Motion Planning
Thanks to
Piotr Indyk
Leature 1: : Moion Pemanne

Piano Mover's Problem

- Given:
- A set of obstacles
- The initial position of a robot
- The final position of a robot
- Goal: find a path that
- Moves the robot from the initial to final position
- Avoids the obstacles (at all times)

Basic notions

- Work space - the space with obstacles
- Configuration space:
- The robot (position) is a point
- Forbidden space = positions in which robot collides with an obstacle
- Free space: the rest
- Collision-free path in the work space = path in the free part of configuration space

Point case

- Assume that the robot is a point
- Then the work space=configuration space
- Free space = the obstacles

Finding a path

- Compute the trapezoidal map to represent the free space
Place a node
- At the center of each trapezoid
- At each endpoint of each edge of the trapezoid
- Put graph edges between the vertices in the same trapezoids.
- Path finding=BFS in the graph

Note - the size of the graph is linear, but the path is probably not the shortest.

Non-point robots

- Assume a convex robot
- Assume each obstacle is convex (by triangulating the obstacles)
- We specify a point on the robot, called its origin.
- We specify the position of the robot by specify the location of the origin

Non-point robots - cont

- C-obstacle = the set of robot positions which overlap an obstacle
- Free space: the bounding box minus all C-obstacles
- Given a robot and obstacles, how to calculate C-obstacles ?

Minkowski Sum

- Minkowski Sum of two sets P and Q is defined as $P \oplus Q=\{p+q: p \in P, q \in Q\}$

Properties of $\mathrm{P} \oplus \mathrm{R}$

$\cdot P \oplus R=\{p+r: p \in P, r \in R\}$

- Theorem: If $\mathrm{P} \oplus \mathrm{R}$ has m and n edges, and they are convex, then $\mathrm{P} \oplus \mathrm{R}$ has at most $n+m$ edges.
- Proof:
- $\mathrm{P} \oplus \mathrm{R}$ is convex (next slide)
- Consider the space of directions - each edge of $\mathrm{P} \oplus \mathrm{R}$ is paralel to either and edge of P or an edge of R.

Lecture 11: Motion Planning

Convexity

- Assume P,R convex, with n (resp. m) edges
- Theorem: $\mathrm{P} \oplus \mathrm{R}$ is convex:
- Proof:
- Consider $t_{1}, t_{2} \in P \oplus R$. We know $t_{i}=p_{i}+r_{i}$ for $p_{i} \in P, r_{i} \in R$
$-P, Q$ convex: $\lambda p_{1}+(1-\lambda) p_{2} \in P, \lambda r_{1}+(1-\lambda) r_{2} \in R$
- Therefore:

$$
\lambda t_{1}+(1-\lambda) t_{2}=\lambda\left(p_{1}+r_{1}\right)+(1-\lambda)\left(p_{2}+r_{2}\right) \in P \oplus R
$$

C-obstacles

- Thm: The C-obstacle of P w.r.t. robot R is equal to $P \oplus(-R)$
- Proof:
- Assume robot R collides with P at position c
- I.e., consider $p \in(R+c) \cap \mathrm{P}$ or $p=r+c$ for some $r \in \mathrm{R}$
- or $p-\mathrm{c}=\mathrm{r} \rightarrow \mathrm{c}-p=-\mathrm{r} \rightarrow \mathrm{c}-p \in-\mathrm{R} \rightarrow \mathrm{c} \in p \oplus(-\mathrm{R})$
- Since $p \in \mathrm{P}$, we have $c \in \mathrm{P} \oplus(-\mathrm{R})$
- Reverse direction is similar

More Properties of $\mathrm{P} \oplus \mathrm{R}$

A point $p \in Q$ is extrme (l.e. corner of
Q) if there is some vercor (direction) d
such that $p^{*} d=\max \left\{q^{*} d \mid q \in Q\right\}$

- Observation: an extreme point of $P \oplus R$ in direction d is a sum of extreme points of P and R in direction d
- Proof: for p ranging in P and r ranging in R :
$\max (p+r)^{*} d$
$=\max p^{*} d+r^{*} d$
$=\max p^{*} d+\max r^{*} d$

More complex obstacles

- Pseudo-disc pairs: O_{1} and O_{2} are in pd position, if both $\mathrm{O}_{1}-\mathrm{O}_{2}$ and $\mathrm{O}_{2}-\mathrm{O}_{1}$ are connected
- I,e, most two proper intersections of boundaries

Minkowski sums are pseudo-discs

Consider convex P, Q, R, such that P and Q are disjoint. Then $\mathrm{C}_{1}=\mathrm{P} \oplus \mathrm{R}$ and $\mathrm{C}_{2}=\mathrm{Q} \oplus \mathrm{R}$ are in pd position
Proof:
Consider $\mathrm{C}_{1}-\mathrm{C}_{2}$, assume it has 2 connected components

- There are two different directions d and d^{\prime} :
- In which C_{1} is more extreme than C_{2}

Somewhere in between d and d C_{2} is more extreme than C ,

- By properties of \oplus, direction d is more extreme for $\mathrm{C}_{1}=\mathrm{P} \oplus \mathrm{R}$ than $\mathrm{C}_{2}=\mathrm{Q} \oplus \mathrm{R}$ iff it is more extreme for P

Thus, ther
Thus, there are two different directions d and d': - In which P is more extreme than Q

Somewhere in between d and d^{\prime}, as well as d^{\prime} and d

Q is more extreme than P and $d^{\text {, as well as } d \text { and }}$

- Configuration impossible for disjoint, convex P,Q

Union of pseudo-discs

- Let $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}$ be polygons in pd position. Then their union has complexity $\left|\mathrm{P}_{1}\right|+\ldots+\left|\mathrm{P}_{\mathrm{k}}\right|$
- Proof:
- Suffices to bound the number of vertices
- Each vertex either original or induced by intersection

- Charge each intersection vertex to the next original vertex in the interior of the union
- Each vertex charged at most twice

Union of pseudo-discs

- Let $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}$ be polygons in pd position. Then their union has complexity $\left|\mathrm{P}_{1}\right|+\ldots+\left|\mathrm{P}_{\mathrm{k}}\right|$
- Proof:
- Suffices to bound the number of vertices
- Each vertex either original or induced by intersection

- Charge each intersection vertex to the next original vertex in the interior of the union
- Each vertex charged at most twice

Ananlysis: Convex $\mathrm{R} \oplus$ Non-convex P

- Given $|P|=n,|R|=m$
- Triangulate P into T_{1}, \ldots, T_{n}. Time $O(n \log n)$
- Compute $\mathrm{R} \oplus \mathrm{T}_{1}, \ldots, \mathrm{R} \oplus \mathrm{T}_{\mathrm{n}}$ Time $\mathrm{O}(\mathrm{nm})$
- Compute their union $O\left(m n \log ^{2}(m n)\right)$:
- divide-and-conqure+line sweep,
- similar to computing the union of squres shown in hw - (can be done faster)
- Trapezoidatoin, and compute the graph and finding a path - Complexity: $O(m n \log (m n)$)

Higher dim - randomized planner

- Usually the complexity of the free space for a robot with d degrees of freedom in an environment of complexity n is $\Theta\left(\mathrm{n}^{\mathrm{d}}\right)$
- It is not practicle to construct the free space.
- Instead, we (very raughly) do
- create a sample S of positions of R
- For each position, check if is free. If yes, it is a node of the graph.
- For every pair of free positions, chech if the segment connecting them is free. If yes connect them by an edge.
- Find a path from s to t in this graph.
- Works well in practice
- Problem: narrow passage.
- Applicatoin (one of many): protein docking.

