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Each phase transforms a representation of  the source code
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Passes information from a declaration to uses of  the name
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The Role of  the Symbol Table
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For example, type information collected incrementally during the 
analysis phases is used during the generation phases for storage layout. 
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Symbols

A symbol table associates information with names.
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“It has been remarked to me …�
that once a person has understood the 
way in which variables are used in 
programming, [he or she]  has 
understood the quintessence of 
programming.”

— Edsger Dijkstra

5Dijkstra [1972]
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• Class names

• Variable names

• Method names

• Parameter names

Reserve the term “identifier” for the grammar symbol
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Some Uses of  Names
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class Cloud {

    public void rain(byte x, byte y) {

        if (this.inBounds(x, y)) {

            Meggy.setPixel(x, y, Meggy.Color.BLUE);

            if (this.inBounds(x,(byte)(y+(byte)1))) {

                    Meggy.setPixel(x, (byte)(y+(byte)1), Meggy.Color.DARK);

            } else {}

            Meggy.delay(100);

            this.rain(x, (byte)(y-(byte)1));

        } else {}

    }

    public boolean inBounds(byte x, byte y) {

        return ((byte)(0-1) < y) && (y < (byte)8);

    }

}

How is x used in the following (from PA4raindrop.java)?
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Symbols
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class C {

    int x;

    public int f(int x) { return x; }

    public int g(int y) { return x; }

}

We’ll use pseudo-code to focus on the use of  names like x
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Symbols
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class D {

    int x;

    public int f(int y) {

        C x = new C();

        return x.f(1);

    }

}

What about x in the following?
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Symbols
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class D {

    int x;

    public int f(int y) {

        C x = new C();

        return x.f(1);

    }

}

What about x in the following?
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Symbols

How does this pseudo-code use f?
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class E {

    C x;

    public int f(int y) {

        x = new C()

        return x.x;

    }

}

What do the occurrences of  x denote?
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Symbols

Q.  Why would anyone write such a program?
A.  To test a compiler.
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Scope Rules

12
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•   A declaration associates information with a name

• The scope rules of  a language determine which 
declaration applies to an occurrence of  a name

• The scope of  a declaration is the portion of  the 
program to which the declaration applies

Definitions

13 

Scope of  a Declaration
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• Shorthand: scope of  a name x
–  Short for “scope of  a the declaration of  the name x”

• Scope by itself
– A portion of  a program that is the scope of  one or more declarations

Popular usage of  the term scope

14 

Scope
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• Static scope rules are based on the program text
– The scope of  a declaration can be determined at compile time
– Otherwise, the language is said to have dynamic scope rules
– Macro-expansion results in dynamic scope

• A block consists of  declarations and statements
–  Blocks are delimited by braces, {}, in C, Java, …
–  Blocks can be nested
– Does MeggyJava have blocks?

Most languages have static scope rules

15 

Static Scope Rules
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class C

{

    int x;

    public int f(int x)

    {

        return x;

    }

    public int g(int y)

    {

        return x;

    }

}

How many declarations of  x?

16 

Scope of  a Declaration
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Subscripts distinguish between roles of  x
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Scope of  a Declaration

class C

{

    int x1;

    public int f(int x2)

    {

        return x2;

    }

    public int g(int y)

    {

        return x1;

    }

}

Block B1

Block B2

Block B3



Ravi Sethi, CSC 453, Fall 2016

Block B2 is a hole in the scope of  the declaration of  x1
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Hole in the Scope of  a Declaration

Block B1

Block B2

Block B3

class C

{

    int x1;

    public int f(int x2)

    {

        return x2;

    }

    public int g(int y)

    {

        return x1;

    }

}
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Find the declaration of  x by examining blocks inside out
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Most Closely Nested Rule

Block B1

Block B2

Block B3

class C

{

    int x1;

    public int f(int x2)

    {

        return x2;

    }

    public int g(int y)

    {

        return x1;

    }

}
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• Global scope
– Top level declarations in C

• Named scopes
–  For variable and method names in a class

• Package scopes
–  Import a package in Java

• Unnamed scopes
–  Blocks

In languages like C and Java

20 

Examples of  Scopes
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• Example:
– Class C introduces a new scope for x, f, and g:

class C {

    int x;

    public int f(...) { ... }

    public int g(...) { ... }

}

–   Now suppose y denotes an object of  class C:
y = new C() 

– Then, y.x refers to variable x in the source text of  class C

Classes introduce a new scope for their variables and methods

21 

Explicit Access Control
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• public
– The scope rules just discussed for classes apply without restrictions

• private
– Access to the declared variable is restricted to methods of  the class

• protected
– Access to the declared variable is restricted to methods of  the class 

and to the methods of  any subclasses

The keywords public, private, protected control access

22 

Explicit Access Control
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Symbol Table Per Scope

23
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Symbol Tables

• Kinds of  information in a symbol table
– Type information for static checking
–  For named scopes, the identifiers in that named scope
–  Layout information for storage at run time; e.g., for storage allocation
– …

• Operations on symbol tables
– Create a new table
–  Put information in the current table
– Get information from a chain of  tables

24
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• Creating a new table object of  class Env 

public class Env {

    private hashtable table;

    protected Env previous;

    public Env(Env p) {

        table = new Hashtable() }

        previous = p;

    }

    ...

}

table is a chain of  objects of  class Env 

25 

Java Implementation of  Symbol Tables
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• Get information from a chain of  objects 

public Symbol get(String s) {

    for( Env e = this; e != null; e = e.previous ) {

        Symbol found = (Symbol)(e.table.get(s));

        if( found != null ) return found;

    }

    return null;

}

table is a chain of  objects of  class Env 

26 

Java Implementation of  Symbol Tables



Ravi Sethi, CSC 453, Fall 2016

• How can we handle inheritance?
– Use a symbol table per class
– The symbol table for a subclass points to the�

table for the superclass

Create a new table object for a class

27 

Handling Named Scopes
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Type Checking�
is a form of  consistency checking

Ensures that the type of a construct matches the 
expected type.  For example,

Meggy.setpixel

expects a triple of  type

byte × byte × color

28
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• Consider the function inBounds
    public boolean inBounds(byte x, byte y) {

        return ((byte)(0-1) < y) && (y < (byte)8);

    }

•  It expects parameters and returns a value
–  Parameter types (byte, byte)
– Return value of  type boolean

Extending type checking from variables to expressions

29 

Type Checking
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Function Signatures

• Consider function f
–  Its parameter has type s, where s can be a tuple
–  Its return type is t

• Then, the signature of  f is s ! t

30
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Basic Rule of  Type Checking

•  If  function f has signature s ! t and x has type s

• Then expression f(x) has type t

31
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• Basic Types
–  boolean, byte, int, color
–  void denotes the absence of  a value

• Tuples
–  If  t1, t2, …, tn are types, then  t1× t2×  …× tn is a type representing a 

tuple of  values of  types  t1, t2, …, tn.

• Functions
–  If  s and t are types, then  s ! t is a type expression
– Thus, a function signature is a type expression

Type checking associates type expressions with expressions

32 

Type Expressions
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Examples: constructs and their type expressions

33

Type Expressions

int
int × int ! int
byte × byte ! boolean
int × int ! boolean
boolean × boolean ! boolean
int ! byte

8

-

<

<

&&

(byte)

A function with more than one signature is said to be 
overloaded.
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Expression ((byte)(0-1) < y) && (y < (byte)8)

34

An Expression Tree

&&	  

<	   <	  

y	   y	  (byte)	   (byte)	  

8	  -	  

1	  0	  
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Associate a type expression with each subexpression

35

Type Checking

&& : boolean	  

< : boolean	   < : boolean	  

y : byte	   y : byte	  (byte) : byte	   (byte) : byte	  

8 : int	  - : int	  

1 : int	  0 : int	  
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• Treat while as a function with signature
–  boolean × void ! void

• Similar treatment for other statement nodes

Allows uniform treatment of  nodes in a syntax tree

36 

Type Expressions for Statement Nodes
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Lifetime

A consecutive sequence of steps at run time

37
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Two-Stage Mapping of  Names to Values

• The lifetime of  a declaration
– The consecutive sequence of  steps during which the declared name 

has�
storage and a value

–  In other words, the state mapping is defined

• Lifetime does not equate to accessibility
–  Example: a nested block may have another declaration of  the name
–  In other words, the environment may change

38

name storage value

environment state
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The value of  x1 is inaccessible during the lifetime of  x2

39 

Scope and Lifetime of  a Declaration

Block B1

Block B2

Block B3

class C

{

    int x1;

    public int f(int x2)

    {

        return x2;

    }

    public int g(int y)

    {

        return x1;

    }

}
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Activation Trees

Handling of local variables in recursive activations

40
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• To sort array elements in the range m:n
–  Pick a pivot element i
–  Partition the elements into two groups: smaller and larger than the 

pivot
– Recursively quicksort the ranges m:i–1 and i+1:n
–  Sort the whole array by calling quicksort with the lower and upper 

bounds of  the array

Function quicksort has parameters m and n and a local var i

41 

A recursive function

smaller larger

m ni
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Activations

• An activation of  a function is an execution of  the 
function body

• Activations can be nested
–  If  an activation of  f initiates an activation of  g, then that activation of  

g is nested in that activation of  f

42
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enter quicksort(1,9)

    enter partition(1,9)

    leave partition(1,9)

    enter quicksort(1,3)

        ...

    leave quicksort(1,3)

    enter quicksort(5,9)

        ...

    leave quicksort(5,9)

leave quicksort(1,9)

Parameters are in parentheses

43 

Trace from an activation of  quicksort
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Abbreviations: q for quicksort, p for partition

44

Activation Tree

p(5,9)	   q(5,5)	  

q(7,7)	  p(7,9)	   q(9,9)	  

q(7,9)	  

q(2,1)	  p(2,3)	   q(3,3)	  

p(1,3)	   q(1,0)	   q(2,3)	  

p(1,9)	   q(1,3)	   q(5,9)	  

q(1,9)	  
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• We can use a stack to keep track of  live activations
– Called a run-time stack

• What does a local variable i in q denote?
– What is its scope?
– What is its lifetime?

Live activations when control reaches q(2,3)

45 

Live Activations are Nested

q(2,3)	  

q(1,3)	  

q(1,9)	  
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• Static scope rules can be applied at compile time
– We deal with the scope of  a declaration of  a name in the source text

• Symbol table per scope
– Holds information that a declaration associates with a name
–  Information collected in one phase can be used in another

• Type Checking
– Associate a type expression with nodes in a syntax tree

• Lifetime is a run-time concept
– We deal with the lifetime of  an activation of  a local variable

Key Points

46 

Symbol Tables


