CS 453 Introduction to Compilers
 Midterm Examination
 Spring 2015

50 minutes (maximum)

- You may use one side of one sheet (8.5×11) of paper with any notes you like.
- This exam has 8 pages, including this cover page and two mostly empty pages for extra work space. Do all your work on these exam sheets.
- Be specific and clear in your answers. If there is any question about what is being asked, then indicate the assumptions you need to make to answer the question.
- Show all your work if you wish to be considered for partial credit.

Question	Points	Score
1	10	
2	15	
3	15	
4	25	
5	10	
6	25	

Name:

Email:

DO NOT TURN TO NEXT PAGE TILL YOU GET PERMISSION

1. [10 points] Lexer for some keywords

We need a lexer that can handle the "for" and "forall" keywords in the Chapel programming language being developed at Cray. (a) Write a separate NFA for each of those two keywords. (b) Then connect the two separate NFAs into a single NFA without redrawing the original separate NFAs.
2. [15 points] DFA

Convert the combined NFA you created for question 1 into a DFA (deterministic finite state automata).
3. [15 points] Haskell lexer

Write a lexer in Haskell that converts a String to a list of Tokens for the "for" and "forall" tokens.
4. [25 points] Haskell lexer
(a) Assume that you have to implement syntactic analysis (a parser) for the following language:

(1) prog	-> stmtlist EOF
(2) stmtlist	-> stmtlist stmt
(3)	I epsilon
(4) stmt	-> EAT NUM mallow
(5)	I SAVE NUM mallow
(6) mallow	-> PINK STARS
(7)	\|

Assume that EAT, SAVE, NUM, PINK, BLUE, DIAMONDS, STARS, and EOF are all tokens. Show the Nullable property and FIRST and FOLLOW sets for all of the non-terminals in the above grammar. (DO NOT MODIFY THE GRAMMAR).
(b) Using the FIRST and FOLLOW sets, construct the predictive parsing table for the above grammar.
5. [10 points] LL(1)

Why is the above grammar not in $\operatorname{LL}(1)$? Fix the grammar so that it is in $\operatorname{LL}(1)$.
6. [25 points] Predictive Parser table (take 2)
(a) Show the Nullable property and FIRST and FOLLOW sets for all of the non-terminals in the fixed grammar from question 5. (b) Then construct the predictive parsing table.
(empty page)
(empty page)

