
CS453 Shift-reduce Parsing 1

Plan for Today

Logistics
– Recitation on Friday will be a review for Final Exam.

– Review notes will be posted Wednesday night.
– People can ask questions during recitation and/or on Piazza. Example

questions with answers will receive extra credit as per syllabus.
– PA5 is due Monday. Any questions?
– PA4 Peer Review summary

Reviewing compilation covered by other professors
– (See slides on schedule or notes posted in piazza)
– LR parsing: performs a right-most derivation in reverse
– Symbol tables and scope
– Register allocation for expression trees

PA4 Peer Reviews

Specific Comments that are Useful
– "This is the cleanest compiler assignment my eyes have ever seen” …"I

especially appreciated the symbol table pretty print functions, the massive
amount of Java keywords that can be lexed, and the optional arguments in
main for testing purposes.”Coding structure to emulate

– "Reformatting the token row/col information to be stored in a token
wrapper rather than the token itself may have made the parser much easier
to understand and write. This means we wouldn't have had to pass the new
int arguments around and handle them in multiple cases.”

Fun jokes in README
– “I like my steak how I like my transformers. Optimus prime.”
– “A manager, a mechanical engineer, and software analyst are driving back from convention through the mountains.

Suddenly, as they crest a hill, the brakes on the car go out and they fly careening down the mountain. After scraping against
numerous guardrails, they come to a stop in the ditch. Everyone gets out of the car to assess the damage. The manager
says, "Let's form a group to collaborate ideas on how we can solve this issue."
The mechanical engineer suggests, "We should disassemble the car and analyze each part for failure.” The software
analyst says, "Let's push it back up the hill and see if it does it again.”

CS453 Lecture 2

CS453 Lecture Introduction 3

Structure of a Typical Compiler

“sentences”

Synthesis

optimization

code generation

target language

IR

IR code generation

IR

Analysis

character stream

lexical analysis

“words”tokens

semantic analysis

syntactic analysis

AST

annotated AST

interpreter

LL vs LR Parsing

LL(k) must predict which production looking ahead k:
S à SS | (S) | ε
is it S à SS or (S) when I see ((((……. ?
produces the parse tree TOP DOWN, with a left to right derivation

LR(k) postpones the decision until all tokens of the rhs of a grammar
production plus k more tokens have been seen. It therefore is more
powerful.

It does this by parsing BOTTOM UP

CS453 Shift-reduce Parsing 4

Example	LR	parse

S à AB Aà Aa | a B à Bb | b S’à S $

aaabb$ßAaabb$ßAabb$ßAbb$ß ABb$ ßAB$ßS$ßS’

Notice that this is the rightmost derivation
S’àS$àAB$àABb$àAbb$àAabb$àAaabb$àaaabb$

in reverse!
It does not start with the start symbol, it ends with it

LR(k) parsing scans the input Left to right and produces the
Rightmost derivation (looking k tokens ahead) in reverse.

CS453 Shift-reduce Parsing 5

Simplified	example	LR	parsing	engine	actions
S à AB Aà Aa | a B à Bb | b S’ à S $

Stack input action
aaabb$ shift

a aabb$ reduce : Aàa
A aabb$ shift
Aa abb$ reduce: AàAa
A abb$ shift
Aa bb$ reduce: AàAa
A bb$ shift
Ab b$ reduce: Bàb
AB b$ shift
ABb $ reduce: BàBb
AB $ reduce: SàAB
S $ accept

CS453 Shift-reduce Parsing 6

CS453 Shift-reduce Parsing 7

Shift reduce parsing applied to unambiguous grammars

[0] S à (S)
[1] S‘ à S $
[2] S à ID

Single parentheses nest
Start symbol is S’

Stack input action
((ID))$ shift

((ID))$ shift
((ID))$ shift
((ID))$ reduce: SàId
((S))$ shift
((S))$ reduce: Sà(S)
(S)$ shift
(S) $ reduce: Sà(S)
S $ accept

Ravi Sethi, CSC 453, Fall 2016

• Static scope rules are based on the program text
– The scope of a declaration can be determined at compile time
– Otherwise, the language is said to have dynamic scope rules
– Macro-expansion results in dynamic scope

• A block consists of declarations and statements
– Blocks are delimited by braces, {}, in C, Java, …
– Blocks can be nested

– Does MeggyJava have blocks?

Most languages have static scope rules

8

Static Scope Rules

Ravi Sethi, CSC 453, Fall 2016

class C

{

int x;

public int f(int x)

{

return x;

}

public int g(int y)

{

return x;

}

}

How many declarations of x?

9

Scope of a Declaration

Ravi Sethi, CSC 453, Fall 2016

Subscripts distinguish between roles of x

10

Scope of a Declaration

class C

{

int x1;

public int f(int x2)

{

return x2;

}

public int g(int y)

{

return x1;

}

}

Block B1

Block B2

Block B3

Ravi Sethi, CSC 453, Fall 2016

Block B2 is a hole in the scope of the declaration of x1

11

Hole in the Scope of a Declaration

Block B1

Block B2

Block B3

class C

{

int x1;

public int f(int x2)

{

return x2;

}

public int g(int y)

{

return x1;

}

}

Ravi Sethi, CSC 453, Fall 2016

Find the declaration of x by examining blocks inside out

12

Most Closely Nested Rule

Block B1

Block B2

Block B3

class C

{

int x1;

public int f(int x2)

{

return x2;

}

public int g(int y)

{

return x1;

}

}

Ravi Sethi, CSC 453, Fall 2016

class Foo {

public static void main(String[] s) {

new E().f(3); }

class E {

C x;

public int f(int y) {

C x; x = new C(); x.x = 7;

this.initE();

return x.x;

}

public C initE() { x=new C(); x.x = 9; return x; }

}

What do the occurrences of x denote?

13

Symbols

Expression Evaluation
Sethi-Ullman Register allocation
label(node)

if node is leaf then node.label = 1
else if node is binary

if node.left.label == node.right.label
then node.label = node.left.label + 1

else
node.label = max(node.left.label,
nodel.right.label)

else if node is unary
node.label = node.child.label

Questions to understand how to answer
– How many registers are needed if not using memory (aka push/pop)?
– Order of evaluation to make this register count work?
– What if an operator has more than 2 operands?

CS453 Shift-reduce Parsing 14

