval, the �rst step would be to de�ne what

we mean by operations like projection and join in a �le system. Intuitively, a \projection"

of a �le is similar to the extraction of a summary of the �le, and a \join" of two �les is

similar to the derivation of a new �le from the contents of these �les. Some related ideas

are discussed in [13].

5. Dynamic Sets [43] is a new operating system abstraction that can be used to optimize

access to sets of �les. We can use this idea to speed up semantic operations (like ssync,

smkdir) that search groups of �les within the scope of di�erent semantic directories.

We believe that the principles behind HAC's design are universal and can be applied

in many contexts. HAC is simple, exible and extensible. Though the prototype imple-

mentation is very good for a user-level �le system, it also has some limitations and we

believe we can improve it even further. For example, we can:

1. Integrate other search engines besides Glimpse into HAC,

2. Integrate HAC and Jade �le systems together so that we can combine various

kinds of syntactic mount points in Jade with semantic directories and mount points in

HAC, and use Jade's �le-data and directory-entry caching mechanisms to improve HAC's

performance,

3. Use event-driven or lazy evaluation to keep queries and their results consistent,

4. Use sparse-array representations to reduce the amount of space required to store

query results, and

5. Prune query-results (say, in sls) by identi�ng symbolic links to �les that are very

similar to each other, and removing all but one of those links before display.

We plan to make the source code for HAC available to the general public very soon.

We hope that our work will continue to simulate further research in information systems.

97

APPENDIX A

APPLICATION PROGRAMMER INTERFACE

Below are the C-prototypes for the �le-system library functions in HAC. A brief ex-

planation is given for the new functions added in HAC in the form of a C-comment above

the function prototype de�nition. The arguments and return values of all functions are

similar to the corresponding functions in UNIX.

int exit(int status);

int execve(char *path, char *argv[], char *envp[]);

int fork();

caddr_t mmap(caddr_t addr, size_t len, int prot, int flags,

int fd, off_t off);

int close(int fd);

int read(int fd, char *buf, int nbytes);

int getdents(int fd, char *buf, int nbytes);

/* Return set of permanent symbolic links */

int igetdents(int fd, char *buf, int nbytes);

/* Return set of prohibited symbolic links */

int egetdents(int fd, char *buf, int nbytes);

off_t lseek(int fd, off_t offset, int whence);

int write(int fd, char *buf, int nbytes);

98

int ftruncate(int fd, off_t length);

int dup(int fd);

int dup2(int fd, int newfd);

int fchdir(int fd);

int fchroot(int fd);

int fchmod(int fd, int mode);

int fchown(int fd, int owner, int group);

int fstat(int fd, struct stat *buf);

int fstatfs(int fd, struct statfs *buf);

int open(char *path, int flags, int mode);

/* Open the "path" to access its summary instead

of the actual data;

The summary is computed based on the query of

the semantic directory in which "path" exists;

If there is no query, then the summary will be

empty. */

int sopen(char *path, int flags, int mode);

int creat(char *path, int mode);

int chdir(char *path);

char *getwd(char *s, int size);

int chroot(char *path);

99

int access(char *path, int mode);

int chmod(char *path, int mode);

int chown(char *path, int owner, int group)

int mkdir(char *path, int mode);

/* Creates a semantic directory with query = "query",

and name = "path" */

int smkdir(char *query, char *path, int mode);

/* Re-evaluates the queries of all semantic directories that

depend on the directory "path" including "path" */

int qsync(char *path);

int rmdir(char *path);

int truncate(char *path, off_t length);

int unlink(char *path);

/* Remove the symbolic link "path" from the set of permanent

symbolic links of its parent: do not change its set of

transient symbolic links in any way */

int iunlink(char *path);

/* Remove the symbolic link "linkname" from the set of

prohibited links of the directory "dirname" */

int eunlink(char *linkname, char *dirname);

/* Add the symbolic link "linkname" to the set of

prohibited links of the directory "dirname" */

int elink(char *linkname, char *dirname);

100

/* If the realname is a symbolic link of the form "::path",

add a permanent symbolic link localname to the target of

"::path" in the parent of localname; Otherwise, create a

regular UNIX symbolic link */

int symlink(char *realname, char *localname);

/* If the realname is a symbolic link of the form "::path",

add a permanent symbolic link localname to the target of

"::path" in the parent of localname; Otherwise, create a

regular UNIX hard link */

int link(char *realname, char *localname);

int rename(char *realname, char *localname);

int readlink(char *path, char *buf, int bufsiz);

/* If path is the name of a directory, return its query;

it it is a mount point, return the type of mount point,

i.e., whether syntactic/semantic, and

whether local/remote */

int sreadlink(char *path, char *buf, int bufsiz);

int utimes(char *path, struct timeval *tvp);

int stat(char *path, struct stat *buf);

int statfs(char *path, struct statfs *buf);

int lstat(char *path, struct stat *buf);

int mount(char *type, char *dir, int flags, caddr_t data);

/* Create a mount point dir in the HAC file system: if the mount

point already exists, create a multiple mount point.

The "flags" specify whether the mount point is

semantic/syntactic and whether it is local/remote.

101

The "data" specifies the address of the target file system

in a well-known format (see header-files in the source code

for more details). */

int smount(char *type, char *dir, int flags, caddr_t data);

int unmount(char *dir, int flags, char *data);

/* Unmount a mount point created by smount above */

int sunmount(char *dir, int flags, char *data);

102

APPENDIX B

BRIEF DESCRIPTIONS OF USER COMMANDS

USAGE: smkdir [query] name

description: creates a new semantic directory with alias=`name'

and query=`query' --- the default query is the alias itself;

note: the query is evaluated within the scope of the parent of name;

the scope of the root of the file system / mountpts extend to

all the indexed files in the corresponding file systems

USAGE: imv realname localname

description: the directory entry realname is renamed as localname

if realname is a directory, its contents are changed so that they

are now within the scope of the parent of localname;

'imv file directory/.' won't work; you must: 'imv file

directory/file';

if localname was not previously present in realname, it is added

to the include list of realname;

localname is always removed from the include list of its parent

and added to its exclude list.

note: imv does not support any options now, and works on 2 arguments only.

note: we wrote imv since the system 'mv' is statically linked

USAGE: sls [-e/-i] directory

description: you can use the -i option (show contents of include list)

or the -e option (show contents of exclude list);

if you don't use any option, it acts as 'ls' except that it

outputs the list of links in directory that don't occur in any of

its children.

103

note: sls does not support other options of 'ls' options now: use 'ls'.

USAGE: ssync [-q] directory

description: no -q: synchronizes links in directory and all

sub directories below it in the hierarchy: stops at mountpts --

does not reevaluate queries;

with -q: synchronizes links in directory and all sub directories that

depend on it by reevaluating queries: stops at both semantic and

syntactic mount pts --- must call ssync explicitly in each mount

point to sync whole hierarchy.

USAGE: iln [-s] realname localname

description: creates a hard link between realname and localname

if the -s option is used, it creates a symbolic link instead;

if realname is a system generated link (beginning with *:*:*),

then localname must be the target directory where the link

should be added.

note: we wrote iln since the system 'ln' is statically linked

USAGE: smv [-q] realname localname

description: no -q: move all links in realname to localname: realname

will now have only those links that are in its include list;

with -q: move the query=realname into localname: contents of localname

are sync-ed automatically

USAGE: sreadln localname

description: output semantic info corr. to localname; if localname is a:

directory: output its query

mountpoint: output command line options that describe it

file: print absolute path name of file

link: print complete path name of link

symbolic link: print path name it leads to

104

USAGE: smount [-ryqun] [-h host] [-p port] [-f prefix] [-s server]

[-i indexer] [-H host] [-P port] directory {mountptname}*

description: mounts a semantic file system onto a an existing / new

mount point

no -r, no -y: local semantic (indexing, full-text search)

-r, no -y: remote semantic (no local control of indexing,

do index-search only)

-y: syntactic mount (RPCs to server: -r flag not interpreted here)

-q: don't do indexing locally: use existing query processor

-h host: host for server process

-p port: port for server process

-f prefix: part of indexed filenames that is stripped before display

(no -y)

-s server: path name of server program (no -y)

-i indexer: path name of indexer program (no -y)

-H: host of remote server that should be mounted (no -y, -r)

-P: port of remote server that should be mounted (no -y, -r)

{mountptname}*: dirs that should be indexed (no -y, no -r):

empty=just recompute index for existing files / directories

in the index

-n: start local server process again

-u: reindex all files (no -y, no -r) / obtain index afresh (no -y, -r)

Commonly used forms (root is root of sfs: $bg/phd/try, say):

SYNTACTIC: smount -p PORT -h HOST -u -n -y mtptname

SEMANTIC LOCAL: smount -p PORT -h HOST -u -n -f root/ root root

SEMANTIC REMOTE (index caching): smount -p PORT -h HOST -P RPORT

-H RHOST -u -n -r dir

USAGE: sumount [-ryun] [-h host] [-p port] [-f prefix] [-s server]

[-i indexer] [-H host] [-P port] directory {mountptname}*

**

description: mounts a semantic file system onto a an existing / new

mount point

no -r, no -y: local semantic (indexing, full-text search)

105

-r, no -y: remote semantic (no local control of indexing,

do index-search only)

-y: syntactic mount (RPCs to server: -r flag not interpreted here)

-q: don't do indexing locally: use existing query processor

-h host: host for server process

-p port: port for server process

-f prefix: part of indexed filenames that is stripped before display

(no -y)

-s server: path name of server program (no -y)

-i indexer: path name of indexer program (no -y)

-H: host of remote server that should be mounted (no -y, -r)

-P: port of remote server that should be mounted (no -y, -r)

{mountptname}*: dirs that should be indexed (no -y, no -r):

empty=just recompute index for existing files / directories

in the index

-n: start local server process again

-u: reindex all files (no -y, no -r) / obtain index afresh (no -y, -r)

Commonly used forms (root is root of sfs: $bg/phd/try, say):

SYNTACTIC: sumount -p PORT -h HOST -u -n -y mtptname

SEMANTIC LOCAL: sumount -p PORT -h HOST -u -n -f root/ root root

SEMANTIC REMOTE (index caching): sumount -p PORT -h HOST -P RPORT

-H RHOST -u -n -r dir

USAGE: scat links

description: outputs the parts of the files pointed to by the

indicated links that match the query of the directory in

which the links exist (their parent)

106

REFERENCES

[1] M. Andreessen. NCSA Mosaic technical summary. Technical report, National Cen-
ter for Supercomputing Applications, May 1993.

[2] T. Berners-Lee, R. Calliau, and B. Pollermann. World-wide web: The informa-
tion universe. Electronic Networking: Research, Applications, and Policy, 2:52{58,
Spring 1992.

[3] C. Bowman, P. Danzig, D. Hardy, U. Manber, and M. Schwartz. The Harvest infor-
mation discovery and access system. In Proc. 2nd Intl. World Wide Web Conference,
pages 763{771, Chicago, Illinois, October 1994. (Earlier version; Later version to
appear in a special issue of Computer networks and ISDN Systems).

[4] M. Bowman, P. Danzig, D. Hardy, U. Manber, and M. Schwartz. Harvest: A scal-
able, customizable discovery and access system. Technical Report CU-CS-732-94,
University of Colorado, Boulder, Dept. of Computer Science, July 1994.

[5] M. Bowman, P. Danzig, D. Hardy, U. Manber, and M. Schwartz. Scalable internet
resource discovery: Research problems and approaches. Communications of the

ACM, 37(8):98{107, August 1994.

[6] M. Bowman, Chanda Dharap, Mrinal Baruah, B. Camargo, and Sunil Potti. A
�le system for information management. In Proc. Conf. on Intelligent Information

Management Systems, Washington, DC, June 1994.

[7] M. Bowman, L. Peterson, and A. Yeatts. Univers: An attribute-based name server.
Software - Practice and Experience, 20(4):403{424, April 1990.

[8] M. Bowman, M. Spasojevic, and A. Spector. File system support for search. Tech-
nical report, Transarc Corporation, Pittsburgh, November 1994.

[9] Excite by Architext. http://www.excite.com/Subject/.

[10] V. Cate. Alex: A global �le system. In Proc. Workshop on FIle Systems, May
1992.

[11] D. Cutting, D. Karger, O. Pedersen, and J. Tukey. Scatter/Gather: A Cluster-
based Approach to Browsing Large Document Collections. In Proc. 15th Annual

ACM SIGIR Conf. on Research and Development in Information Retrieval, Denmark,
1992.

[12] D. Cutting, D. Karger, and O. Pedersen. Constant Interaction-time Scatter/Gather
Browsing of Very Large Document Collections. In Proc. 16th Annual ACM SIGIR

Conf. on Research and Development in Information Retrieval, pages 126{134, 1993.

107

[13] M.P. Consens and T. Milo. Optimizing Queries on Files. Department of Computer
Science, University of Toronto, Toronto, Canada M5S 1A4, pages 1-17, December
1993.

[14] P. Clark and U. Manber. Developing a personal internet assistant. In Proc. ED-

Media 95, World. Conf on Multimedia and Hypermedia, pages 372{377, Graz, Austria,
June 1995.

[15] J. Conklin. Hypertext: An introduction and survey. Computer, 20(9):17{41,
September 1987.

[16] P. Danzig, J. Ahn, J. Noll, and K. Obraczka. Distributed indexing: A scalable
mechanism for distributed information retrieval. Technical Report USC-TR 91-06,
University of Southern California, Computer Science Dept., 1991.

[17] C.J. Date. An Introduction to Database Systems, 6th ed. Addison-Wesley Pub-
lishing Company, 1995, Reading, Massachusetts.

[18] P. Danzig, S. Li, and K. Obraczka. Distributed indexing of autonomous internet
services. Computing Systems, 5(4):433{459, Fall 1992.

[19] Yahoo Directory. http://www.netscape.com.

[20] Netscape. http://www.excite.com/Subject/.

[21] A. Emtage and P. Deutsch. Archie: An electronic directory service for the internet.
In Proc. Winter 1992 Usenix Conference, pages 93{110, January 1992.

[22] G. Fowler. cql - A Flat File Database Query Language. Proc. Winter 1992 Usenix

Conference, pages 11-21, San Fransisco, CA, January 1994.

[23] D. Gi�ord, P. Jouvelot, M. Sheldon, and Jr J. O'Toole. Semantic �le systems. In
Proc. 13th ACM Symposium on Operating Systems Principles, pages 16{25, Paci�c
Grove, Ca, October 1991. ACM.

[24] D. Hardy and M. Schwartz. Essence: A resource discovery system based on semantic
�le indexing. In Proc. USENIX Winter Conference, pages 361{374, San Diego,
January 1993.

[25] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and
M. West. Scale and performance in a distributed �le system. ACM Transactions

on Computer Systems, 6(1):51{81, February 1988.

[26] B. Khale and A. Medlar. An information system for corporate users: Wide area
information servers. In Connexions | The Interoperability Report, 5(11). November
1991.

[27] GlimpseHTTP Server. http://glimpse.cs.arizona.edu.

108

[28] U. Manber and S. Wu. Glimpse: A tool to search through entire �le systems. In
Usenix Winter 1994 Technical Conference, pages 23{32, San Fransisco, January 1994.

[29] M. McCahill. The internet Gopher: A distributed server information system. Con-

neXions - The Interoperability Report, 6(7):10{14, July 1992.

[30] U. Manber, M. Smith, and B. Gopal. WebGlimpse { Combining Browsing and
Searching. To appear in: Usenix Annual Technical Conference. In Jan 6-10, Ana-
heim, California, 1997.

[31] S. Mullender, editor. Distributed Systems, 2nd ed. ACM Press, 1993, New York.

[32] B. Neuman. Prospero: A tool for organizing internet resources. Electronic Net-

working: Research, Applications, and Policy, 2(1):30{37, Spring 1992.

[33] B. Neumann. The virtual system model: A scalable approach to organizing large
systems. Technical Report 90-05-01, University of Washington, CS Dept., May 1990.

[34] B. Neumann. The Prospero �le system: A global �le system based on the virtual
system model. In Proc. Usenix Workshop on File Systems, May 1992.

[35] McKinley Group Directory of the Internet. http://www.mckinley.com.

[36] J. Ousterhout, A. Chrenson, F. Douglis, M. Nelson, and B. Welch. The Sprite
network operating system. IEEE Computer, 28(2):23{36, February 1988.

[37] L .Peterson. The pro�le naming service. ACM Transactions on Computer Systems,
6(4):341{364, November 1988.

[38] H. Rao and L. Peterson. Accessing �les in an internet: The Jade �le system. IEEE

Transactions on Software Engineering, 19(6):613{624, June 1993.

[39] D. Ritchie and K. Thompson. The UNIX time-sharing system. Communications

of the ACM, 17(7):365{375, July 1974.

[40] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, Design and imple-
mentation of the Sun Network File System In Proc. Summer Usenix, pages 119-130,
June 1985.

[41] M. Satyanarayanan Scalable, secure, and highly available distributed �le access.
IEEE Computer, 23(5):9-21, May 1990.

[42] M. Schwartz, A. Emtage, B. Kahle, and B. Neuman. A comparison of internet
resource discovery approaches. Computing Systems, 5(4):461{493, Fall 1992.

[43] D. Steere and M. Satyanarayana. A Case for Dynamic Sets in Operating Systems.
Technical Report TR CMU-CS-94-216, Carnegie Mellon University, Pittsburg, PA
15213, Nov. 1994.

[44] InfoSeek Search. http://www2.infoseek.com/.

109

[45] S. Sechrest and M. McClennen. Blending hierarchical and attribute-based �le nam-
ing. In Proc. 12th Intl. Conf. on Distributed Computer Systems, June 1992.

[46] B. Welch and J. Ousterhout. Pseudo-File-Systems. Technical Report UCB/CSD
89/499, University of California, Berkeley, CA 1989.

[47] S. Wu and U. Manber. Agrep | a fast approximate pattern-matching tool. In
Usenix Winter 1992 Technical Conference, pages 153{162, San Fransisco, January
1992.

