
C SC 520 Principles of Programming Languages 1

Principles of Programming
Languages

Lecture 04

Types and Polymorphism

C SC 520 Principles of Programming Languages 2

Types
• What is a type?

! An equivalence class of objects/values
◆ Denotational view: a type is a set (of values): Pascal

" type weekday = (sun, mon, tue, wed, thu, fri,
sat);

◆ Constructive view: a type is the result of an expression
consisting of primitive types operated upon by type
constructors: Ada
type computer is record

serial : array (1..10) of integer;

age: integer;

end record;

◆ Abstraction view: a type is an interface, providing a set
operations on objects of the type; an abstract data type (ADT):

" Pascal: pred(), succ(), <, =, >
" Class declaration

{ , , , , , , }Weekday sun mon tue wed thu fri sat=

C SC 520 Principles of Programming Languages 3

Types (cont.)
• What has a type?

! Literals 1.25 ‘abc’

! Variables var x: integer;
! Expressions x:int + y ML type int

◆ Induced by types of variables, literals, operators (casting ops
included), and any implicit coercion (conversion) rules

◆

! Objects Stack<int> s;
! Functions -fun area(r) = 3.141582818*r*r;

val area = fn : real -> real;
! References int& x; x:ref int;
! Pointers int i = 3; int& r = i; int* p = &r;

C SC 520 Principles of Programming Languages 4

Type System
• Type definition rules

! Declaration (naming): introduce new name & bind to scope
! Definition (description):

◆ Primitive: booleans, characters, integers, fixedpoint, floating point
◆ Enumeration: Ada type weekday is (sun, … ,sat);

◆ Subtype: subtype weekend is weekday range sat..sun;

◆ Composite: record, union, array, reference, list (type
“operators”)

◆ Function: C++: int max(int a, int b){return a>b?a:b;}

◆ Derived: Ada: type mass is new REAL;

• Type equivalence rules
! Name equivalence

◆ Each definition a new type
◆ Equivalent only if declared as same primitive or pre-defined type
Ada distinct types: a,b: array(1..10) of BOOLEAN;

! Declaration equivalence
◆ Same declaration implies same type (example above is dec. equiv.)

C SC 520 Principles of Programming Languages 5

Type System(cont.)
! Structural Equivalence: have same type-operator expression

• Type compatibility rules
! Argument/parameter compatibility; assignment compatibility
! Types might be different but compatible; rules differ widely

◆ Ada : a subtype is compatible with a supertype & arrays of same size
& base type are compatible

◆ C: short int s; unsigned long int l; … ; s = l;

◆ C: void* p; int* q; … ; q = p;

◆ Coercion: implicit type conversion defined by language (≠ cast)
! Type Checking: verifying a program adheres to type compatibility

rules (e.g. lint a type checker for a weakly typed C)
◆ Strong typing: prohibits an op when incompatibility exists

" Ada strongly typed. Bliss untyped. ANSI C in middle
◆ Static type checking: compile time (Ada, C++)
◆ Dynamic type checking: late binding (Lisp, Scheme, Smalltalk)

C SC 520 Principles of Programming Languages 6

Type System (cont.)
• Type Inference Rules

! Rules for typing an expression given the types of its components
◆ Type of x = y; is type of x
◆ Type of b?a:b is the (common) type of a, b etc, etc
◆ Ada: “con” & “cat” (both array[1..3] of char) returns array[1..6] of char

! Subranges x:INTEGER range 0..40; y:INTEGER range
10..20; type of x + y ?

! Can be complex, and involve coercion
◆ Recall PL/I example with fixed bin and fixed dec operands

! Some inferences impossible at compile time
! Inference is a kind of “evaluation” of expressions having coarse

values; types have their own arithmetic

C SC 520 Principles of Programming Languages 7

Polymorphism
• A polymorphic subroutine is one that can accept

arguments of different types for the same parameter
! max(x,y){ max = x>y?x:y } could be reused for any type for

which > is well-defined

• A polymorphic variable(parameter) is one that can refer to
objects of multiple types. ML: x : ‘a

• True (or “pure”) polymorphism always implies code reuse:
the same code is used for arguments of different types.

• What polymorphism is not:
! Not overloading.
! Not generics.
! Not coercion.
! All 4 aim at off-loading effort from programmer to translator, but in

different ways

C SC 520 Principles of Programming Languages 8

Polymorphism(cont.)
• Overloading

! An overloaded name refers to several distinct objects in the same
scope; the name’s reference (denotation) is resolved by context.
Unfortunately sometimes called “ad hoc polymorphism”(!)

! C++
int j,k; float r,s;

int max(int x, int y){ return x<=y?y:x }
float max(float x, float y){ return y>x?y:x }
…
max(j,k); // uses int max
max(r,s); // uses float max

! Even constants can be overloaded in Ada:
type weekday is (sun, mon, …);

type solar is (sun, merc, venus, …);

planet: solar; day: weekday;

day := sun; planet := sun; -- compatible

day := planet; -- type error

C SC 520 Principles of Programming Languages 9

Polymorphism(cont.)
• Generic subroutines

! A generic subroutine is a syntactic template containing a type
parameter that can be used to generate different code for each
type instantiated

! Ada
generic
type T is private;
with function “<=“(x, y : T) return Boolean;

function max(x,y : T) return T is
begin if x <= y then return y;

else return x;
end if;

end min;
function bool_max is new max(BOOLEAN,implies);
function int_max is new max(INTEGER,”<=“);

C SC 520 Principles of Programming Languages 10

Polymorphism(cont.)
• Coerced subroutine arguments

! A coercion is a built-in compiler conversion from one type to
another

! Fortran
function rmax(x,y)

real x

real y

rmax=x

if (y .GT. x) rmax=y

return

end

! In k=rmax(i,j) causes args to be coerced to floating point &
return value truncated to integer

! Although same code is used for both arg types, this is not true
polymorphism

C SC 520 Principles of Programming Languages 11

Kinds of Polymorphism
• Pure polymorphism: a single subroutine can be applied to

arguments of a variety of types
! Parametric polymorphism: the type value is passed explicitly as an

argument. There is a type called type in CLU:
sorted_bag = cluster[t:type] is create, insert, …

where t has lt,eq: proctype(t,t) returns (bool);

…

wordbag := sorted_bag[string]; -- create cluster

wb: wordbag := wordbag$create(); -- instance

…

wordbag$insert(wb, word); -- mutate instance

C SC 520 Principles of Programming Languages 12

Kinds of Polymorphism(cont.)
! Type variable polymorphism: a type signature with type variables

is derived for each subroutine that is as general as possible
(unification). An applied subroutine has its type variables
instantiated with particular types.

- fun length(nil) = 0

= | length(a :: y) = 1 + length(y);

val length = fn : 'a list -> int

- val a = ["a", "b", "c"];

val a = ["a","b","c"] : string list

- length(a);

val it = 3 : int

- val b = [1,3,5,7,21,789];

val b = [1,3,5,7,21,789] : int list

- length(b);

val it = 6 : int

C SC 520 Principles of Programming Languages 13

Kinds of Polymorphism(cont.)
- val d = [35,3.14];

std_in:0.0-0.0 Error: operator and operand don't agree (tycon
mismatch)

operator domain: int * int list operand: int * real list in

expression: 35 :: 3.14 :: nil

- val e = [3.14, 2.71828, 1.414];

val e = [3.14,2.71828,1.414] : real list

- length(e);

val it = 3 : int

C SC 520 Principles of Programming Languages 14

Kinds of Polymorphism(cont.)
! Late Binding polymorphism: deferral of type checks to run-time

allows polymorphic code to be written once and used with different
types

caslon> cat length.scm
;;;; length - return length of a list
(define length
(lambda (x)
(if (null? x)

0

(1+ (length (cdr x)))
)))
caslon> scheme
1]=> (load "length.scm")

1]=> (define a (list 2 7 1 8 28 1 8))

A
1]=> (length a)
7
1]=> (define a (list "foo" "baz" "snafu"))
A
1]=> (length a)

3

C SC 520 Principles of Programming Languages 15

Kinds of Polymorphism(cont.)
! Inheritance polymorphism: one class method executed

on objects of distinct subclasses; common code is
“inherited”.

Ex: in Little Smalltalk the subclasses of Magnitude are
Magnitude

Char Number Collection Point

Integer FractionFloat List IndexedCollection

Set
Array

String

C SC 520 Principles of Programming Languages 16

Kinds of Polymorphism(cont.)

• An implementation of class Magnitude
Class: Magnitude
Instance variables:
Instance methods:
<n ^self implementedBySubclass
=n ^self implementedBySubclass
<=n ^(self < n) or: (self = n)
>n ^ (self <= n) not
>=n ^(self < n) not
between: min and: max
^ (min <= self) and: (self <= max)

max: n
(self > n)

ifTrue: [^self]
ifFalse: [^n]

min: n
(self < n)

ifTrue: [^self]
ifFalse: [^n]

^name = value of name

C SC 520 Principles of Programming Languages 17

Kinds of Polymorphism(cont.)

• Invocation with different classes (types)
! Char: x between: $a and: $z

◆ If x is a Char, method is not found at Char. Search proceeds up to
superclass Magnitude. ^ ($a <= x) & (x <= $z) invoked.
First <=x sent to $a of class Char, where method <= is not found,
…, in Magnitude invoke ^ ($a < x) or ($a = x). This sends
message <x to $a and this method is found in class Char.
Suppose x is actually $b. Eventually the ob true is sent message
or:false, resulting in value true. So result of ($a <= x) is now
effectively determined at $a, returning a true ob. … Eventually, by
similar process this true will be sent and:true, so it returns itself

! String: ‘carbon’ between: ‘carbolic’ and: ‘carbonate’

! Point: x between: 2@4 and: 5@6

• All use same code!
(2,4)

(5,6)

x

C SC 520 Principles of Programming Languages 18

ML: Strong Typing & Polymorphism
lec> sml

Standard ML of New Jersey, Version 110.0.6, October 31, 1999

val use = fn : string -> unit

- fun succ n = n+1;

val succ = fn : int -> int

- succ "zero";

stdIn:7.1-7.12 Error: operator and operand don't agree [tycon mismatch]

operator domain: int operand: string in expression: succ "zero"

- succ 3;

val it = 4 : int

- fun add(x,y) = x + y;

val add = fn : int * int -> int

- add 3 5;

stdIn:9.1-9.8 Error: operator and operand don't agree [literal]

operator domain: int * int operand: int in expression: add 3

- add (3,5);

val it = 8 : int

- fun I x = x;

GC #0.0.0.0.1.5: (0 ms)

val I = fn : 'a -> 'a

C SC 520 Principles of Programming Languages 19

ML (cont.)
- fun self = (x x);

stdIn:11.14-11.20 Error: operator is not a function [circularity]

operator: 'Z in expression: x x

- fun apply f x = (f x);

val apply = fn : ('a -> 'b) -> 'a -> 'b

- apply succ 7;

val it = 8 : int

- add 3;

stdIn:13.1-13.6 Error: operator and operand don't agree [literal]

operator domain: int * int operand: int in expression: add 3

- fun plus x y = x + y;

val plus = fn : int -> int -> int

- plus 3;

val it = fn : int -> int

- plus 3 5;

val it = 8 : int

- val add3 = plus 3;

val add3 = fn : int -> int

- add3 5;

val it = 8 : int

- fun K x y = x;

val K = fn : 'a -> 'b -> 'a

C SC 520 Principles of Programming Languages 20

ML (cont.)
- K I;

stdIn:19.1-19.4 Warning: type vars not generalized because of

value restriction are instantiated to dummy types (X1,X2,...)

val it = fn : ?.X1 -> ?.X2 -> ?.X2

- K I 3;

stdIn:20.1-20.6 Warning: type vars not generalized because of

value restriction are instantiated to dummy types (X1,X2,...)

val it = fn : ?.X1 -> ?.X1

- K I 3 24;

val it = 24 : int

- K I "foo" 24;

val it = 24 : int

- K succ;

stdIn:23.1-23.7 Warning: type vars not generalized because of

value restriction are instantiated to dummy types (X1,X2,...)

val it = fn : ?.X1 -> int -> int

- K succ 3;

val it = fn : int -> int

- K succ 3 15;

val it = 16 : int

- ^D

C SC 520 Principles of Programming Languages 21

ML: Polymorphic Reference Types
- (* can have refs to variable types *)

- val a = ref 7;

val a = ref 7 : int ref

- val b = ref 11;

val b = ref 11 : int ref

- !a;

val it = 7 : int

- !b;

val it = 11 : int

- fun swap (x, y) =

= let val temp = !x

= in x := !y; y := temp

= end;

val swap = fn : 'a ref * 'a ref -> unit

- swap(a,b);

val it = () : unit

- !a;

val it = 11 : int

- !b;

val it = 7 : int

C SC 520 Principles of Programming Languages 22

ML: Reference Types (cont.)

- val c = ref true;

val c = ref true : bool ref

- val d = ref false;

val d = ref false : bool ref

- swap(c,d);

val it = () : unit

- !c;

val it = false : bool

- !d;

val it = true : bool

- swap(a,c);

std_in:29.1-29.9 Error: operator and operand don't agree (tycon
mismatch)

operator domain: int ref * int ref operand: int ref * bool ref in
expression: swap (a,c)

C SC 520 Principles of Programming Languages 23

ML: Static Typing
opu> scheme

1]=> ;;;;;; a function acceptable to Scheme but not type-correct in
ML

(define applyto

(lambda (f) (cons (f 3) (f "hi"))))

APPLYTO

1]=> (applyto (lambda (x) x))

(3 . "hi")

1]=> (applyto (lambda (x) (cons 'glurg x)))

((GLURG . 3) GLURG . "hi") ;;; ((GLURG . 3) (GLURG . "hi"))

opu> sml

- (* ML type-inference algorithm unwilling to accept APPLYTO *)

- val applyto = fn f => (f(3), f("hi"));

std_in:11.23-11.39 Error: operator and operand don't agree (tycon
mismatch)

operator domain: int operand: string in expression: f ("hi")

- (* Below there are two insances of I x = x that take distinct types.

= Why?? *)

- let fun I x = x in (I(3), I("hi")) end;

val it = (3,"hi") : int * string

C SC 520 Principles of Programming Languages 24

ML & λ-Calculus
lec> script skk
Script started on Tue Feb 19 09:01:20 200

lec> sml
Standard ML of New Jersey, Version 110.0.6, October 31, 1999
val use = fn : string -> unit
- fun I x = x;
val I = fn : 'a -> 'a
- fun add x y = x + y;

val add = fn : int -> int -> int
- fun add1 z = add 1 z;
val add1 = fn : int -> int
- add1 10;
GC #0.0.0.0.1.4: (0 ms)
val it = 11 : int

- fun twice f x = f (f x);
val twice = fn : ('a -> 'a) -> 'a -> 'a
- twice add1 5;
val it = 7 : int
- fun mul2 x = 2*x;
val mul2 = fn : int -> int

- mul2 10;
val it = 20 : int

C SC 520 Principles of Programming Languages 25

ML & λ-Calculus (cont)
- fun S x y z = x z (y z);
val S = fn : ('a -> 'b -> 'c) -> ('a -> 'b) -> 'a -> 'c
- S add mul2 5;
val it = 15 : int

- S add I 5;
val it = 10 : int
- fun K x y = x;
val K = fn : 'a -> 'b -> 'a
- fun T z = S K z;
val T = fn : ('a -> 'b) -> 'a -> 'a

- fun V w = T K w;
val V = fn : 'a -> 'a
- V 3;
val it = 3 : int
- V 10;
val it = 10 : int

- V 20;
val it = 20 : int
- S K K 10;
val it = 10 : int
- S K K 21;
val it = 21 : int

C SC 520 Principles of Programming Languages 26

ML & λ-Calculus (cont)
- S I I;
stdIn:26.1-26.6 Error: operator and operand don't agree [circularity]

operator domain: ('Z -> 'Y) -> 'Z operand: ('Z -> 'Y) -> 'Z -> 'Y in
expression: (S I) I

- S K I;
stdIn:27.1-27.6 Warning: type vars not generalized because of

value restriction are instantiated to dummy types (X1,X2,...)
val it = fn : ?.X1 -> ?.X1
- S K I 1;

val it = 1 : int
- S K I 21;
val it = 21 : int
- val T = S K;
stdIn:31.1-31.12 Warning: type vars not generalized because of

value restriction are instantiated to dummy types (X1,X2,...)

val T = fn : (?.X1 -> ?.X2) -> ?.X1 -> ?.X1
- val U = S K add1;
val U = fn : int -> int
- U 21;
val it = 21 : int
- U 234;

val it = 234 : int
- ^D

