
Implementing Classes, Arrays, and Assignments
Logistics

–PA4 peer reviews are due Saturday
–HW9 is due Monday
–PA5 is due December 5th
–Will talk about monad implementation at some point, until then check out paper
“Imperative functional programming” by Simon L. Peyton Jones and Philip Wadler if
you are curious.

Implementing Classes, Arrays, and Assignments
(1) Memory model for classes and arrays

(2) Type Checking

(3) Code Generation

CS453 Lecture Code Generation for Classes, Variables, and Arrays 1

PA5 Overview

Goals
– Expansion of lexer, parser, AST, and symbol table for objects, assignment

statements, and arrays
– Type checking for objects, assignment statements, and arrays
– Code generation for objects, assignment statements, and arrays

New pieces of grammar
– Variable declarations
– Assignment statements
– Object creation
– Member variables
– Array creation and usage

CS453 Lecture Code Generation for Classes, Variables, and Arrays 2

CS453 Lecture Code Generation for Classes, Variables, and Arrays 3

Objects (aka records, structs, ...)

An object is a collection of data, usually related in some way
– Each piece of data might have a name (or field name)
– Haskell data types can use position or names

data Point = Pt Float Float

-- OR

data Point = Pt {pointx, pointy :: Float}

pointx :: Point -> Float

pointy :: Point -> Float

Object memory model
– Object instances are created with heap allocations.
– Each object instance places fields in same location.

Exercise: draw a memory map (RTS and heap)
class PA5obj {

public static void main(String[] whatever) {
new C().setP((byte)3,(byte)7,Meggy.Color.BLUE); } }

class C {

Ind oy;
public void setP(byte x, byte y, Meggy.Color c) {

Ind ox; ox = new Ind(); ox.put(x);

oy = new Ind(); oy.put(y); /* Here 3 */ } }
class Ind{

byte _i;
public void put(byte i){ _i = i; /* Here 1,2 */ }

public byte get(){ return _i; } }

1: just after ox.put() has executed (but not returned)
2: just after oy.put() has executed (but not returned)
3: just after oy.put() has returned

CS453 Lecture Code Generation for Classes, Variables, and Arrays 4

CS453 Lecture Code Generation for Classes, Variables, and Arrays 5

Arrays

An array is a collection of items of the same type
- so that the address of an element can be computed from

the start address and the index (efficiency)
- index: int (or int derivative type like unsigned or byte)

Once an array is allocated, the sizes of its dimensions do not
change (as opposed to ArrayLists, Lists, …)
Java arrays are one dimensional

- higher dimensional arrays are arrays of arrays
these are sometimes called “ragged” arrays, as the lengths
sub arrays can differ

- as opposed to rectangular arrays in Fortran

Array representations

1. store length with array elements
e.g. at the front of the array

- this is nice for Java arrays
the array is now represented by its start address

- the address of the length field
when allocating and indexing in such arrays this length
field must be taken into account (added / skipped over)

2. Have a separate array descriptor with
index ranges for all dimensions
widths in bytes in each dimension
(some representation of) start address

CS453 Lecture Code Generation for Classes, Variables, and Arrays 6

PA6Rainbow.java

CS453 Lecture Arrays 7

class PA6rainbow { public static void main(String[] whatever){{
// display a rainbow on row 5
new Rainbow().run((byte)5); }}}

class Rainbow {
Meggy.Color [] p;
public void run(byte row) {

p = new Meggy.Color [8];
p[0] = Meggy.Color.RED;
p[1] = Meggy.Color.ORANGE;
p[2] = Meggy.Color.YELLOW;
p[3] = Meggy.Color.GREEN;
p[4] = Meggy.Color.BLUE;
p[5] = Meggy.Color.VIOLET;
p[6] = Meggy.Color.WHITE;
p[7] = Meggy.Color.DARK;
Meggy.setPixel((byte)2, (byte)3, p[0]);
Meggy.setPixel((byte)2, (byte)4, p[4]);
this.displayRow(row, p);

}
public void displayRow(byte row, Meggy.Color [] a) {

int i; i=0;
while (i<8) {

Meggy.setPixel((byte)i, row, a[i]); i = i+1;
} } }

CS453 Lecture Code Generation for Classes, Variables, and Arrays 8

Implementing type checking for PA5 MeggyJava
Visitor over AST will check for type errors at each AST node

id = Exp ; AssignStatement(id, Exp)
[LINENUM,POSNUM] Undeclared variable VARNAME
[LINENUM,POSNUM] Invalid expression type assigned to variable VARNAME

Syntax AST node

public Type name(...) {...return Exp; }
MethodDecl(name, Stms, Exp)

[LINENUM,POSNUM] Invalid type returned from method METHODNAME

Exp . name (Args) CallExp(name, Args)
[LINENUM,POSNUM] Receiver of method call must be a class type

[LINENUM,POSNUM] Method METHODNAME does not exist

[LINENUM,POSNUM] Method METHODNAME requires exactly NUM arguments

[LINENUM,POSNUM] Invalid argument type for method METHODNAME

Error message for symbols redeclared within same scope

CS453 Lecture Code Generation for Classes, Variables, and Arrays 9

Class ID … ClassDecl
public Type ID … MethodDecl
Type ID; VarDecl

[LINENUM,POSNUM] Redefined symbol VARNAME

Code Gen for Classes and Local variables

Method activation records on run-time stack
– Parameters will still have locations in the activation record.
– Local variables will also have locations in the activation record.

Member variables will be stored in object instances
– The new expression should cause a call to malloc.
– Member variables will have offsets within an object instance.
– The “this” variable will contain a pointer to the object instance.

CS453 Lecture Code Generation for Classes, Variables, and Arrays 10

BuildSymTable for varDecl

VarDecl
create VarSTE

if it is a member variable
make the base “Z” (r31:r30)
make the offset the current class offset (ClassSTE will need this)
increment the class offset/size with the size of the variable

else if it is a local
make the base “Y” (r29:r28)
make the offset the current method offset (MethodSTE)
increment the method offset/size with the size of the variable

CS453 Lecture Code Generation for Classes, Variables, and Arrays 11

Code Generation for method call and this

CallExp
1) Use checkTypes to determine class type or receiver.
2) Look up the ClassSTE from the receiver type.
3) Then lookup the MethodSTE from the ClassSTE scope.
2) Generate code that pops parameters off the stack and

into the appropriate registers from right to left.
Receiver reference is the first parameter (this), last pushed.

3) Generate code that calls the mangled method name.
4) Generate code that pushes the return value back on the stack.

ThisExp
1) push the value of the "this" parameter onto the run-time stack

load “this” into r31:30 and then push it

CS453 Lecture Code Generation for Classes, Variables, and Arrays 12

Code Generation for IdExp and assignStmt

IdExp
1) Lookup id in symbol table to get VarSTE
2) If the VarSTE is a member variable

2a) Look up VarSTE for "this" and generate code
that loads the value of "this" into registers r31:r30.

3) load variable into a register(s) using the base+offset from VarSTE.
4) Push the variable value on the stack.

AssignStatement
1) Lookup id in symbol table to get VarSTE
2) If the VarSTE is a member variable

2a) Look up VarSTE for "this" and generate code
that loads the value of "this" into registers r31:r30.

3) store value of expression on top of run-time stack into base+offset
from VarSTE

CS453 Lecture Code Generation for Classes, Variables, and Arrays 13

