
C SC 520 Principles of Programming Languages 1

C SC 520: Principles of
Programming Languages

Peter J. Downey
Department of Computer Science

Spring 2006

C SC 520 Principles of Programming Languages 2

Principles of Programming
Languages

Lecture 01

Introduction

C SC 520 Principles of Programming Languages 3

A Programming Language
• Notation for describing algorithms and data structures
• Medium for communicating procedural actions to an

interpreting agent (machine or man)
• Mental tool for

! Solving procedural problems
! Representing algorithms
! Reasoning about algorithms

• Specification of a virtual computer

C SC 520 Principles of Programming Languages 4

Reasons to study programming languages

• To understand the connection between languages and the
problem solving process—how it conditions our thinking

• To suggest designs for languages suited to needs of
problem solving and software production—the isolation of
universals

• To permit a better choice of programming language for a
particular problem

• To understand the meaning of one language by
comparison with others—development of semantic
description tools

• To understand how languages and features are
implemented

• To make it easier to learn new languages

C SC 520 Principles of Programming Languages 5

Semiotics:

• Syntactics: relations between signs (in abstraction from
their associations with objects or interpreters)

• Semantics: relations between signs and objects they
denote; the study of sign meaning, including relations
among objects denoted

• Pragmatics: nature of sign-interpreters and the origin, uses
and effects of signs on interpreters

Syntax

Semantics
Pragmatics

sign (or name)
--formal

object (or referent)
--ideal

interpreter (or agent)
--operational

--C.W. Morris, ``Foundations of
the Theory of Signs”, Int. Encyc.
of Unified Science, Ser. I, Vol. 2,
U of Chicago Press, 1938.

the study of signs and systems of signs

C SC 520 Principles of Programming Languages 6

Ex: The Language Binary Numerals
• Syntax: signs

! Numerals (syntactic category <num>)
! Abstract syntax:

<num> ::= <num> 0 | <num> 1 | 0 | 1

• Semantics: sign → object
! A mapping (semantic map) from numerals to integers:

◆

! Defined by ‘’syntax-driven” (compositional) semantics
◆ “meta-variable N ranges over elements of the syntactic category
<num>

MMMM
[[]] 5 [[]] 5

:

= =

→

M MM MM MM M

M M M M

101 000101

< num > Integer

C SC 520 Principles of Programming Languages 7

Binary Numerals (cont.)

! Another semantic notion is ``semantic equivalence’’ ≡
101 ≡ 0101 since

• Pragmatics: interpreter → object
! Design of an interpreter to check ≡
! Algorithm Add to perform semantically valid addition of symbols

[[]] 0
[[]] 1
[[]] 2 [[]]
[[]] 2 [[]] 1

N N
N N

=
=

=
= +

!
!

MMMM
MMMM
M MM MM MM M
M MM MM MM M

0
1
0
1

[[]] [[]]=M MM MM MM M101 0101

1 2 1 2[[]] [[]] [[]]() , Add N N N N= +M M MM M MM M MM M M

C SC 520 Principles of Programming Languages 8

Ex: C
• Syntax:

! C grammar
! C parser

• Semantics:
! Axiomatic semantic specification

! Denotational specification using syntax-directed (compositional)
rules

• Pragmatics:
! Implementation techniques
! Programming methodology given C’s features

{ [/]} { }

{2 3 25} { 25} or simplified: { 14} { 25}

Q Q

y x y x− > > > >

e x x = e

x = 2* y - 3 x = 2* y - 3

([[]] , ,) update location

(,) with value ([[]] , ,)
env mem

find env env mem
=MMMM

EEEE

x = e

x e

C SC 520 Principles of Programming Languages 9

Reasons for Semantic Description
• Main aim: each phrase of language is given a denotation

(meaning, referent) determined only by the meaning of its
subphrases

• Benefits
! Standard of definition
! Basis for design comparisons
! Basis for correctness, validation
! Provides insight

• Methods
! Informal semantics (e.g., Algol 60): incomplete, even inconsistent
! Operational semantics (e.g., standard implementation): it is what it

does—meaning and pragmatics confused
! Axiomatic semantics: meaning of phrase is a predicate

transformation. Directly supports verification
! Denotational semantics: every phrase denotes a thing (integer,

boolean, mathematical function)

