
Implementing Lamda Functions

Based on …
– a blog by Matt Might
– “Closure conversion: How to compile lambda”

Outline
– Using closures to implement nested first-class functions in Python
– Closure terminology
– Using closures to implement lambda functions in Haskell

CS453 Lecture Implementing Lambda Functions 1

Nested First Class Functions in Python

What does the following code yield?

CS453 Lecture Implementing Lambda Functions 2

def f(x):
def g():

return x
return g

a = f(42)
a()

Implementing Nested First Class Functions in C

What doesn’t work

CS453 Lecture Implementing Lambda Functions 3

typedef int (*fp_t)(); // function pointer
int __global_x;

int g() {
return __global_x;

}

fp_t f(int x) {
__global_x = x;
return g;

}

in Python what is this supposed to do?
a = f(10)
b = f(20)

def f(x):
def g():

return x
return g

a = f(42)
a()

Implementing Nested First Class Functions in C
What does work: closures

CS453 Lecture Implementing Lambda Functions 4

typedef int (*fp_t)(); // function pointer

typedef struct { int x; } G_ENV;
typedef struct { fp_t lambda; G_ENV env; } G_CLOSURE;

int g_lifted_lambda(G_ENV g_env) { return g_env.x; }

G_CLOSURE f_create_closure(int x) {

G_ENV g_env; g_env.x = x;
G_CLOSURE clsr; clsr.env = g_env;

clsr.lambda = g_lifted_lambda;
return clsr;

}

// a = f(10) in Python becomes . . .

a = f_create_closure(10)

// a() in Python becomes . . .
a.lambda (a.env);

def f(x):
def g():

return x
return g

a = f(10)
b = f(20)
a()
b()

Closures

Open lambda term
– Is a lambda function with parameters and some free variables.
– Example in Haskell: \x -> z
– z is a free variable, it’s meaning is not fixed

Environment
– Is a mapping of variables to values.
– Example: M.fromList [(“z”,10)]

Closure
– “Is an open lambda paired with an environment that gives values to all of

its free variables”.
– Struct with a field for code and for the environment.

CS453 Lecture Implementing Lambda Functions 5

Another Example, now for Haskell

How do we convert the following Haskell code to C?

CS453 Lecture Implementing Lambda Functions 6

-- Haskell
foo x y = \p -> x + y + p

Python code for reference
def foo(x, y):

def anon(p):
return x + y + p

return anon

