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ABSTRACT

Rectangles from a list of length n are packed into a unit width
strip. The rectangles have dimensions independently chosen from a uni-
form distribution on [ 0 , 1 ], and the packing objective is to minimize the
expected height of the packing of n items. The packing algorithms of
interest must operate on-line, as well as adhere to a constraint reminis-
cent of the Tetris game: rectangles arrive from the top and must be
moved at arrival without overlap within the strip to reach their final
placement. This paper assumes no rotation of rectangles. The Group
Packing algorithm GP 3 packs rectangles densely in groups of 3 at a
time, starting a new level at the highest point reached by any rectangle
in the group. The GP 3 algorithm achieves an asymptotic expected
height of ( 0. 38541 ...) n. This is slightly worse than the bound
( 0. 38134 ...) n achieved by Next Fit Level (NFL) packing.

May 15, 1997

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

_ ______________
†Bell Laboratories, Lucent Technologies, 600 Mountain Ave, Murray Hill NJ 07974-2070



A Note on Packing Rectangles in Groups

1. Introduction

In the problem called two-dimensional strip packing, rectangles of width and height
bounded by 1 are packed into a semi-infinite strip of width 1. Packings must be such
that no rectangle overlaps another’s area, and the sides of the rectangles are parallel to
the strip sides. The objective is to minimize the height of the packing in the strip, for
a given sequence of n rectangles. For a full discussion of this problem see [CS90,
CS93].

This note analyzes an algorithm for strip-packing under the assumption that rec-
tangle heights and widths are sampled independently from a uniform distribution on
[ 0 , 1 ]. In addition, this algorithm meets the on-line Tetris constraint:

(1) The packing algorithm is on-line: the algorithm must inspect rectangles (also
referred to as items) one at a time and make a placement decision for each rectan-
gle at the time it is inspected. The placement is fixed at that time and cannot be
altered later.

(2) The packing algorithm obeys Tetris-like constraint [AE96]: rectangles descend
from the top of the strip, and must be moved within the strip horizontally and
vertically to reach their final placement, and may not overlap the area of any
other rectangle during this movement. In this paper, rotation of rectangles during
placement is not allowed.

Constraints similar to the Tetris packing restriction arise in warehousing and
cargo container loading applications.

More information on on-line algorithms and Tetris-constrained algorithms can be
found in [CDW97].

Requiring an algorithm to adhere to a Tetris constraint eliminates from considera-
tion many of the strip-packing algorithms studied heretofore (such as shelf algorithms
[BS83, CW97] and the First Fit Level algorithm [Hof80, CL91].) Packings possible
by sliding the rectangles ‘‘outside’’ the strip boundaries are thus ruled out. See Figure
1 for an example.

The objective of the strip packing problem is to pack a list L n of n rectangles in
such a way as to minimize the height of the packing. After all rectangles in L n have
been placed, the height of the packing is the maximum distance from the strip bottom
to the top of any packed rectangle.

_ ______________
Tetris is a registered trademark of The Tetris Company.
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Figure 1: If the items depicted arrive on-line in the order 1 , 2 , ..., they can be packed
on-line using a First-Fit Level heuristic [Hof80, CL91] as shown at left.
Under the Tetris constraint, the best possible on-line packing is shown at
right.

The packing problem can be studied under deterministic or probabilistic assump-
tions about the rectangle widths and heights. Here we analyze one packing algorithm
under the uniform model, in which in which the n given rectangle widths and heights
(W i , H i ) , i = 1 , 2 , ... , n are 2n independent draws from a uniform distribution on
[ 0 , 1 ]. We analyze the exact expected height of the packing, and the expectation
asymptotically for large n.

The algorithm analyzed in this note is the group packing algorithm with groups
of size 3, denoted GP 3 for short. In this algorithm, the input list L n is divided into
groups of exactly size 3 (and possibly a final group of size 1 or 2). Packing begins
along a level line drawn across the strip (initially the line is the bottom of the strip).
For each group of size 3, items are packed in the order they arrive using heuristic
rules that attempt to keep the height of the group small. The packing rules are not
known to be optimal even for a group of size 3, but are reasonable. The rules are
illustrated by Figure 2, and detailed in the next section. When all three items have
been packed, a new level line is drawn at the top of the highest item in the group, and
the group packing process is repeated for the next group of 3.

The last group in L n may be of size 1 or 2 (or zero). If so, this group is packed
optimally. The height of the packing is the height of a level line drawn through the
top of the highest item in this final group.

For the uniform model, the the algorithm called Next Fit Level (NFL) that meets
the on-line Tetris constraint has been analyzed [Hof80] that has expected height
( 0. 381338 ...) n for large n. The GP 3 algorithm analyzed here has expected height
asymptotic to ( 0. 38541 ...) n. This is not as good as NFL, but the simplicity of the
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algorithm suggests that group packing for larger groups may result in improved
bounds.†

In section 2, we describe the GP 3 algorithm in greater detail. Section 3 contains
the analysis of its expected height.

2. The Group Packing Algorithm GP 3

Suppose we are packing rectangles, starting with a level line drawn across the strip as
a floor. Then the probability that exactly 1, 2 or 3 items will fit side-by-side across
the level is easily seen to be 1 /2 + 1/3 + 1/8 = 23/24. This motivates trying to pack
exactly three pieces at a time, in a reasonably efficient way, trying to keep the result-
ing height as small as possible in expectation.

GP 3 packs each group of 3 items starting on a new level line across the strip.
Initially the level line is the strip bottom. When 3 items have been packed, a new
level line is drawn across the top of that item having the highest top in the group of 3.
The algorithm then repeats this process starting at the new level line.

Let the three items in the next group of three have widths W 1, W 2 and W 3. Fig-
ure 2 depicts the decision tree for packing the three items. The resulting packing pat-
terns are shown at the leaves of the tree.

We can easily see that this decision tree constitutes an on-line packing procedure,
by phrasing the packing rules as in Figure 3. This procedure is followed for every
group of three items. If there are two items left at the end of the list of items, they
are packed either side-by-side on a new level (if they will fit), or one on top of the
other. If there is only one item left at the end of the list of items, it is packed alone
on a new level.

Figure 2 shows all the resulting packings of 3 items that can occur, along with
the conditions on widths that lead to these packings. In the subtree for W 1 + W 2 ≤ 1,
packings are depicted for the case where item 1 is the shorter of the first two items
(H 1 < H 2). This loses no generality, because if H 1 ≥ H 2, the resulting packings are
simply mirror images of those shown in leaves b and c of Figure 2.

If we assume without loss of generality that H 1 < H 2, then note that the packing
decisions depend only on the widths W 1 , W 2 , W 3 of the three items in a group. Con-
sequently, the heights of the items H 1 , H 2 , H 3 completely determine the resulting
height of each packed group. Expressions for the heights of the packings for leaves
a , b , c—given in the Lemma below—will be the same whether H 1 < H 2 or its sym-
metric case holds.

_ ______________
†The Compression Algorithm, described in [CDW97] improves on NFL, but is more difficult to
describe and analyze.
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Figure 2: The Group Packing Algorithm for k = 3, showing possible packings (at
leaves a through h) and the events that lead to those packings. The figure is
also a decision tree showing how each group is packed, depending on widths
W 1 , W 2 , W 3. Without loss of generality, we have shown packings assum-
ing H 2 > H 1.

3. Expected Height Analysis

For each of the events depicted at the leaves in Figure 2, we calculate its probability
of occurrence. We then compute the expected height of each packing of 3 items that
results. Finally, at the end of this section, we compute the total expectation of the
height of a group of three items, and then use this result to compute the asymptotic
expected height of the packing for the Group Packing Algorithm with groups of size 3.

3.1. Event Probabilities

All variates W have density 1 on [ 0 , 1 ]. Denote by A a , A b , ... , A h the events
shown in leaves a , b , ... , h of Figure 2. A leaf event is obtained by conjoining the
events on the path from the root to that leaf.

For events A a , A b and A c , we have depicted the resulting packings assuming
H 2 > H 1. We may do this without loss of generality, as the outcomes for H 2 ≤ H 1
are simply mirror images of the packings shown. Of course, the probability of the leaf
events shown is not affected by the heights of the items. However, when we later
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Algorithm GP 3: Packing a group of 3:

Pack item 1 left justified on the level line;
if W 1 + W 2 ≤ 1

{ Pack item 2 right justified on the level line;
if W 1 + W 2 + W 3 ≤ 1

{ Pack item 3 justified against item 2 }
else

{ Pack item 3 above the shorter of items 1 and 2,
justified against the nearest strip wall,
and slid down as far as it will go }

}
else

{ Pack item 2 left justified on top of item 1;
Pack item 3 right justified, and slid down as far as it will go }

Figure 3: Algorithm for packing a group of size 3 under GP 3

compute the expected heights of these packing patterns, the item heights—conditioned
by the assumption H 2 > H 1—will come into play.

P[A a ] = P[W 1 + W 2 ≤ 1 , W 1 + W 2 + W 3 ≤ 1 ] (1a)

=
0
∫
1

dw 1
0
∫

1 − w 1

dw 2
0
∫

1 − w 1 − w 2

dw 3

=
6
1_ _ .

P[A b ] = P[W 1 + W 2 ≤ 1 , W 1 + W 2 + W 3 > 1 , W 2 + W 3 > 1 ] (1b)

=
0
∫
1

dw 1
0
∫

1 − w 1

dw 2
1 − w 2

∫
1

dw 3

=
6
1_ _ .

P[A c ] = P[W 1 + W 2 ≤ 1 , W 1 + W 2 + W 3 > 1 , W 2 + W 3 ≤ 1 ] (1c)

=
0
∫
1

dw 1
0
∫

1 − w 1

dw 2
1 − w 1 − w 2

∫
1 − w 2

dw 3

=
6
1_ _ .
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In events A d , A e and A f , the conjunction of W 1 > 1 − W 2 and W 1 ≥ W 2 implies
that W 1 ≥ 1/2 in order for the inner integrals to be non-zero.

P[A d ] = P[W 1 + W 2 > 1 , W 2 ≤ W 1 , W 1 + W 3 ≤ 1 ] (1d)

=
2
1_ __

∫
1

dw 1
1 − w 1

∫
w 1

dw 2
0
∫

1 − w 1

dw 3

=
24
1_ __ .

P[A e ] = P[W 1 + W 2 > 1 , W 2 ≤ W 1 , W 3 > 1 − W 1 , W 3 ≤ 1 − W 2 ] (1e)

=
2
1_ __

∫
1

dw 1
1 − w 1

∫
w 1

dw 2
1 − w 1

∫
1 − w 2

dw 3

=
12
1_ __ .

P[A f ] = P[W 1 + W 2 > 1 , W 2 ≤ W 1 , W 3 > 1 − W 2 ] (1f)

=
2
1_ __

∫
1

dw 1
1 − w 1

∫
w 1

dw 2
1 − w 2

∫
1

dw 3

=
8
1_ _ .

In events A g and A h , the conjunction of W 2 > 1 − W 1 and W 2 > W 1 implies that
W 2 > max (W 1 , 1 − W 1 ) in order for the innermost integral to be non-zero.

P[A g ] = P[W 1 + W 2 > 1 , W 2 > W 1 , W 3 ≤ 1 − W 2 ] (1g)

=
0
∫
1

dw 1
max (w 1 , 1 − w 1 )

∫
1

dw 2
0
∫

1 − w 2

dw 3

=
24
1_ __ .

P[A h ] = P[W 1 + W 2 > 1 , W 2 > W 1 , W 3 > 1 − W 2 ] (1h)

=
0
∫
1

dw 1
max (w 1 , 1 − w 1 )

∫
1

dw 2
1 − w 2

∫
1

dw 3

=
24
5_ __ .
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3.2. Expected Heights

The expected heights of the packings in events A a through A h depend entirely on the
independent U[ 0 , 1 ] heights H i , i = 1 , 2 , 3.

Lemma

Denote by H a the height of the packing for event A a, by H b the height of the packing
for event A b, and so forth. Let R 12 denote the range of a uniform 2-sample:

R 12 = max (H 1 , H 2 ) − min (H 1 , H 2 ) .

Then

H a = max (H 1 , H 2 , H 3 ) . (2a)

H b = max (H 1 , H 2 ) + H 3 . (2b)

H c = max (H 2 , H 1 + H 3 )  H 2 > H 1 (2c)

= max (R 12 , H 3 ) + min (H 1 , H 2 ) .

H d = max (H 1 + H 2 , H 3 ) . (2d)

H e = H 1 + max (H 2 , H 3 ) . (2e)

H f = H 1 + H 2 + H 3 . (2f)

H g = max (H 1 + H 2 , H 3 ) . (2g)

H h = H 1 + H 2 + H 3 . (2h)

Proof: These expressions for the heights are for the most part self-evident from the
packings depicted in Figure 2. Only (2c), (2d) and (2g) require discussion.

In the case of (2c), it is evident from the figure that H c = max (H 2 , H 1 + H 3 ).
However, we have conditioned on the event H 2 > H 1, so that by subtracting the
minimum H 1 = min (H 1 , H 2 ) we get

H c = max (H 2 − H 1 , H 3 ) + H 1 = max (R 12 , H 3 ) + min (H 1 , H 2 ) .

In cases (2d) and (2g), there is no conditioning on H 1 and H 2, and the packing
height is the unconditioned maximum of a sum of two independent U[ 0 , 1 ] variates,
and yet a third independent U[ 0 , 1 ] variate.

Corollary

The following expected packing heights follow from the assumption that H 1 , H 2 , H 3
are independent U[ 0 , 1 ] variates:

EH a =
4
3_ _ . (3a)

EH b =
6
7_ _ . (3b)

EH c =
12
11_ __ . (3c)
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EH d =
24
25_ __ . (3d)

EH e =
6
7_ _ . (3e)

EH f =
2
3_ _ . (3f)

EH g =
24
25_ __ . (3g)

EH h =
2
3_ _ . (3h)

Proof: The expectation of the maximum of m independent U[ 0 , 1 ] variates is
m /(m + 1 ) [Dav81], and the expectation of their sum is m /2. These facts along with
(2a), (2b), (2e), (2f) and (2h) establish (3a), (3b), (3e), (3f) and (3h).

For (3c) we need to compute E[ max (R 12 , H 3 ) + min (H 1 , H 2 ) ], where all the
H i are independent and uniform. Now the distribution of R 12 is 2t − t 2 [Dav81], and
so

P[ max (R 12 , H 3 ) ≤ t] = 2t 2 − t 3 ,

from which by integration we obtain Emax (R 12 , H 3 ) = 7/12. The expectation of a
minimum of m uniforms is 1/(m + 1 ) [Dav81]. Adding Emin (H 1 , H 2 ) = 1/3 to the
foregoing yields (3c).

For (3d) and (3g) we need to compute Emax (H 1 + H 2 , H 3 ) for three indepen-
dent uniforms. The sum of two uniforms has d.f.

P[H 1 + H 2 ≤ t] =


t 2 /2 − ( t − 1 )2

t 2 /2

1 < t ≤ 2

0 ≤ t ≤ 1
.

The d.f. of the desired maximum is the product of this with t on [ 0 , 1 ] and 1 on
[ 1 , 2 ]:

P[ max (H 1 + H 2 , H 3 ) ≤ t] =


t 2 /2 − ( t − 1 )2

t 3 /2

1 < t ≤ 2

0 ≤ t ≤ 1
.

Using the above distribution to compute the expectation results in

Emax (H 1 + H 2 , H 3 ) =
0
∫
1

t .
2

3t 2
_ ___ dt +

1
∫
2

t .( 2 − t) dt

=
8
3_ _ +

3
2_ _ =

24
25_ __ .
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3.3. Expected Height of a Group

Weighting the expected heights of individual packings in Figure 2 with their respective
probabilities of occurrence yields, via (1a-h) and (3a-h),

E[ height of a packed group of 3 ] =
x ∈ {a ... h}

Σ P[A x ] .EH x (4)

=
32
37_ __ .

3.4. Expected Height of the GP 3 Algorithm

Knowing the expected height of each group of 3, we can now state the exact expected
performance of GP 3 in packing a list L n of n items:

Theorem

E[GP 3 (L n ) ] =
32
37_ __



 3

n_ _




+





5/6

1/2

0

n mod 3 = 2

n mod 3 = 1

n mod 3 = 0
(5)

∼
96
37_ __ n ∼ ( 0. 38541 66666 ...) n (n → ∞ ) .

Proof: Each of the groups of 3 from the n items contributes an expected height of
37/32 to the total. There are n /3 such full groups. If one item is left over, its
group packing height is expected to be 1/2. If two items are left over, the expected
group packing height for two items is

2
1_ _ E[ max (H 1 , H 2 ) ] +

2
1_ _ E[H 1 + H 2 ] =

6
5_ _ .

Comparison of the Theorem with results for the NFL algorithm [Hof80] shows
that GP 3 is slightly worse than NFL by an amount ( 0. 00407 ...) n.

The integrals in this section were verified by the Mathematica System [Wol91].
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