
CS453 Lecture Control Flow Code Gen 1

Plan for Today

REMINDERS
– NO Recitation tomorrow
– HW5 is due Monday.
– PA3 is due on Monday October 17th

– HW4 feedback will be provided by Saturday night

Plan
– Dangling Else Problem
– Forcing Type Checking in Haskell
– Mixed Byte and Int
– Control-flow Code Gen
– Building AST

Left Factoring

Left recursion does not work for predictive parsing. Neither does a
grammar that has a non-terminal with two productions that start with a
common phrase, so we left factor the grammar:

E.g.: if statement:
S à IF t THEN S ELSE S | IF t THEN S | o

becomes
S à IF t THEN S X | o
Xà ELSE S | ε

When building the predictive parse table, there will be a multiple entries.
WHY?
CS453 Lecture Control Flow Code Gen 2

€

S→αβ1
S→αβ2

Left refactor
S→αS '
S '→ β1 | β2

Dangling else problem: ambiguity

Given construct two parse trees for
S à IF t THEN S X | o IF t THEN IF t THEN o ELSE o
Xà ELSE S | ε

CS453 Lecture Control Flow Code Gen 3

S

IF t THEN S X

IF t THEN S X

ε

ELSEo S

o

S

IF t THEN S X

IF t THEN S X

ε

ELSE

o

S

o

Which is the correct parse tree? (C, Java rules)

Dangling else disambiguation

The correct parse tree is:

We can get this parse tree by removing the Xàε rule in the multiple entry
slot in the parse tree.

CS453 Lecture Control Flow Code Gen 4

S

IF t THEN S X

IF t THEN S X

ε

ELSEo S

o

Forcing Type Checking in Haskell

Haskell performs lazy evaluation
– Java, C, and most other languages perform eager evaluation.
– Lazy evaluation means that if the result of a function call is not used when

evaluating main, then that function call will not be performed.
Why this could be a problem
main = do

...
let
ast = parser $ lexer file_as_str
typeresults = astTypeCheck ast
output = astCodeGen ast
hPutStrLn outfile output

Possible Solutions
– output = seq typeresults (astCodeGen ast)
– Print typeresults out to a file.

CS453 Lecture Control Flow Code Gen 5

Type Checking and Code Generation of Mixed Int and Bytes
Java allows mixing numeric types. For MeggyJava this means that many
operators allow mixing byte and int.

(byte)3 + 4
7 - (byte) 7
- - - (byte)(2+1)

CodeGen: How should a byte value be promoted to an integer?

CS453 Lecture Functions over ASTs 6

If Statement code generation

When the visitor encounters ifStmt, simple pre or post order code generation
does not suffice. WHY?
-We need more complex control:

if
/ | \
B S1 S2

We need to control the order that code is generated for its children, using
branches, jumps and labels.

First, code needs to be generated for the condition (the result of the condition
evaluation has been pushed on the RTS) followed by branching instructions, the
then block, control to jump over else block, then the else block, and then the end
label.

CS453 Lecture Control Flow Code Gen 7

Branches and jumps

An AVR detail: conditional branches can only go so far in the code, and code
generated, e.g for then or else block is not bounded and thus can exceed that
limit. Therefore we have to use jmp sometimes.
Notice: breq is replaced with with a brne followed by a jmp to handle this

cp r24, r25
#WANT breq MJ_L6
brne MJ_L7
jmp MJ_L6
MJ_L7:
... unbounded stretch of code …
MJ_L6:

CS453 Lecture Control Flow Code Gen 8

Not: there is no not in AVR, but there is xor

truth table for not and xor
x y !x x xor y
0 0 1 0
0 1 1 1
1 0 0 1
1 1 0 0

We can implement NOT x with x XOR 1 :
outNotExp

pop r24
ldi r22, 1
eor r24,r22
push r24

CS453 Lecture Control Flow Code Gen 9

While statement

while
/ \
B S

What is the wiring logic?

SLbl:
eval B on stack
if false jump to endLbL
gen Code for S
jump to Slbl

endLbL:

CS453 Lecture Control Flow Code Gen 10

Short circuited (wired) AND, equals

Similar to the If Statement and While Statement, code generation will
need to be implemented in the visitAndExp()

&&
/ \

B1 B2

can be implemented as: if (B1) return B2 else return false

equalExp, the equality operator ==
Just like in plus and minus, we need to take the mixed type semantics of
Java into account, by promoting a byte (1 register) to an int (register
pair), making sure the int value correctly preserves the sign

CS453 Lecture Control Flow Code Gen 11

Building the AST while parsing

à Parse tree to AST example for (byte)(3-(byte)2).

à Example modifications to PA2 code to create AST.

CS453 Lecture Control Flow Code Gen 12

