Principles of Programming
Languages

Lecture 06

Implementation of
Block Structured Languages

C SC 520 Principles of Programming Languages

Activations and Environment

» Aspects of Subroutines: Static vs Dynamic
= Static subroutine: code (" ‘reentrant”)
» Exactly one subroutine
= Subroutine in execution: activation record, AR, activation
- Many activations of same code possible
e State of a program in execution
= A collection of activations
o Inastack or in a heap
= Contextual relationships among the activations
o environment access” pointers & "~ “control” pointers
e Activation contents
= Fixed: program code (shared)
= Variable: activation

o Instruction pointer (ip, ra) —also resumption address or return address
n Control Pointer (dl) —also control link, dynamic link
o Environment pointer (ep, fp) —also access link, frame pointer

+ Local environment (this activation)—fp
+ Nonlocal environment (other activations)—sl , static link
C SC 520 Principles of Programming Languages

Contour Diagram (Static) & RT Stack (Dynamic)

P

a
Q
R
b
C
d
S
T
e
Q)
b
S()s
T()
b
C
Q) ;
R();

C SC 520 Prmempres ot PrograrTiTg Carguaes

Assume static binding
Callingtrace:P, RR, Q T, S, Q T, S

dl = dynamiclink Sl = static link to
to caller at RT statically enclosing
activation
control S environment
N
T L
4 Note s|
S and dI
~ can be
T far
- apart
R
(P
3

Static Nesting Level (snl) and Distance (sd)

snl=0 P
a snl=1
0 =
R Q
b
3 snl=2
S
T S
€ snl=3
snl(b) = 3
e = b < sd(b) =1
-
b snl=3
Qb snl(b) = 3
sl(a) =3 //’a - sd(b)=0
sd(a)=2 ~
R
tc) snl=2
sni(a) |=2 snl(b) =2
sd(a) |=1 sd(b) =0
a = b;

C SC 520 Prmempres ot PrograrTiTg Carguaes

snl(nane decl arati on)
= # of contour lines surrounding
declaration

sni(nane reference)

= # contour lines surrounding
reference

Static Distance of a Symbol Occurrence
sd(nane occurrence)
= # of contours crossed outward
from occurrence to declaration
=snl(nanme’ s occurrence)

-snl(t hat nane’ s decl .)

Symbol Table Computes snl

Symbol table maps an occurrence of x to

= line#
= onl(declaration)

= Offset among declarations
Each name x has an "address”: (line #, snl, offset)

Scanner keeps track of
= Contour boundaries crossed (e.g. +1 for{ & -1for})

= Current name declarations in scope
Scanner can therefore

= ldentify declaration controlling a name occurrence
= Replace a name occurrence by pointer to symbol table line #

C SC 520 Principles of Programming Languages

and occupy one address

Sym bOI Tab I e (CO nt) Assume for simplicity all variables are i nt

P

-
o
=
™
=

offset |type &c ...

PUNO)

int ()

I nt

int (int)

int (int)

I nt

I nt

I nt

void (int)

OO | N[O | PR |[W|IN|FP]HF

int (int)

I nt

=Y
()

I nt

=
-

I nt

®
I
o

=

N

o|loc|oc|lo|dlwn|lalo|loc|m|O|v|T
NN W W[N] O
RO~ WIN|IP|IO(N|P|O|O

I nt

=
w

Activation Record Stack

t enps

higher addresses

saved registers

<+ 3D

stack pointer
= next available
location

/
/
< ra return address
/
dl dynamic link /
/
sl static link /
/
| ocal s 4
/
/
/
argunent s /7
/

¥ m‘_ fp A

{ ermos frame pointer

\ 4 [] []

1 P . = currently

B e = executing AR

| ocal s

C SC 520 Principles of Programming Languages

Sp

A

A
S

fp

Activation Record Stack

 Model an AR by a struct (pretend all data are i nt for simplicity)
struct AR {
Int arg[n];
I nt local[m];
AR* sl ;
AR* dl ;
CCODE* ra;
voi d* rx; —register save area

}

 Temps are pushed on top (" frame extension’) during execution in the
activation record and are abandoned on return

« Assume stack growth to higher addresses (in reality usually the other
way)

C SC 520 Principles of Programming Languages

Registers

e Special purpose registers: ra, sp, fp

« General purpose registers divided into two classes

= Caller-saves: transient values unlikely to be needed across calls

1 Callee assumes nothing valuable in caller-saves set & can be used at
will (“destroyed”)

5 EX: temp values during expression evaluation in caller

1 Caller saves these during calling sequence and they are restored after
subroutine return

= Callee-saves: used for local variables and indexes, etc.
1 Caller assumes these registers will not be destroyed by callee
1 EX: register holding pointer during a list scan

1 Callee saves these in the prologue just after call, and restores in the
epilogue just before return

C SC 520 Principles of Programming Languages

Compiler Code Generation

 What is generated at CT (to be executed at RT):

Upon reference to a variable name x?

In caller before call to subroutine Q & after return to caller—the
calling sequence?
In callee before execution of body?
1 Prologue
In callee before return to caller?
1 Epilogue

 Assume we are generating code inside body of a
subroutine named P

Compiler maintains a level counter during code generation:
curr _| evel = current static nesting level of site where code is
being generated (body of P)

C SC 520 Principles of Programming Languages

10

Access (Reference) to x Inside P

* From symbol table compiler can compute:
= X - snl(x), offset(x)

= P - snl(P)
= curr_level = snl(P)+1 (levelatwhich ref occurs)
= sd(X)=curr_level - snl(x)

* (Generate code to compute |-value into | v:
= ap = activation record ptr
ap = fp;
for(i =0; I < sd(x); i1++) ap = ap->sl
|v = ap + offset(x);
= Usel v onLHS of assignment, *| v on RHS

C SC 520 Principles of Programming Languages

11

Call Q inside P

e Calling sequence for "call Q' in source

* Assume arguments passed by value
sp->arg[1l] = valueofargumentl; —transmit args

sp->arg[n] = valueof argument n;

f p->ra= resune; —set pointto resume execution in caller

sp->dl = fp; —set callee’s return link

fp->ry =ry ; .. —save caller-saves registers

ap = fp; —find AR of callee Qs declaration

for(i =0; | <sd(Q; 1++) ap = ap->sl ;

sp->sl = ap; —set callee’s static link

fp = sp; —switch to new environment

got o entrypoint(Q ; —from symbol table, after Q is compiled
r esSune:

= Nhote stack has not been pushed (callee’s responsibility)

C SC 520 Principles of Programming Languages 12

Prologue Code for Subroutine Q

* Code executed just after caller jumps to callee
e Note compiler knows size of AR for Q
sp = sp + size(ARof Q ; —push stack frame for current activation
fp->rx =rx; ..; —save any callee-saves registers
= Now sSp points to next available stack location
= nowf p points to subroutine frame base

* Push could be done by caller (caller knows name of Q at
CT)

= But this will not work for closures (see below) where caller does not
know name of callee at CT

C SC 520 Principles of Programming Languages 13

Epilogue code for Subroutine Q

* Code executed just before return to caller
* Note compiler knows size of AR for Q

rx = fp->rx
sSp = sp - size(ARof Q) ;
fp = fp->dl;

ry = fp->ry; ...;
goto fp->ra;

—Trestore any callee-saves registers
—pop stack frame for current activation
—make caller’s activation current one

—restore caller-saves registers
—resume execution in caller just after
point of call

= Now sSp points to next available stack location
= howfp points to frame base of caller

C SC 520 Principles of Programming Languages

14

Display Method

* Linked list replaced by array!

* Replace traversal of static chain
by a single memory reference—
more efficient calculation of
non-local environment
references

* At CT, the maximum static
nesting level is known; possible
snl values are 1 .. maxsnl

 The display is an array D of
maxsnl elements

 DJi] = fp forthat part of the

environment that is in an AR at
snl i

C SC 520 Principles of Programming Languages

Equivalent static chain

Executing at snl = 4

D maxsnl]

/
o4 /

O 3]

O 2]

DO 1] -~

\

15

Access (Reference) to x Inside P

* (Generate code to compute |-value into | v:
lv = *D snl(x)] + offset(x)
= Usel v onLHS of assignment, *| v on RHS

C SC 520 Principles of Programming Languages

16

Call Q inside P

Inactive

<+— Sp

A

O u]

-

D[d+1] -

O d]

Sy

~N

Before cal |
Executing at snl =uin P

Subr. Q definedatsnl=d < u

C SC 520 Principles of Programming Languages

\
PNy

fp

<— SP

fp

a

D[u]

” h
Dd+1]£=""
Dl d] ~

N
After cal I\

Executingatsnl =d+ 1
(body of Q one level deeper)
D] d+1] overwritten to point to new AR
17

Call Q inside P (cont.)

 Q defined at snl d = new AR executes at snl d+1 =
Df d+1] points to new AR for Q

e Old OO d+1] (dotted link) destroyed

e Saved in caller's AR (since part of caller’s display)
= New AR field f p->di sp

e OtherelementsD[i] where | = d+ 2left alone
= An AR deeper in the stack might need them upon return

C SC 520 Principles of Programming Languages 13

Call Q inside P (cont.)

« Calling sequence for "call @Q ' insource
e Letu =snl(P) & d =snl(Q
= Notefp == [J u]
sp->arg[1l] = valueofargumentl; —transmit args

sp->arg[n] = valueof argument n;

f p->ra= resune; —setreturn pointin caller

sp->dl = fp; —set callee’s return link

fp->ry =ry,; .; —save caller-saves registers

f p->di sp = D[d+1]; —save caller’s display entry to reset on

return

O d+1] = sp; —setdisplay for callee; J 1. . d] are shared

fp = sp; —switch to callee environment

got o entrypoint(Q ; —from symbol table, after Q is compiled
resune:

C SC 520 Principles of Programming Languages

Prologue/Epilogue code for Subroutine Q

* Prologue same as before
sp = sp + size(ARof Q ; —push stack frame for current activation
fp->rx = rx; .; —save any callee-saves registers

« Epilogue restores caller’s display
= Let u=snl(Q —thisis known to compiler

rx = fp->rx; .., —restore callee-save registers

sp = sp - size(ARof Q; —pop stack frame for current activation

fp = fp->dl; —make caller’s activation current

D u] = fp->disp; —restore caller’s display

ry = fp->ry; ..., —restore caller-saves registers

goto fp->ra; —resume execution in caller just after
point of call

C SC 520 Principles of Programming Languages 20

Costs: Static Chain vs Display

 Compare count of memory references

= Exclude argument transmission, reg. saves (common to both)
= Assume fp, sp heldin registers

* Analyze calling sequence for static chain

Instruction # refs
f p->ra= resune; 1
sp->dl = fp; 1
Sp->ry =ry,;, ...; -
ap = fp; 0
for(i =0; | <d(Q; 1++) ap = ap->sl; sd(Q
sp->sl = ap; 1
fp = sp; 0
got o entrypoint(Q ; 0
sd(Q +3

C SC 520 Principles of Programming Languages

Costs (cont.)

 Comparison by # memory references:

Operation Static chain Display
Access local 1 1
|-value

Access non- sd(x) 2

local x I-value

Call Q sd(Q + 3 5

Q Prologue 0 0

Q Epilogue 3 5

 Needlotsofsd(x)> 2& sd(Q > 2 to make worth it

C SC 520 Principles of Programming Languages

22

Funargs (Procedure/Function Arguments)
e ———————————————————————————————————— —————————————————————————————

5)
U
R

void P(int Xx); P

X

void U(int F(int)); U

F |«=—— function formal

F(2);
void R(); R
=
void R(int y); T
y
U(P) ; «— function actual P
u(T);

R();

C SC 520 Principles of Programming Languages

e Consider call U(T) ;

(both Uand T are visible in
body of R)

T isnotvisibletoU =—=
no T activation in the static
chain of U = at the call
T(2) in U, cannot locate

definition environment of
T!

How is the call F(2)
Implemented?

= Must work for any F actual

What is passed to U In
ur)?

23

Funargs (cont.)

« Consider call F(2) ; Previous calling sequence cannot be
used. Missing information shown in blue:

sp->arg[1l] = valueofargumentl; ...; —transmitargs

f p->ra= resune; —setreturn pointin caller

sp->dl = fp; —set callee’s return link

fp->ry =ry ; .. —save caller-saves registers

ap = fp; —find AR of callee F’,sdecl*ﬂon Dot Know

for(i =0; I < sd(F)gs_i++) ap = ap->sl ; what F really is at
— CT and don'’t

sp->sl = ap; —set callee’s static link —| know sd(F) and

fp = sp; —switch to new environment entrypoint(F)

got o entrypoint(F)* —from symbol table, after Fis compiled

“esune:

C SC 520 Principles of Programming Languages 24

Calling a Formal: F(..); Inside U(F)

 sd(F) isunknown at CT

* At RT, the actual functional argument need not even be in
Us static chain = it is inaccessible from the current AR

« [environment of definition of each funarg must be
passed to U as part of actual argument

« A funarg or closure is a pair (ip, p) where:
= Ip =entry address of the actual argument procedure

= ep =reference to most recent activation of definition environment of
actual argument procedure

C SC 520 Principles of Programming Languages 25

Closure Implementation

* A closure is a pair of references:

struct CL {
CODE* 1 p; —instruction pointer (entrypoint)
AR* ep; —environment pointer
}

* Closure f s built in caller when a named procedure is
passed as an actual

 f Iscopiedto callee U as actual corresponding to formal
F . effectively 'F = f”

e When U calls F, the static link in the new activation Is set
by sp->sl = F.ep andthejumpisbygoto F.ip

C SC 520 Principles of Programming Languages 26

Call F inside U

« Calling sequence for "call F ' insource where Fis

a function formal

sp->arg[1l] = valueofargumentl1; —transmit args

sp->arg[n] = valueof argumentn;

f p->ra= resune; —setreturn pointto resume execution
sp->dl = fp; —set callee’s return link
fp->ry =ry ; .. —save caller-save registers

sp->sl = F.ep; —setcallee’s static link

fp = sp; —switch to new environment

goto F.ip; —entrypoint of code of actual
resune

C SC 520 Principles of Programming Languages

Constructing and Passing Closure

« Considercall U T)in AR for R

e (Case: actual proc T is visible, named proc & so is U
sp->arg[1l].1p = entrypoint(T);

f p->ra= resune; —setreturn pointto resume execution
Sp->dl = fp; —set callee’s return link

fp->ry =ry ; . —save caller-save registers

ap = fp; —find AR of argument T's declaration

for(i =0; I <<(T); 1++) ap = ap->sl ;

sp->arg[1].ep = ap; —environment of T set in callee
ap = fp; for(i =0; | <sd(U; i++) ap = ap->sl
sp->sl = ap; —set callee’s static link

fp = sp; —switch to new environment

got o entrypoint(U) ; —from symbol table

resune:

C SC 520 Principles of Programming Languages

Prologue/Epilogue Code

« Same as for 'named” calls, since code is generated once
for each possible named actual suchas T

* Information for allocation/deallocation known at CT for T

C SC 520 Principles of Programming Languages 29

Calls with Formal Procedures: Cases

« LetF, F name formal functional parameters and let U
name a visible, actual proc
* Discuss implementation of calling sequences for each of:
« UF);
« F(T);
« F(F);

C SC 520 Principles of Programming Languages

30

Calls with Formal Procedures: F(T)

« Call to a formal proc with an actual visible named proc
sp->arg[1].ip = entrypoint(T);
ap = fp; —find AR of argument T's declaration
for(i =0; I <s(T); i++) ap = ap->sl ;
sp->arg[1l].ep = ap; —environment of T set in callee
f p->ra= resune; —setreturn pointto resume execution

sp->dl = fp; —set callee’s return link
fp->ry =ry ; .., —save caller-save registers

sp->sl = ap; —set callee’s static link
.............. : pésI:Fep—setcalleesstatlcllnk
fp = sp; —switch to new environment
goto F.ip; —from closure of F
resune

C SC 520 Principles of Programming Languages

Challenge

e Can we implement functional parameters using the
display?
= Where does F get its display? (No static chain to unravel given
only a starting environment F. ep)

= How is display restored upon return?

C SC 520 Principles of Programming Languages

32

Blocks

 Extend existing environment:{ int x; . . . }

e Special case of subroutine:
= NoO parameters
= NO name
= Called in one place—where defined
« Statically prior env. (surrounding block) == dynamically prior

surrounding ... void function B();
{ float x,y; { float x, vy,
X =z; Yy =3 X =2z; Yy =3
W =Yy, W =Y,
} }
... block surrounding ...
B() ;
... block

C SC 520 Principles of Programming Languages

33

Block Activation/Deactivation

* A Dblock is like a procedure, but
= Nameless (because called from only one place)
= Parameterless
= Defined at its point of invocation (inline text)
= Same static binding rules apply (static link == dynamic link)

sp->sl = fp; —set callee’s return link

fp = sp; —switch to new environment

sp = sp + size(ARof B); —push stack frame for block activation
entrypoint(B): ...

...BodyofB ...

sp = sp - size(ARof B); —pop stack frame for current activation

fp = fp->sl; —reactivate containing block
r esune:

 Why are references in body of B resolved correctly?

« Can remove need for new AR by allowing caller's AR to
grow and shrink

C SC 520 Principles of Programming Languages

Exercise

= Show how to handle block entry/exit with using the display metigod

<— SP
B
<4 Sp D[+1] Al . fp
U “
D[U+1] \ P \\ y P
| S| —
Df u] - —tp | DUl .
\
\
\
\
\
\
\
After block B entry
Before block B entry

Executingatsnl =u+ 1
(body of B one level deeper)

Df u+1] overwritten to point to new AR
C SC 520 Principles of Programming Languages 35

Executing atsnl =uin P

Solution to Exercise:

fp->disp = D u+lj; —save caller’s display entry

D u+l] = sp; —set callee’s display

fp = sp; —switch to new environment

sp = sp + size(ARof B); —push stack frame for block activation
entrypoint(B): ...

...BodyofB ...

sp = sp - size(ARof B); —pop stack frame for current activation

fp = Du]; —reactivate containing block
sssssssssr RSN T e :

fp = sp - sze(ARof P); —reactivate containing block :
lnnnnﬁnU:I:I]:jIII;II.IfIEZI;IdIiIISIEE IIIIIII :.r.é.s...t.o.r.-.e...é.a..il.é.r.’.s..(.j.l.s..r;l.gy IIIIIIIIIIIIIIII L |

C SC 520 Principles of Programming Languages 36

Non-local got 0’s

A
| abel L
B B
c C
D
D
{
goto L]
}
() ;
(),
{
B();
L: print x;
}

= < sp
A

>l || O

«— fp

e sd(L) =snl(useL) —snl(def L)
=snl(D)+1—snl(L)

fp;

for(i = 0; I < sd(L);
ap = ap->sl ;

ap;,

sp = fp + size(ARof A) ;

goto address(L);

 What if display is used? How
restore environment of A?

ap

— 1l

| ++)

37

Label Scope Rules Vary

[* In C, labels have entire function as scope */
#include <stdio.h>

main()
{ inti=3; intn=10; printf("before forward jump i = %d\n", i);
goto fore; >

back: printf("after back jump i = %d\n", i); <
f(n<3){ inti=7;intj=13;
fore: 1=1+1; <
printf("after forward jump i = %d\n", 1);
printf("after forward jump j = %d\n", j);
goto back; >

}),

else { inti=99; printf("after else i = %d\n", 1);

}

printf("before return i = %d\n", I);

}

C SC 520 Principles of Programming Languages 38

Label Scope Rules (cont.)

opu> cc labels.c

opu> a.out

before forward jump i =3
after forward jumpi=1
after forward jump =0
after back jump i =3
after else i = 99

before returni =3

opu>

C SC 520 Principles of Programming Languages

39

Returned Subroutines

mai n()
{
int(int) rmakemult(int n)
{
Int t(int x){ return n*x;
return t;
}
int(int) f;
I nt vy,
f makenul t (3) ;
y = 1(2);
}

C SC 520 Principles of Programming Languages

'

40

Returned Subroutines (cont.)

« Before call to makenul t (3)

= null pointer =
frame pointer =

mai n

ra

dl

fp

i >:r0 = makenul t(3) i

:f =r0

|* At prologue of makenul t (3)

mal n

ra

dl

. sl

f

C SC 520 Principles of Programming Languages

y

makenul t =

ra

dl

s

/o=

e Atreturn from makenul t (3)

fp

(closure): typically
In register
v

o
ep

{ o

ip

§r1=n

Returned Subroutines (cont.)

o After assignment f

A
makerul t =

mal n
ra
4-- [dl
R sl
f
fp > y

e At prolog

C SC 520 Principles of Programming Languages

ra

dl

s
n

3

of call f (2)

A
makerul t -

ra

dl

si

n

3

mai n
ra
< dl
Crnnan sl
f
y

A

ep

code
ro = makenul t (3)
s f =70
Poro = f(2)
':rrO = X
ep |ip rl =n :
rO =nmul rO0r1l :
A Eemsseed
f :
ra
dl
s|
X 2
«—+fp
Note static and
dynamic links
dlffa‘ el I EEEEEEEEEEEEEEEEEEEEEER
:r0 = x
i p rli =n
ro =nmul rOr1l

42

Returned Subroutines (cont.)

e After assignment y = f(2)

mai n . makenul t =
ra : ra
<= dl dl
R . sl sl
f ~ n 3 -
y 6 o ro X

n L]
mul ro0 rli

_,.,
o
\ 4
—
=

I |

ep | ip

 The AR for makenul t (3) is never popped” while
mai n() Is active
= Mai n activation refers to a function value f
= functional value f requires definition of n in makenmul t AR

= function f inenvironment can be called again many times
5 So lifetime of makenul t AR is lifetime of mai n

 ARs now managed on a heap, along with closures

C SC 520 Principles of Programming Languages

