
CS453 Lecture Predictive Parsing 1

Plan for Today
Logistics

– Midterm, TUESDAY in class. Examples online. HW3. 1-side 8.5x11”
note sheet. Will be placing people in seats randomly.

– PA1 peer review due tonight
– HW3, due SUNDAY night. NO LATE period.
– PA2 partners policy

Haskell Guards
– Useful in the context of the lexer and parser.
– See Mr. Mitchell’s slides on Resources page, slide 96 through 99

Context Free Grammars
– Derivations
– Parse trees

Top-down Predictive Parsing

Deriving another grammar

Regular Languages

}{ nnba }{ Rww

Context-Free Languages
Can we derive a
Grammar for:

Gave a
grammar
for:

CS453 Lecture Lexical Analysis and Parsing 2

€

S→aSa
S→bSb
S→ε

abbaabSbaaSaS ⇒⇒⇒

A context-free grammar :G

A derivation:

Example

abaabaabaSabaabSbaaSaS ⇒⇒⇒⇒
Another derivation:

CS453 Lecture Lexical Analysis and Parsing 3

S→ aSb
S→ε

=)(GL

(((())))

}0:{ ≥nba nn

Describes parentheses:

Representing All Properly Nested
Parentheses

Can we build a grammar to include any valid
combination of ()? For example (() (()))

CS453 Lecture Lexical Analysis and Parsing 4

€

S→(S)
S→SS
S→ε

€

S⇒ SS⇒ (S)S⇒ ()S⇒ ()

A context-free grammar :G

A derivation:

A Possible Grammar

€

S⇒ SS⇒ (S)S⇒ ()S⇒ ()(S)⇒ ()()
Another derivation:

CS453 Lecture Lexical Analysis and Parsing 5

Context-Free Grammars

Grammar

Productions of the form:
xA→

String of symbols,
Nonterminals and terminals

),,,(PSTVG =

Nonterminals Terminals Start
symbol

Nonterminal

CS453 Lecture Lexical Analysis and Parsing 6

Derivation, Language

Grammar: G=(V,T,S,P)

Derivation:
Start with start symbol S
Keep replacing non-terminals A by their RHS x,

until no non-terminals are left
The resulting string (sentence) is part of the language L(G)

The Language L(G) defined by the CFG G:
L(G) = the set of all strings of terminals that can be derived this way

CS453 Lecture Lexical Analysis and Parsing 7

Derivation Order

ABS→.1

€

2. A→aaA
3. A→ε

€

4. B→Bb
5. B→ε

aabaaBbaaBaaABABS
54321
⇒⇒⇒⇒⇒

Leftmost derivation:

Given a grammar with rules:

Always expand the leftmost non-terminal

CS453 Lecture Lexical Analysis and Parsing 8

Derivation Order

aabaaAbAbABbABS
32541
⇒⇒⇒⇒⇒

Rightmost derivation:

Always expand the rightmost non-terminal

Given a grammar with rules:

ABS→.1

€

2. A→aaA
3. A→ε

€

4. B→Bb
5. B→ε

CS453 Lecture Lexical Analysis and Parsing 9

Leftmost derivation:

Rightmost derivation:

Stm --> id := Exp
Exp --> num
Exp --> (Stm, Exp)

Grammar

a := (b := (c := 3, 2), 1)

String

Stm ==> a := Exp ==> a := (Stm, Exp) ==> a := (b := Exp, Exp)
==> a := (b := (Stm, Exp), Exp) ==> a := (b := (c := Exp, Exp), Exp)
==> a := (b := (c := 3, Exp), Exp) ==> a := (b := (c := 3, 2), Exp)
==> a := (b := (c := 3, 2), 1)

Stm ==> a := Exp ==> a := (Stm, Exp) ==> a := (Stm, 1)
==>

CS453 Lecture Lexical Analysis and Parsing 10

ABS⇒

ABS→

€

A→aaA |ε

€

B→Bb |ε

S

BA

Parse Trees

CS453 Lecture Lexical Analysis and Parsing 11

aaABABS ⇒⇒

a a A

S

BA

ABS→

€

A→aaA |ε

€

B→Bb |ε
Parse Trees

CS453 Lecture Lexical Analysis and Parsing 12

aaABbaaABABS ⇒⇒⇒
S

BA

a a A B b

Parse Trees

ABS→

€

A→aaA |ε

€

B→Bb |ε

CS453 Lecture Lexical Analysis and Parsing 13

aaBbaaABbaaABABS ⇒⇒⇒⇒
S

BA

a a A B b

€

ε

Parse Trees

ABS→

€

A→aaA |ε

€

B→Bb |ε

CS453 Lecture Lexical Analysis and Parsing 14

aabaaBbaaABbaaABABS ⇒⇒⇒⇒⇒
S

BA

a a A B b

€

ε

€

ε

ABS→

€

A→aaA |ε

€

B→Bb |ε

yield

€

aaεεb
= aab

Parse Trees

CS453 Lecture Lexical Analysis and Parsing 15

Sentential forms

ABS⇒

S

BA

Partial parse tree

ABS→

€

A→aaA |ε

€

B→Bb |ε

CS453 Lecture Lexical Analysis and Parsing 16

aaABABS ⇒⇒

S

BA

a a A

Partial parse tree

sentential
form

CS453 Lecture Lexical Analysis and Parsing 17

aabaaBbaaBaaABABS ⇒⇒⇒⇒⇒

aabaaAbAbABbABS ⇒⇒⇒⇒⇒
S

BA

a a A B b

Same parse tree

Sometimes, derivation order doesn’t matter

Leftmost:

Rightmost:

€

ε

€

εCS453 Lecture Lexical Analysis and Parsing 18

CS453 Lecture Lexical Analysis and Parsing 19

How about here?

42 + 7 * 6

(1) exp --> exp * exp
(2) exp --> exp + exp
(3) exp --> NUM

Grammar

String

Will be handling this ambiguity later in the semester.

grammar

Parser
input
string

derivation

CS453 Lecture Predictive Parsing 20

Example:

Parser
derivation

€

S→SS
S→aSb
S→bSa
S→ε

input

?aabb

CS453 Lecture Predictive Parsing 21

Exhaustive Search

€

S→SS | aSb |bSa |ε

Phase 1:

€

S⇒ SS
S⇒ aSb
S⇒ bSa
S⇒ε

aabb

All possible derivations of length 1

Find derivation of

CS453 Lecture Predictive Parsing 22

aabb

€

S⇒ SS
S⇒ aSb
S⇒ bSa
S⇒ε

CS453 Lecture Predictive Parsing 23

Phase 2

aSbS
SSS

⇒

⇒

aabb

SSSS
bSaSSSS
aSbSSSS
SSSSSS

⇒⇒

⇒⇒

⇒⇒

⇒⇒

Phase 1

abaSbS
abSabaSbS
aaSbbaSbS
aSSbaSbS

⇒⇒

⇒⇒

⇒⇒

⇒⇒

€

S→SS | aSb |bSa |ε

CS453 Lecture 24

Final result of exhaustive search

Parser

derivation

input

aabb

aabbaaSbbaSbS ⇒⇒⇒

(top-down parsing)

€

S⇒ SS
S⇒ aSb
S⇒ bSa
S⇒ε

CS453 Lecture Predictive Parsing 25

For general context-free grammars:
The exhaustive search approach is extremely
costly: O(|P||w|)

There exists a parsing algorithm
that parses a string w in time
for any CFG (Earley parser)

3||w

For LL(1) grammars, a simple type of
CFGs that we will meet soon, we can
use Predictive parsing and parse in
time

||w
CS453 Lecture Predictive Parsing 26

Context-Free Grammars

Grammar

Productions of the form:
xA→

String of symbols,
Nonterminals and terminals

),,,(PSTVG =

Nonterminals Terminals Start
symbol

Nonterminal

Predictive Parsing

Predictive parsing, such as recursive descent parsing, creates the parse
tree TOP DOWN, starting at the start symbol, and doing a LEFT-MOST
derivation.

For each non-terminal N there is a function recognizing the strings that
can be produced by N, with one (case) clause for each production.
Consider:

can each production clause be uniquely identified by looking ahead
one token? Let’s predictively build the parse tree for

if t { while b { x = 6 }} $

CS453 Lecture Top-Down Predictive Parsers 28

start -> stmts EOF
stmts -> ε | stmt stmts
stmt -> ifStmt | whileStmt | ID = NUM
ifStmt -> IF id { stmts }
whileStmt -> WHILE id { stmts }

CS453 Lecture Predictive Parsing 29

Example Predictive Parser: Recursive Descent

void start() { switch(m_lookahead) {
case IF, WHILE, EOF: stmts(); match(Token.Tag.EOF); break;
default: throw new ParseException(…);

}}
void stmts() { switch(m_lookahead) {

case IF,WHILE: stmt(); stmts(); break;
case EOF: break;
default: throw new ParseException(…);

}}
void stmt() { switch(m_lookahead) {

case IF: ifStmt();break;
case WHILE: whileStmt(); break;
default: throw new ParseException(…);

}}
void ifStmt() {switch(m_lookahead) {

case IF: match(id); match(OPENBRACE);
stmts(); match(CLOSEBRACE); break;

default: throw new ParseException(…);
}}

start -> stmts EOF
stmts -> ε | stmt stmts
stmt -> ifStmt | whileStmt
ifStmt -> IF id { stmts }
whileStmt -> WHILE id { stmts }

Recursive Descent Parsing

Each non-terminal becomes a function
that mimics the RHSs of the productions associated with it

and choses a particular RHS:
an alternative based on a look-ahead symbol

and throws an exception if no alternative applies

CS453 Lecture Predictive Parsing 30

First

Given a phrase γ of non-terminals and terminals (a rhs of a production),
FIRST(γ) is the set of all terminals that can begin a string derived from γ.

Assume T, F, X, Y, and Z are non-terminals. * is a terminal.
FIRST(T*F) = ?
FIRST(F)= ?

FIRST(XYZ) = FIRST(X) ?

CS453 Lecture Top-Down Predictive Parsers 31

NO! X could produce ε and then FIRST(Y) comes into play

we must keep track of which non terminals are NULLABLE

FIRST and Nullable example

CS453 Lecture Top-Down Predictive Parsers 32

start -> stmts EOF
stmts -> ε | stmt stmts
stmt -> ifStmt | whileStmt | ID = NUM
ifStmt -> IF id { stmts }
whileStmt -> WHILE id { stmts }

Follow

It also turns out to be useful to determine which terminals can directly
follow a non terminal X (to decide parsing X is finished).

terminal t is in FOLLOW(X) if there is any derivation containing Xt.

This can occur if the derivation contains XYZt and Y and Z are
nullable

CS453 Lecture Top-Down Predictive Parsers 33

CS453 Lecture Top-Down Predictive Parsers 34

FIRST and FOLLOW sets

NULLABLE
– X is a nonterminal
– nullable(X) is true if X can derive the empty string

FIRST
– FIRST(z) = {z}, where z is a terminal
– FIRST(X) = union of all FIRST(rhsi), where X is a nonterminal and

X -> rhsi is a production
– FIRST(rhsi) = union all of FIRST(sym) on rhs up to and including first

nonnullable

FOLLOW(Y), only relevant when Y is a nonterminal
– look for Y in rhs of rules (lhs -> rhs) and union all FIRST sets for

symbols after Y up to and including first nonnullable
– if all symbols after Y are nullable then also union in FOLLOW(lhs)

Constructive Definition of nullable, first and follow

for each terminal t, FIRST(t)={t}

Another Transitive Closure algorithm:
keep doing STEP until nothing changes
Y is a terminal, non-terminal, or epsilon

STEP:
for each production X à Y1 Y2 … Yk

0: if Y1to Yk nullable, then nullable(X) = true
for each i from 1 to k, each j from i+1 to k

1: if Y1…Yi-1 nullable (or i=1) FIRST(X) += FIRST(Yi) //+: union
2: if Yi+1…Yk nullable (or i=k) FOLLOW(Yi) += FOLLOW(X)
3: if Yi+1…Yj-1 nullable (or i+1=j) FOLLOW(Yi) += FIRST(Yj)

We can compute nullable, then FIRST, and then FOLLOW
CS453 Lecture Top-Down Predictive Parsers 35

Class Exercise

Compute nullable, FIRST and FOLLOW for

Z à d | X Y Z
X à a | Y
Y à c | ε

CS453 Lecture Top-Down Predictive Parsers 36

CS453 Lecture Top-Down Predictive Parsers 37

Constructing the Predictive Parser Table
A predictive parse table has a row for each non-terminal X, and a column
for each input token t. Entries table[X,t] contain productions:
for each X -> gamma

for each t in FIRST(gamma)
table[X,t] = X->gamma

if gamma is nullable
for each t in FOLLOW(X)

table[X,t] = X->gamma

Compute the predictive
parse table for
Z à d | X Y Z
X à a | Y
Y à c | ε

a c d
X Xàa XàY XàY

XàY
Y Yà ε Yà ε Yà ε

Yàc
Z ZàXYZ ZàXYZ ZàXYZ

Zàd

One more time

Balanced parentheses grammar 1:

S à (S) | SS | ε
1. Augment the grammar with EOF/$

2. Construct Nullable, First and Follow

3. Build the predictive parse table, what happens?

CS453 Lecture Top-Down Predictive Parsers 38

One more time, but this time with feeling …

Balanced parentheses grammar 2:

S à (S)S | ε
1. Augment the grammar with EOF/$

2. Construct Nullable, First and Follow

3. Build the predictive parse table

4. Using the predictive parse table, construct the parse tree for
() (()) $

and
() () () $

CS453 Lecture Top-Down Predictive Parsers 39

