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Motion Planning

Thanks to 
Piotr Indyk
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Piano Mover’s Problem

• Given: 
– A set of obstacles
– The initial position of a robot
– The final position of a robot

• Goal: find a path that
– Moves the robot from the initial to final 

position
– Avoids the obstacles (at all times)
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Basic notions

• Work space – the space with obstacles
• Configuration space:

– The robot (position) is a point
– Forbidden space = positions in which robot 

collides with an obstacle
– Free space: the rest 

• Collision-free path in the work space = 
path in the free part of configuration space  
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Point case

• Assume that the robot is a 
point

• Then the work 
space=configuration space

• Free space = the obstacles

*

*
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Finding a path

• Compute the trapezoidal map to represent 
the free space

• Place a node 
– At the center of each trapezoid
– At each endpoint of each edge of the 

trapezoid
• Put graph edges between the vertices in the 

same trapezoids. 
• Path finding=BFS in the graph

Note – the size of the graph is linear, but the 
path is probably not the shortest. 

*

*
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Non-point robots

• Assume a convex robot
• Assume each obstacle is 

convex (by triangulating 
the obstacles)

• We specify a point on the 
robot, called its origin.

• We specify the position of 
the robot by specify the 
location of the origin

*

*

origin

robot
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Non-point robots - cont

• C-obstacle = the set of 
robot positions which 
overlap an obstacle

• Free space: the bounding 
box minus all C-obstacles

• Given a robot and 
obstacles, how to calculate 
C-obstacles ? *

*
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Minkowski Sum

• Minkowski Sum of two sets 
P and Q is defined as 
P⊕Q={p+q: p∈P, q∈Q}

⊕

o
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Properties of P⊕R 

• Theorem: If P⊕R has m 
and n edges,  and they 
are convex, then  P⊕R
has at most n+m edges.

• Proof:
– P⊕R is convex (next slide)
– Consider the space of 

directions – each edge of 
P⊕R is paralel to either and 
edge of P or an edge of R.

P

•P⊕R={p+r: p∈P, r∈R}

*

p ⊕ R

R

p

**

Lecture 11: Motion Planning

Convexity

• Assume P,R convex, with n (resp. m) 
edges

• Theorem: P⊕R is convex: 
• Proof:

– Consider t1,t2 ∈ P⊕R. We know ti=pi+ri for     
pi ∈ P, ri∈R

– P,Q convex: 
�
p1+(1-

�
)p2 ∈P, 

�
r1+(1-

�
)r2∈R

– Therefore: 
�
t1+(1-

�
)t2  =

�
(p1+ r1) + (1-

�
) (p2+ r2) ∈ P⊕R
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R vs (-R)

R

-R
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C-obstacles

• Thm: The C-obstacle of P w.r.t. robot R is equal to P⊕(-R)
• Proof:

– Assume robot R collides with P at position c
– I.e., consider p∈(R+c) � P     or p = r+c for some r∈R 
– or p–c =r � c-p =-r � c-p∈-R � c∈p ⊕(-R)
– Since p∈P, we have c∈P ⊕(-R)

• Reverse direction is similar

*

c ⊕ RR

c

**

P
*p
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More Properties of P⊕R  

• Observation: an extreme point  of 
P⊕R in direction d is a sum of 
extreme points of P and R in 
direction d

• Proof: for p ranging in P and r
ranging in R:

max (p+r)*d 
= max p*d +r*d 

= max p*d +max r*d

A  point p ∈ Q is extrme (I.e. corner of 
Q) if there is some vercor (direction ) d
such that   p*d = max { q*d | q ∈ Q}
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More complex obstacles

• Pseudo-disc pairs: O1 and 
O2 are in pd position, if  
both O1-O2 and O2-O1 are 
connected

• I,e, most two proper 
intersections of boundaries

Yes

No
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Minkowski sums are pseudo-discs

• Consider convex P,Q,R, such that  P and Q are 
disjoint. Then C1=P⊕R and  C2=Q⊕R are in pd 
position.

• Proof:
– Consider C1-C2, assume it has 2 connected 

components
– There are two different directions d and d’ :

• In which C1 is more extreme than C2
• Somewhere in between d and d’, 

C2 is more extreme than C1. 

– By properties of ⊕, direction d is more extreme for 
C1=P⊕R than C2=Q⊕R iff it is more extreme for P
than for Q

– Thus,  there are two different directions d and d’ :
• In which P is more extreme than Q
• Somewhere in between d and d’ ,as well as d’ and d, 

Q is more extreme than P
– Configuration impossible for disjoint, convex P,Q

C1

C2

P Q
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Union of pseudo-discs
• Let P1,…,Pk be polygons in pd 

position. Then their union has 
complexity |P1| +…+ |Pk|

• Proof: 
– Suffices to bound the number of 

vertices
– Each vertex either original or 

induced by intersection
– Charge each intersection vertex 

to the next original vertex in the 
interior of the union

– Each vertex charged at most 
twice
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Ananlysis: 
Convex R⊕ Non-convex P

• Given |P|=n,  |R|=m
• Triangulate P into T1,…,Tn.     Time O(n log n)
• Compute R⊕T1,…, R ⊕Tn Time O(nm)

• Compute their union O(mn log2 (mn)): 
– divide-and-conqure+line sweep, 
– similar to computing the union of squres shown in hw 
– (can be done faster) 

• Trapezoidatoin, and compute the graph and 
finding a path - Complexity: O( mn log (mn) ) 
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Higher dim – randomized planner
• Usually the complexity of the free space for a robot with d degrees 

of freedom in an environment of complexity n is Θ( nd ) 
• It is not practicle to construct the free space.
• Instead, we (very raughly) do 

– create a sample S of positions of R
– For each position, check if is free.  If yes, it is a node of the graph. 
– For every pair of free positions, chech if the segment connecting them is 

free. If yes  connect them by an edge.
– Find a path from s to t in this graph. 

• Works well in practice 
• Problem: narrow passage.  
• Applicatoin (one of many): protein docking. 


