Motion Planning
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Lecture 11: Motion Planning

Piano Mover’s Problem

e Given:
— A set of obstacles

— The initial position of a robot
— The final position of a robot
« Goal: find a path that

— Moves the robot from the initial to final
position
— Avoids the obstacles (at all times)
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Basic notions

» Work space — the space with obstacles
« Configuration space:
— The robot (position) is a point

— Forbidden space = positions in which robot
collides with an obstacle

— Free space: the rest
Collision-free path in the work space =
path in the free part of configuration space
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Point case

» Assume that the robot is a
point

» Then the work
space=configuration space

» Free space = the obstacles
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Finding a path

+ Compute the trapezoidal map to represent
the free space
« Place a node
— At the center of each trapezoid —
— At each endpoint of each edge of the
trapezoid T
« Put graph edges between the vertices in the
same trapezoids.
« Path finding=BFS in the graph

Note — the size of the graph is linear, but the
path is probably not the shortest.
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Non-point robots

* Assume a convex robot

» Assume each obstacle is
convex (by triangulating

A
the obstacles)
We specify a point on the [\

robot, called its origin.
We specify the position of

the robot by specify the
location of the origin ‘ robot
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Non-point robots - cont

» C-obstacle = the set of
robot positions which
overlap an obstacle

A
 Free space: the bounding
box minus all C-obstacles
* Given arobot and

A

obstacles, how to calculate
C-obstacles ?
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Minkowski Sum

* Minkowski Sum of two sets
P and Q is defined as
POQ={p+q: pUP, qUQ}

T
a
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Properties of PUR

POR={p+r: pOP, rOR}

e Theorem: If POR has m
and n edges, and they ,‘h
are convex, then POR "
has at most n+m edges.
e Proof:
— POR is convex (next slide)
— Consider the space of
directions — each edge of

POR is paralel to either and
edge of P or an edge of R.
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R vs (-R)

Vi
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Convexity

Assume P,R convex, with n (resp. m)
edges

* Theorem: POR is convex:
* Proof:

— Consider t,,t, 0 POR. We know t=p;+r; for
p; 0P, R

— P,Q convex: Ap;+(1- A)p, OP, Ar;+(1- Mr,COR
— Therefore:

Ay +(1- Nt = Mpy+ry) + (1- A) (po+ 1) OPOR
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C-obstacles

P Ao

« Thm: The C-obstacle of P w.r.t. robot R is equal to PO(-R)
* Proof:

— Assume robot R collides with P at position ¢

— l.e., consider pOJ(R+c) NP or p =r+c for some rOR
— orp—c=r —»c-p=-r — c-p0-R— cOp O(-R)

— Since pUP, we have cOP 0(-R)

« Reverse direction is similar
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More Properties of POR

A point p O Q is extrme (l.e. corner of
Q) if there is some vercor (direction) d
such that p*d = max{g*d | q ZQ}

» Observation: an extreme point of ﬂ

POR in direction d is a sum of
extreme points of P and R in
directiond

 Proof: for p ranging in P and r
ranging in R:

max (p+r)*d
= max p*d +r*d

= max p*d +max r*d
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More complex obstacles

» Pseudo-disc pairs: O, and
O, are in pd position, if
both 0,-0, and O,-0O, are
connected

* |,e, most two proper
intersections of boundaries  No
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Minkowski sums are pseudo-discs

« Consider convex P,Q,R, such that P and Q are

disjoint. Then C,=PCJR and C,=QUR are in pd ¢l
position.
 Proof: c2
— Consider C,-C,, assume it has 2 connected
components

— There are two different directions d and d' :
 Inwhich C, is more extreme than C,
« Somewhere in between d and d’,
C, is more extreme than C,
— By properties of [J, direction d is more extreme for
C,=POR than C,=QUR iff it is more extreme for P

than for Q A-

— Thus, there are two different directions d and d’ : Q
+ Inwhich P is more extreme than Q P

+ Somewhere in between d and d' ,as well as d’ and d,
Q is more extreme than P

— Configuration impossible for disjoint, convex P,Q
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Union of pseudo-discs

e LetP,,...,P be ﬁolygons in pd
position. Then their union has
complexity |P] +...+ |Py|

* Proof:

— Suffices to bound the number of
vertices

— Each vertex either original or
induced by intersection

— Charge each intersection vertex
to the next original vertex in the
interior of the union

— Each vertex charged at most
twice
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Union of pseudo-discs

» LetPy,...,P be ﬁo!ygor_ls in pd
position. Then their union has
complexity |P,] +...+ |Py|

* Proof:

— Suffices to bound the number of
vertices

— Each vertex either original or
induced by intersection

— Charge each intersection vertex
to the next original vertex in the
interior of the union

— Each vertex charged at most
twice
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Ananlysis:
Convex R Non-convex P

e Given |P|=n, |[R|=m
Triangulate P into T,,...,T,, Time O(n log n)
e Compute ROT,,..., R OT,, Time O(nm)

Compute their union O(mn log? (mn)):

— divide-and-congure+line sweep,

— similar to computing the union of squres shown in hw
— (can be done faster)

Trapezoidatoin, and compute the graph and
finding a path - Complexity: O( mn log (mn) )
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Higher dim — randomized planner

Usually the complexity of the free space for a robot with d degrees
of freedom in an environment of complexity n is ©( n¢)
It is not practicle to construct the free space.
Instead, we (very raughly) do
— create a sample S of positions of R
— For each position, check if is free. If yes, it is a node of the graph.

— For every pair of free positions, chech if the segment connecting them is
free. If yes connect them by an edge.

— Find a path from s to t in this graph.
Works well in practice
Problem: narrow passage.

Applicatoin (one of many): protein docking.
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