Plan for Today

Logistics

- Midterm, TUESDAY in class. Examples online. HW3. 1-side 8.5x11" note sheet. Will be placing people in seats randomly.
- PA1 peer review due tonight
- HW3, due SUNDAY night. NO LATE period.
- PA2 partners policy

Haskell Guards

- Useful in the context of the lexer and parser.
- See Mr. Mitchell's slides on Resources page, slide 96 through 99

Context Free Grammars

- Derivations
- Parse trees

Top-down Predictive Parsing

Deriving another grammar

Context-Free Languages Gave a Can we derive a grammar Grammar for: for: $\{a^{n}b^{n}\}$ $\{WW^{n}\}$ Regular Languages CS453 Lecture 2 Lexical Analysis and Parsing

Example

A context-free grammar $G: S \rightarrow aSa$ $S \rightarrow bSb$ $S \rightarrow \varepsilon$

A derivation:

 $S \Rightarrow aSa \Rightarrow ahSha \Rightarrow ahha$

Another derivation:

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaba$

Representing All Properly Nested

Parentheses

 $S \to aSb$ $S \to \varepsilon$

$$L(G) = \{a^n b^n : n \ge 0\}$$

Describes parentheses: (((())))

Can we build a grammar to include any valid combination of ()? For example (()(()))

CS453 Lecture

Lexical Analysis and Parsing

A Possible Grammar

- A context-free grammar $G: S \rightarrow (S)$ $S \rightarrow SS$ $S \rightarrow \varepsilon$ A derivation:
 - $S \Rightarrow SS \Rightarrow (S)S \Rightarrow ()S \Rightarrow ()$

Another derivation:

 $S \Rightarrow SS \Rightarrow (S)S \Rightarrow (S)S \Rightarrow (S)S \Rightarrow (S) \Rightarrow (S) \Rightarrow (S)$

Grammar: G=(V,T,S,P)

Derivation:

Start with start symbol S

Keep replacing non-terminals A by their RHS x,

until no non-terminals are left

The resulting string (sentence) is part of the language L(G)

The Language L(G) defined by the CFG G: L(G) = the set of all strings of terminals that can be derived this way Given a grammar with rules:

1.
$$S \rightarrow AB$$
 2. $A \rightarrow aaA$ 4. $B \rightarrow Bb$
3. $A \rightarrow \varepsilon$ 5. $B \rightarrow \varepsilon$

Always expand the leftmost non-terminal

Leftmost derivation:

$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$ $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$

Given a grammar with rules:

1.
$$S \rightarrow AB$$
 2. $A \rightarrow aaA$ 4. $B \rightarrow Bb$
3. $A \rightarrow \varepsilon$ 5. $B \rightarrow \varepsilon$

Always expand the rightmost non-terminal

Rightmost derivation:

$$1 \qquad 4 \qquad 5 \qquad 2 \qquad 3$$
$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aab \Rightarrow aab$$

CS453 Lecture

Lexical Analysis and Parsing

Grammar

String

a := (b := (c := 3, 2), 1)

Stm --> id := Exp Exp --> num Exp --> (Stm, Exp)

Leftmost derivation:

Rightmost derivation:

Stm ==> a := Exp ==> a := (Stm, Exp) ==> a := (Stm, 1) ==>

$S \rightarrow AB$ $A \rightarrow aaA \mid \varepsilon$ $B \rightarrow Bb \mid \varepsilon$

Sentential forms

Sometimes, derivation order doesn't matter

Leftmost: $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$

Rightmost: $S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$

18

How about here?

Grammar

(1) exp --> exp * exp
(2) exp --> exp + exp
(3) exp --> NUM

String

42 + 7 ***** 6

Will be handling this ambiguity later in the semester.

CS453 Lecture

Lexical Analysis and Parsing

Example:

Exhaustive Search

$$S \rightarrow SS \mid aSb \mid bSa \mid \varepsilon$$
Phase 1: $S \Rightarrow SS$ Find derivation of
 $S \Rightarrow aSb$ $aabb$
 $S \Rightarrow bSa$
 $S \Rightarrow \varepsilon$

All possible derivations of length 1

Predictive Parsing

aabb

Phase 2 $S \rightarrow SS \mid aSb \mid bSa \mid \varepsilon$ $S \Rightarrow SS \Rightarrow SSS$ $S \Longrightarrow SS \Longrightarrow aSbS$ aahh $S \Rightarrow SS \Rightarrow bSaS$ Phase 1 $S \Longrightarrow SS$ $S \Longrightarrow SS \Longrightarrow S$ $S \Rightarrow aSb$ $S \Rightarrow aSb \Rightarrow aSSb$ $S \Rightarrow aSb \Rightarrow aaSbb$ $S \Rightarrow aSb \Rightarrow abSab$ CS453 Lecture 24

Final result of exhaustive search <u>(top-down parsing)</u> Parser $S \Rightarrow SS$ input $S \Rightarrow aSb$ aabb $S \Rightarrow bSa$ $S \Rightarrow \varepsilon$ derivation $(S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb)$ CS453 Lecture 25 Predictive Parsing

For general context-free grammars:

The exhaustive search approach is extremely costly: $O(|P|^{|w|})$

There exists a parsing algorithm that parses a string w in time $|W|^3$ for any CFG (Earley parser)

For LL(1) grammars, a simple type of CFGs that we will meet soon, we can use Predictive parsing and parse in $|_{W}|$

Predictive parsing, such as recursive descent parsing, creates the parse tree TOP DOWN, starting at the start symbol, and doing a LEFT-MOST derivation.

For each non-terminal N there is a function recognizing the strings that can be produced by N, with one (case) clause for each production.

Consider:

start	-> stmts EOF
stmts	-> ε stmt stmts
stmt	-> ifStmt whileStmt ID = NUM
ifStmt	-> IF id { stmts }
whileStmt	-> WHILE id { stmts }

can each production clause be uniquely identified by looking ahead one token? Let's predictively build the parse tree for

```
if t { while b { x = 6 }} $
```

Example Predictive Parser: Recursive Descent

```
-> stmts EOF
start
stmts
          \rightarrow \epsilon | stmt stmts
stmt
           -> ifStmt | whileStmt
ifStmt -> IF id { stmts }
whileStmt -> WHILE id { stmts }
void start() { switch(m_lookahead) {
    case IF, WHILE, EOF: stmts(); match(Token.Tag.EOF); break;
    default: throw new ParseException(...);
}}
void stmts() { switch(m_lookahead) {
    case IF,WHILE: stmt(); stmts(); break;
    case EOF:
                    break;
    default:
                    throw new ParseException(...);
}}
void stmt() { switch(m_lookahead) {
    case IF: ifStmt();break;
    case WHILE: whileStmt(); break;
    default: throw new ParseException(...);
}}
void ifStmt() {switch(m_lookahead) {
    case IF: match(id); match(OPENBRACE);
             stmts(); match(CLOSEBRACE); break;
    default: throw new ParseException(...);
}}
```

Each non-terminal becomes a function

that mimics the RHSs of the productions associated with it and choses a particular RHS:

an alternative based on a look-ahead symbol and throws an exception if no alternative applies

First

Given a phrase γ of non-terminals and terminals (a rhs of a production), FIRST(γ) is the set of all terminals that can begin a string derived from γ .

Assume T, F, X, Y, and Z are non-terminals. * is a terminal. **FIRST(T*F) = ? FIRST(F)= ?**

FIRST(XYZ) = FIRST(X) ?

NO! X could produce ε and then FIRST(Y) comes into play

we must keep track of which non terminals are NULLABLE

FIRST and Nullable example

start -> stmts EOF
stmts -> ε | stmt stmts
stmt -> ifStmt | whileStmt | ID = NUM
ifStmt -> IF id { stmts }
whileStmt -> WHILE id { stmts }

It also turns out to be useful to determine which terminals can directly **follow** a non terminal X (to decide parsing X is finished).

terminal t is in FOLLOW(X) if there is any derivation containing Xt.

This can occur if the derivation contains XYZt and Y and Z are nullable

FIRST and FOLLOW sets

NULLABLE

- X is a nonterminal
- nullable(X) is true if X can derive the empty string

FIRST

- $FIRST(z) = \{z\}$, where z is a terminal
- FIRST(X) = union of all FIRST(rhs_i), where X is a nonterminal and X -> rhs_i is a production
- FIRST(rhs_i) = union all of FIRST(sym) on rhs up to and including first nonnullable

FOLLOW(Y), only relevant when Y is a nonterminal

- look for Y in rhs of rules (lhs -> rhs) and union all FIRST sets for symbols after Y up to and including first nonnullable
- if all symbols after Y are nullable then also union in FOLLOW(lhs)

Constructive Definition of nullable, first and follow

for each terminal t, FIRST(t)={t}

Another Transitive Closure algorithm:

keep doing STEP until nothing changes Y is a terminal, non-terminal, or epsilon

STEP:

for each production $X \rightarrow Y_1 Y_2 \dots Y_k$

0: if Y_1 to Y_k nullable, then nullable(X) = true

for each i from 1 to k, each j from i+1 to k

- 1: if $Y_1...Y_{i-1}$ nullable (or i=1) FIRST(X) += FIRST(Y_i) //+: union
- **2:** if $Y_{i+1}...Y_k$ nullable (or i=k) FOLLOW(Y_i) += FOLLOW(X)
- **3:** if $Y_{i+1}...Y_{j-1}$ nullable (or i+1=j) FOLLOW(Y_i) += FIRST(Y_j)

We can compute nullable, then FIRST, and then FOLLOW CS453 Lecture Top-Down Predictive Parsers

Compute nullable, FIRST and FOLLOW for

 $Z \rightarrow d | X Y Z$ $X \rightarrow a | Y$ $Y \rightarrow c | \varepsilon$

Constructing the Predictive Parser Table

A predictive parse table has a row for each non-terminal X, and a column for each input token t. Entries table[X,t] contain productions:

for each X -> gamma					
for each t in FIRST(gamma)					
table[X,t] = X->gamma					
if gamma is nullable					
for each t in FOLL(OW(X)				
table[X,t] = X-t	a	С	d		
	X	$X \rightarrow a$	$X \rightarrow Y$	$X \rightarrow Y$	
Compute the predictive		$X \rightarrow Y$			
parse table for	Y	$Y \rightarrow \varepsilon$	$Y \rightarrow \varepsilon$	$Y \rightarrow \varepsilon$	
$Z \rightarrow d \mid X Y Z$			$Y \rightarrow c$		
$X \rightarrow a \mid Y$	Ζ	$Z \rightarrow XYZ$	$Z \rightarrow XYZ$	$Z \rightarrow XYZ$	
$Y \rightarrow c \mid \varepsilon$				$Z \rightarrow d$	

Top-Down Predictive Parsers

One more time

Balanced parentheses grammar 1:

- $S \rightarrow (S) | SS | \varepsilon$
- 1. Augment the grammar with EOF/\$
- 2. Construct Nullable, First and Follow
- 3. Build the predictive parse table, what happens?

One more time, but this time with feeling

Balanced parentheses grammar 2:

- $S \rightarrow (S)S | \varepsilon$
- 1. Augment the grammar with EOF/\$
- 2. Construct Nullable, First and Follow
- 3. Build the predictive parse table
- 4. Using the predictive parse table, construct the parse tree for

 ()(()) \$
 and
 ()()() \$