
CS453 Lecture Regular Languages and Lexical Analysis 1

Writing a Lexical Analyzer in Haskell (part II)

Today
– Regular languages and lexicographical analysis part II
– Some of the slides today are from Dr. Saumya Debray and Dr. Christian

Colberg

This week
– PA1: It is due in 4 days!
– PA2 has been posted. We are starting to cover concepts needed for PA2.
– Recitation tomorrow will be on implementing lexers in Haskell using a

table-driven approach.

CS453 Lecture Regular Languages and Lexical Analysis 2

General Approach for Lexical Analysis

Regular Languages

Finite State Machines
–DFAs: Deterministic Finite Automata
–Complications when doing lexical analysis
– NFAs: Non Deterministic Finite State Automata

From Regular Expressions to NFAs

From NFAs to DFAs

Complications

1. "1234" is an NUMBER but what about the “123” in “1234”
or the “23”, etc. Also, the scanner must recognize many tokens,
not one, only stopping at end of file.

2. "if" is a keyword or reserved word IF, but "if" is also defined by
the reg. exp. for identifier ID. We want to recognize IF.

3. We want to discard white space and comments.

4. "123" is a NUMBER but so is "235" and so is "0", just as
"a" is an ID and so is "bcd”, we want to recognize a token,
but add attributes to it.

CS453 Lecture Regular Languages and Lexical Analysis 3

Complications 1 (longest match)

1. "1234" is an NUMBER but what about the “123” in “1234”
or the “23”, etc. Also, the scanner must recognize many tokens,
not one, only stopping at end of file. So:

– recognize the largest string defined by some regular expression,
– only stop getting more input if there is no more match.
– This introduces the need to reconsider a character, as it is the first of the

next token
e.g. fname(a,bcd);

– would be scanned as
(TokenID “fname”) OPEN (TokenID “a”) COMMA ... SEMI EOF

– scanning fname would peek at (, which would be put back and then
recognized as OPEN

CS453 Lecture Regular Languages and Lexical Analysis 4

CSc 453: Lexical Analysis 5

Structure of a Scanner Automaton

CSc 453: Lexical Analysis 6

Implementing finite state machines

Table-driven FSMs (e.g., lex, flex):
– Use a table to encode transitions:

next_state = T(curr_state, next_char);
– Use one bit in state no. to indicate whether it’s a final (or error) state. If

so, consult a separate table for what action to take.

T next input character

Current
state

CSc 453: Lexical Analysis 7

Table-driven FSMs: Example

int acceptString()
{ char ch;

int currState = 1; ch = nextChar();

while (ch!=EOF) {
currState= T [currState, ch];

} /* while */
if (IsFinal(currState)) {

return 1; /* success */
}

}

T
input

a b

state
1 2 3
2 2 3

3(final) 2

CSc 453: Lexical Analysis 8

Table-driven FSMs: Determines if full string is in language

Token scanner()
{ char ch;

int currState = 1; ch = nextChar();

while (not IsFinal(currState)) {
nextState = T [currState, ch];
if (consume(currState,ch)) {

ch = NextChar();
}
if (ch == EOF) { return 0; } /* fail */
currState = nextState;

} /* while */
if (IsFinal(currState)) {

return finalToken(currState); /* success */
}

}

T
input

a b

state
1 2 3
2 2 3
3 2 [other]

4(final)

1

2

3

4
b

ba

a

[other]

TokenAB

Table-Driven FSM for Numbers

-- Produce tokens until the input string

-- has been completely consumed.
lexer :: String -> [Token]

lexer [] = []
lexer input =

let (tok,remaining) = driveTable 0 “” input

in if tok==WhiteSpace then lexer remaining
else tok : lexer remaining

-- From given state consume characters

-- from the string until token is found.
driveTable :: Int->String->String->(Token,String)

driveTable curr [] = (UnexpectedEOF, "")
driveTable curr (c:rest) =

let (next,consume) = nextState curr c

(nextTokStr,remaining)= nextStrings ...
(done,tok) = final next nextTokStr

in if done then (tok,remaining)
else driveTable next nextTokStrnremaining

Draw FSM on board
– State 0

– Digit goto state 1
– State 1

– Digit goto state 1
– Other goto state 2

– State 2 is a final state for
TokenNUM

How should we define
nextState and final
functions?

CSc 453: Lexical Analysis 9

Go see http://www.cs.arizona.edu/classes/cs453/fall16/Recit/LexerStart-take2.hs

Complication 2 (priority combined with longest match)

2. "if" is a keyword or reserved word IF, but "if" is also defined by
the reg. exp. for identifier ID, we want to recognize IF, so

Have some way of determining which token (IF or ID) is recognized.

This can be done using priority, e.g. in scanner generators an earlier
definition has a higher priority than a later one.

By putting the definition for IF before the definition for ID in the input
for the scanner generator, we get the desired result.

What about the string “ifyouleavemenow”?

CS453 Lecture Regular Languages and Lexical Analysis 10

Complication 3

3. we want to discard white space and comments and not bother the
parser with these. So:

In scanner generators, we can

– specify, using a regular expression, white space e.g. [\t\n] and return no
token, i.e. move to the next

– specify comments using a (NASTY) regular expression and again return
no token, move to the next

When writing scanner by hand
lexer (c:rest) = if isSpace c

then lexer rest
else TokenUnknownChar c : lexer rest

CS453 Lecture Regular Languages and Lexical Analysis 11

Complication 4 (Information Associated with Token)

4. "123" is a NUMBER but so is "235" and so is "0", just as
"a" is an ID and so is "bcd”, we want to recognize a token,
but add attributes to it. So,

Want to associate some data with some Token types:
data Token

= TokenIfKW
| TokenID String
-- ...
deriving (Show,Eq)

Often more information is added to a Token, e.g. line number and
position
CS453 Lecture Regular Languages and Lexical Analysis 12

(Non) Deterministic Finite State Automata

A Deterministic Finite State Automaton (DFA) has disjoint character
sets on its edges, i.e. the choice “which state is next” is deterministic.

A Non-deterministic Finite State Automaton (NFA) does NOT, i.e. it
can have character sets on its edges that overlap (non empty intersection), and

empty sets on the some edges (labeled ε).

NFAs are used in the translation from regular expressions to FSAs. E.g.
when we combine the reg. exp for IF with the reg.exp for ID by just merging
the two Transition graphs, we would get an NFA.

NFAs are a first step in creating a DFA for a scanner.

The NFA is then transformed into a DFA.

CS453 Lecture Regular Languages and Lexical Analysis 13

From regular expressions to NFAs

regexp
simple letter “a”

empty string

AB concat the NFAs

A|B split merge them

A* build a loop

CS453 Lecture Regular Languages and Lexical Analysis 14

a ε

A B

A

Bε

ε

ε

A ε

ε

accept state of the NFA for A
ε

ε

The Problem

DFAs are easy to execute (table driven interpretation)
NFAs

– are easy to build from reg. exps,
– but hard to execute
– we would need some form of guessing, implemented by back tracking

To build a DFA from an NFA

– we avoid the back track by taking all choices in the NFA at once,
– a move with a character or ε gets us to a set of states in the NFA,
– which will become one state in the DFA.

We keep doing this until we have exhausted all possibilities.

– This mechanism is called transitive closure
– (This ends because there is only a finite set of subsets of NFA states.

How many are there?)
CS453 Lecture Regular Languages and Lexical Analysis 15

Example IF and ID

let : [a-z]
dig : [0-9]

tok : if | id

if : “i” “f”

id : let (let | dig)*

CS453 Lecture Regular Languages and Lexical Analysis 16

Notes to read through later, Definitions: edge(s,c) and closure

edge(s,c): the set of all NFA states reachable from state s following
an edge with character c

closure(S): the set of all states reachable from S with no chars or ε

T=S
repeat T’=T;

forall s in T’ { T’=T; }
until T’==T

This transitive closure algorithm terminates because there is a finite
number of states in the NFA

CS453 Lecture Regular Languages and Lexical Analysis 17

closure(S) = T = S∪ (edge(s,ε))
s∈T


T = T '∪(edge(s,ε))
s∈T '


DFAedge and NFA Simulation

Suppose we are in state DFA d = {si, sk,sl}
By moving with character c from d we reach a set of new
NFA states, call these DFAedge(d,c), a new or already
existing DFA state

NFA simulation:
let the input string be c1…ck

d=closure({s1}) // s1 the start state of the NFA
for i from 1 to k

d = DFAedge(d,ci)

CS453 Lecture Regular Languages and Lexical Analysis 18

DFAedge(d,c) = closure(edge(s,c))
s∈d


Constructing a DFA with closure and DFAEdge

state d1 = closure(s1) the closure of the start state of the NFA

make new states by moving from existing states with a character c, using
DFAEdge(d,c); record these in the transition table

make accepts in the transition table, if there is an accepting state in d,
decide priority if more than one accept state.

Instead of characters we use non-overlapping (DFA)

character classes to keep the table manageable.

CS453 Lecture Regular Languages and Lexical Analysis 19

Suggested Exercise

Build an NFA and a DFA for integer and float literals

dot: “.”

dig: [0-9]

int-lit: dig+

float-lit: dig* dot dig+

CS453 Lecture Regular Languages and Lexical Analysis 20

