
Plan for Today (>30% of TCEs are in)

Discussion about Final
– 2 sides of 8.5x11 sheet of paper
– See posted notes for tomorrow’s recitation for what could be on final.
– Friday will have review and can do examples.

PA5 Suggestions

Register allocation for expressions

What are IO monads?

CS453 Lecture Haskell Monads 1

Expression Evaluation
Sethi-Ullman Register allocation
label(node)

if node is leaf then node.label = 1
else if node is binary

if node.left.label == node.right.label
then node.label = node.left.label + 1

else
node.label = max(node.left.label,
nodel.right.label)

else if node is unary
node.label = node.child.label

Questions to understand how to answer
– How many registers are needed if not using memory (aka push/pop)?
– Order of evaluation to make this register count work?
– What if an operator has more than 2 operands?

CS453 Lecture Haskell Monads 2

Kathleen Fisher for cs242 at Tufts
Lightly edited with permission, Michelle Strout 4/13/15

Reading: “Tackling the Awkward Squad,” Sections 1-2
“Real World Haskell,” Chapter 7: I/O

Thanks to Simon Peyton Jones for many of these slides.

¡ Predictive parser
¡ Passed around a list of tokens while processing.

¡ PA3 MeggyJava compiler
¡ Passed around a number to create unique labels

for code generation.

¡ PA4 MeggyJava compiler
¡ Passing around a symbol table with parameter and

method type and code generation information.

¡ Monads will help us abstract away some of
that passing around.

CS453 Lecture Haskell Monads 4

Monadic
Input and Output

CS453 Lecture Haskell Monads 5

A functional
program defines a
pure function, with

no side effects.

The whole point of
running a program

is to have
some side effect.

Tension

CS453 Lecture Haskell Monads 6

A value of type (IO t) is an “action.” When
performed, it may do some input/output before

delivering a result of type t.

CS453 Lecture Haskell Monads 7

A value of type (IO t) is an “action.” When
performed, it may do some input/output before

delivering a result of type t.

type IO t = World -> (t, World)

IO t

result :: t

CS453 Lecture Haskell Monads 8

¡ “Actions” are sometimes called “computations.”

¡ An action is a first-class value.

¡ Evaluating an action has no effect;
performing the action has the effect.

A value of type (IO t) is an “action.” When
performed, it may do some input/output before

delivering a result of type t.

type IO t = World -> (t, World)

CS453 Lecture Haskell Monads 9

getChar

Char

putChar

()Char

getChar :: IO Char
putChar :: Char -> IO ()

main :: IO ()
main = putChar ‘x’

Main program is an
action of type IO ()

CS453 Lecture Haskell Monads 10

putChar

()

getChar

Char

To read a character and then write it back out, we
need to connect two actions.

The “bind” combinator
lets us make these
connections.

CS453 Lecture Haskell Monads 11

>>=

¡ We have connected two actions to make a
new, bigger action.

putChar

()

Char

getChar

(>>=) :: IO a -> (a -> IO b) -> IO b

echo :: IO ()
echo = getChar >>= putChar

CS453 Lecture Haskell Monads 12

>>=
¡ Operator is called bind because it binds the

result of the left-hand action in the action on
the right.

¡ Performing compound action a >>= \x->b:
¡ performs action a, to yield value r
¡ applies function \x->b to r
¡ performs the resulting action b{x <- r}
¡ returns the resulting value v

b

v

a
xr

CS453 Lecture Haskell Monads 13

¡ The parentheses are optional because lambda
abstractions extend “as far to the right as
possible.”

¡ The putChar function returns unit, so there
is no interesting value to pass on.

echoDup :: IO ()
echoDup = getChar >>= (\c ->

putChar c >>= (\() ->
putChar c))

CS453 Lecture Haskell Monads 14

>>

¡ The “then” combinator (>>) does sequencing
when there is no value to pass:

(>>) :: IO a -> IO b -> IO b
m >> n = m >>= (_ -> n)

echoDup :: IO ()
echoDup = getChar >>= \c ->

putChar c >>
putChar c

echoTwice :: IO ()
echoTwice = echo >> echoCS453 Lecture Haskell Monads 15

¡ We want to return (c1,c2).
¡ But, (c1,c2) :: (Char, Char)
¡ And we need to return something of type
IO(Char, Char)

¡ We need to have some way to convert values
of “plain” type into the I/O Monad.

getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= \c1 ->

getChar >>= \c2 ->

????

CS453 Lecture Haskell Monads 16

return

¡ The action (return v) does no IO and
immediately returns v:

return :: a -> IO a

return

getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= \c1 ->

getChar >>= \c2 ->
return (c1,c2)CS453 Lecture Haskell Monads 17

¡ The “do” notation adds syntactic sugar to
make monadic code easier to read.

¡ Do syntax designed to look imperative.

-- Do Notation
getTwoCharsDo :: IO(Char,Char)
getTwoCharsDo = do { c1 <- getChar ;

c2 <- getChar ;
return (c1,c2) }

-- Plain Syntax
getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= \c1 ->

getChar >>= \c2 ->
return (c1,c2)

CS453 Lecture Haskell Monads 18

¡ The “do” notation only adds syntactic sugar:

do { x<-e; es } = e >>= \x -> do { es }

do { e; es } = e >> do { es }

do { e } = e

do {let ds; es} = let ds in do {es}

The scope of variables bound in a generator is the rest of
the “do” expression.

The last item in a “do” expression must be an expression.

CS453 Lecture Haskell Monads 19

¡ The following are equivalent:

do { x1 <- p1; ...; xn <- pn; q }

do x1 <- p1
...
xn <- pn
q

do x1 <- p1; ...; xn <- pn; q

If the semicolons are
omitted, then the
generators must line up.
The indentation replaces
the punctuation.

CS453 Lecture Haskell Monads 20

¡ The getLine function reads a line of input:

getLine :: IO [Char]
getLine = do { c <- getChar ;

if c == '\n' then
return []

else
do { cs <- getLine;

return (c:cs) }}

Note the “regular” code mixed with the monadic
operations and the nested “do” expression.

CS453 Lecture Haskell Monads 21

¡ Each action in the IO monad is a possible stage in an
assembly line.

¡ For an action with type IO a, the type
¡ tags the action as suitable for the IO assembly line via the IO

type constructor.
¡ indicates that the kind of thing being passed to the next stage

in the assembly line has type a.

¡ The bind operator “snaps” two stages
s1 and s2 together to build a compound stage.

¡ The return operator converts a pure value into a stage in
the assembly line.

¡ The assembly line does nothing until it is turned on.

¡ The only safe way to “run” an IO assembly is to execute
the program, either using ghci or running an executable.

1 2

CS453 Lecture Haskell Monads 22

¡ Running the program turns on the IO assembly line.

¡ The assembly line gets “the world” as its input and
delivers a result and a modified world.

¡ The types guarantee that the world flows in a single
thread through the assembly line.

Result

ghci or compiled program

CS453 Lecture Haskell Monads 23

¡ GHC uses world-passing semantics for the IO monad:

¡ It represents the “world” by an un-forgeable token
of type World, and implements bind and return
as:

¡ Using this form, the compiler can do its normal
optimizations. The dependence on the world ensures
the resulting code will still be single-threaded.

¡ The code generator then converts the code to modify
the world “in-place.”

type IO t = World -> (t, World)

return :: a -> IO a
return a = \w -> (a,w)
(>>=) :: IO a -> (a -> IO b) -> IO b
(>>=) m k = \w -> case m w of (r,w’) -> k r w’

CS453 Lecture Haskell Monads 24

But what does this mean?

Reference: http://stackoverflow.com/questions/3117583/is-haskell-truly-
pure-is-any-language-that-deals-with-input-and-output-outside

Summary
–IO Monad value for Haskell main is like a program AST
–The IO Monad value is evaluated in the sense that IO actions are bound
together sequentially including some IO actions that contain lambda function
values based on input.
–The ghc compiler then converts these IO Monad values into C code and
executes the C code at runtime.

à Show usage of monad for compiler example.

CS453 Lecture Haskell Monads 25

