
C SC 520 Principles of Programming Languages 1

Principles of Programming
Languages

Lecture 06

Implementation of
Block Structured Languages

C SC 520 Principles of Programming Languages 2

Activations and Environment
• Aspects of Subroutines: Static vs Dynamic

! Static subroutine: code (``reentrant’’)
◆ Exactly one subroutine

! Subroutine in execution: activation record, AR, activation
◆ Many activations of same code possible

• State of a program in execution
! A collection of activations

◆ In a stack or in a heap
! Contextual relationships among the activations

◆ ``environment access’’ pointers & ``control’’ pointers

• Activation contents
! Fixed: program code (shared)
! Variable: activation

◆ Instruction pointer (ip, ra) —also resumption address or return address
◆ Control Pointer (dl) —also control link, dynamic link
◆ Environment pointer (ep, fp) —also access link, frame pointer

" Local environment (this activation)—fp
" Nonlocal environment (other activations)—sl , static link

C SC 520 Principles of Programming Languages 3

Contour Diagram (Static) & RT Stack (Dynamic)

a

Q

R

b

c

d

S

T
e

b

b

c

R();

R

Q

P

S

T

Q();

T();

S();

Q();

Calling trace: P, R, Q, T, S, Q, T, S

P

R

Q

S

Q

T

S

T

sl = static link to
statically enclosing
activation

dl = dynamic link
to caller at RT

control environment

Note sl
and dl

can be
far
apart

Assume static binding

C SC 520 Principles of Programming Languages 4

Static Nesting Level (snl) and Distance (sd)
a

Q

R

b

c

d

S

T
e

b

b

c

R

Q

P

S

T

snl = 0

snl = 1

snl = 2

snl = 3

snl = 3

snl = 2

snl(name declaration)

= # of contour lines surrounding
declaration

snl(name reference)

= # contour lines surrounding
referencee = b;

a = b;

a = b;

Static Distance of a Symbol Occurrence
sd(name occurrence)

= # of contours crossed outward
from occurrence to declaration
= snl(name’s occurrence)

- snl(that name’s decl.)

a = b;

snl(b) = 2
sd(b) = 0

snl(a) = 2
sd(a) = 1

snl(b)= 3
sd(b)= 0

snl(a)= 3
sd(a)= 2

snl(b)= 3
sd(b)= 1

C SC 520 Principles of Programming Languages 5

Symbol Table Computes snl
• Symbol table maps an occurrence of x to

! line #
! snl (declaration)
! Offset among declarations

• Each name x has an ``address’’: (line #, snl, offset)
• Scanner keeps track of

! Contour boundaries crossed (e.g. +1 for { & -1 for })
! Current name declarations in scope

• Scanner can therefore
! Identify declaration controlling a name occurrence
! Replace a name occurrence by pointer to symbol table line #

C SC 520 Principles of Programming Languages 6

Symbol Table (cont.)
a

Q

R

b

c

d

S

T
e

b

b

c

R

Q

P

S

T
e = b;

a = b;

a = b;

a = b;

type &c …offsetsnlname#

13
12
11
10
9
8
7
6
5
4
3
2
1

int12c

int02b

int03b

int03e

int (int)42T

void (int)32S

int22d

int12c

int02b

int (int)21R

int (int)11Q

int01a

int ()00P

Assume for simplicity all variables are int
and occupy one address

C SC 520 Principles of Programming Languages 7

Activation Record Stack

sl

dl

ra

saved registers

arguments

fp

sp

temps
stack pointer
= next available
location

frame pointer
= currently
executing AR

temps

sl

dl

sl

dl

sl

dl

locals

sp

return address

locals

dynamic link

static link

hi
gh

er
 a

dd
re

ss
es

fp

C SC 520 Principles of Programming Languages 8

Activation Record Stack
• Model an AR by a struct (pretend all data are int for simplicity)

struct AR {

int arg[n];
int local[m];
AR* sl;

AR* dl;

CODE* ra;

void* rx; —register save area
...

}

• Temps are pushed on top (``frame extension’’) during execution in the
activation record and are abandoned on return

• Assume stack growth to higher addresses (in reality usually the other
way)

C SC 520 Principles of Programming Languages 9

Registers
• Special purpose registers: ra, sp, fp
• General purpose registers divided into two classes

! Caller-saves: transient values unlikely to be needed across calls
◆ Callee assumes nothing valuable in caller-saves set & can be used at

will (“destroyed”)
◆ Ex: temp values during expression evaluation in caller
◆ Caller saves these during calling sequence and they are restored after

subroutine return
! Callee-saves: used for local variables and indexes, etc.

◆ Caller assumes these registers will not be destroyed by callee
◆ Ex: register holding pointer during a list scan
◆ Callee saves these in the prologue just after call, and restores in the

epilogue just before return

C SC 520 Principles of Programming Languages 10

Compiler Code Generation
• What is generated at CT (to be executed at RT):

! Upon reference to a variable name x?
! In caller before call to subroutine Q & after return to caller—the

calling sequence?
! In callee before execution of body?

◆ Prologue
! In callee before return to caller?

◆ Epilogue

• Assume we are generating code inside body of a
subroutine named P
! Compiler maintains a level counter during code generation:
curr_level = current static nesting level of site where code is
being generated (body of P)

C SC 520 Principles of Programming Languages 11

Access (Reference) to x inside P
• From symbol table compiler can compute:

! x→ snl(x), offset(x)
! P → snl(P)
! curr_level = snl(P) + 1 (level at which ref occurs)
! sd(x) = curr_level - snl(x)

• Generate code to compute l-value into lv:
! ap = activation record ptr
ap = fp;

for(i = 0; i < sd(x); i++) ap = ap->sl ;

lv = ap + offset(x);
! Use lv on LHS of assignment, *lv on RHS

C SC 520 Principles of Programming Languages 12

Call Q inside P
• Calling sequence for ``call Q’’ in source
• Assume arguments passed by value

sp->arg[1] = value of argument 1 ; —transmit args
. . .
sp->arg[n] = value of argument n;
fp->ra= resume ; —set point to resume execution in caller
sp->dl = fp; —set callee’s return link
fp->ry = ry ; …; —save caller-saves registers
ap = fp; —find AR of callee Q’s declaration
for(i = 0; i < sd(Q); i++) ap = ap->sl ;

sp->sl = ap; —set callee’s static link
fp = sp; —switch to new environment
goto entrypoint(Q); —from symbol table, after Q is compiled

resume: …

! note stack has not been pushed (callee’s responsibility)

C SC 520 Principles of Programming Languages 13

Prologue Code for Subroutine Q
• Code executed just after caller jumps to callee
• Note compiler knows size of AR for Q

sp = sp + size(AR of Q) ; —push stack frame for current activation
fp->rx = rx; … ; —save any callee-saves registers
! now sp points to next available stack location
! now fp points to subroutine frame base

• Push could be done by caller (caller knows name of Q at
CT)
! But this will not work for closures (see below) where caller does not

know name of callee at CT

C SC 520 Principles of Programming Languages 14

Epilogue code for Subroutine Q
• Code executed just before return to caller
• Note compiler knows size of AR for Q

rx = fp->rx —restore any callee-saves registers
sp = sp - size(AR of Q) ; —pop stack frame for current activation
fp = fp->dl; —make caller’s activation current one
ry = fp->ry; … ; —restore caller-saves registers
goto fp->ra; —resume execution in caller just after

point of call
! now sp points to next available stack location
! now fp points to frame base of caller

C SC 520 Principles of Programming Languages 15

Display Method
• Linked list replaced by array!
• Replace traversal of static chain

by a single memory reference—
more efficient calculation of
non-local environment
references

• At CT, the maximum static
nesting level is known; possible
snl values are 1 .. maxsnl

• The display is an array D of
maxsnl elements

• D[i] = fp for that part of the
environment that is in an AR at
snl i

D[1]

D[2]

D[3]

D[4]

. . .

D[maxsnl]

Executing at snl = 4

Equivalent static chain

C SC 520 Principles of Programming Languages 16

Access (Reference) to x inside P
• Generate code to compute l-value into lv:

lv = *D[snl(x)]+ offset(x)
! Use lv on LHS of assignment, *lv on RHS

C SC 520 Principles of Programming Languages 17

Call Q inside P

inactive

D[d]

D[d+1]

. . .

. . .

D[u]

P

sp

fp

disp

D[d]

D[d+1]

. . .

. . .

D[u]

P

sp

fp

Q

Inactive

Before call Q
Executing at snl = u in P
Subr. Q defined at snl = d ≤ u

After call Q
Executing at snl = d + 1
(body of Q one level deeper)
D[d+1] overwritten to point to new AR

C SC 520 Principles of Programming Languages 18

Call Q inside P (cont.)
• Q defined at snl d ⇒ new AR executes at snl d+1 ⇒
D[d+1] points to new AR for Q

• Old D[d+1] (dotted link) destroyed
• Saved in caller’s AR (since part of caller’s display)

! New AR field fp->disp

• Other elements D[i] where i ≥≥≥≥ d + 2 left alone
! An AR deeper in the stack might need them upon return

C SC 520 Principles of Programming Languages 19

Call Q inside P (cont.)
• Calling sequence for ``call Q’’ in source
• Let u = snl(P) & d = snl(Q)

! Note fp == D[u]

sp->arg[1] = value of argument 1 ; —transmit args
. . .

sp->arg[n] = value of argument n;
fp->ra= resume ; —set return point in caller
sp->dl = fp; —set callee’s return link
fp->ry = ry; …; —save caller-saves registers
fp->disp = D[d+1];—save caller’s display entry to reset on

return
D[d+1] = sp; —set display for callee; D[1..d]are shared
fp = sp; —switch to callee environment
goto entrypoint(Q); —from symbol table, after Q is compiled

resume: …

C SC 520 Principles of Programming Languages 20

Prologue/Epilogue code for Subroutine Q
• Prologue same as before

sp = sp + size(AR of Q) ; —push stack frame for current activation
fp->rx = rx;…; —save any callee-saves registers

• Epilogue restores caller’s display
! Let u = snl(Q) —this is known to compiler
rx = fp->rx; …; —restore callee-save registers
sp = sp - size(AR of Q) ; —pop stack frame for current activation
fp = fp->dl; —make caller’s activation current
D[u] = fp->disp; —restore caller’s display
ry = fp->ry; … ; —restore caller-saves registers
goto fp->ra; —resume execution in caller just after

point of call

C SC 520 Principles of Programming Languages 21

Costs: Static Chain vs Display
• Compare count of memory references

! Exclude argument transmission, reg. saves (common to both)
! Assume fp, sp held in registers

• Analyze calling sequence for static chain
instruction # refs

fp->ra= resume ; 1

sp->dl = fp; 1

sp->ry = ry; … ; -

ap = fp; 0

for(i = 0; i < sd(Q); i++) ap = ap->sl; sd(Q)
sp->sl = ap; 1

fp = sp; 0

goto entrypoint(Q); 0

sd(Q)+3

C SC 520 Principles of Programming Languages 22

Costs (cont.)
• Comparison by # memory references:

• Need lots of sd(x)> 2 & sd(Q)> 2 to make worth it

53Q Epilogue

00Q Prologue

5sd(Q)+ 3Call Q

2sd(x)Access non-
local x l-value

11Access local
l-value

Display Static chainOperation

C SC 520 Principles of Programming Languages 23

Funargs (Procedure/Function Arguments)
P

U

R

x

y

T

R

P

P

T

• Consider call U(T);
(both U and T are visible in
body of R)

• T is not visible to U ⇒⇒⇒⇒
no T activation in the static
chain of U ⇒⇒⇒⇒ at the call
T(2) in U, cannot locate
definition environment of
T!

• How is the call F(2)
implemented?
! Must work for any F actual

• What is passed to U in
U(T)?

F

U

F(2);

U(P);
U(T);

void U(int F(int));

void P(int x);

void R();

R();

void R(int y);

function formal

function actual P

C SC 520 Principles of Programming Languages 24

Funargs (cont.)
• Consider call F(2); Previous calling sequence cannot be

used. Missing information shown in blue:

sp->arg[1] = value of argument 1 ; … ; —transmit args

fp->ra= resume ; —set return point in caller

sp->dl = fp; —set callee’s return link

fp->ry = ry ; …; —save caller-saves registers

ap = fp; —find AR of callee F’s declaration

for(i = 0; i < sd(F); i++) ap = ap->sl ;

sp->sl = ap; —set callee’s static link

fp = sp; —switch to new environment

goto entrypoint(F); —from symbol table, after F is compiled

resume: …

Don’t know
what F really is at
CT and don’t
know sd(F) and
entrypoint(F)

C SC 520 Principles of Programming Languages 25

Calling a Formal: F(…); inside U(F)
• sd(F) is unknown at CT
• At RT, the actual functional argument need not even be in
U’s static chain ⇒ it is inaccessible from the current AR

• ∴ environment of definition of each funarg must be
passed to U as part of actual argument

• A funarg or closure is a pair (ip, ep) where:
! ip = entry address of the actual argument procedure
! ep = reference to most recent activation of definition environment of

actual argument procedure

C SC 520 Principles of Programming Languages 26

Closure Implementation
• A closure is a pair of references:
struct CL {

CODE* ip; —instruction pointer (entrypoint)
AR* ep; —environment pointer

}

• Closure f is built in caller when a named procedure is
passed as an actual

• f is copied to callee U as actual corresponding to formal
F : effectively ``F = f’’

• When U calls F, the static link in the new activation is set
by sp->sl = F.ep and the jump is by goto F.ip

C SC 520 Principles of Programming Languages 27

Call F inside U
• Calling sequence for ``call F’’ in source where F is

a function formal
sp->arg[1] = value of argument 1 ; —transmit args

. . .
sp->arg[n] = value of argument n;
fp->ra= resume ; —set return point to resume execution
sp->dl = fp; —set callee’s return link
fp->ry = ry ; …; —save caller-save registers

sp->sl = F.ep; —set callee’s static link
fp = sp; —switch to new environment
goto F.ip; —entrypoint of code of actual

resume: …

ap = fp; —find AR of callee Q’s declaration
for(i = 0; i < sd(Q); i++) ap = ap->sl ;

C SC 520 Principles of Programming Languages 28

Constructing and Passing Closure
• Consider call U(T)in AR for R

• Case: actual proc T is visible, named proc & so is U
sp->arg[1].ip = entrypoint(T);
fp->ra= resume ; —set return point to resume execution
sp->dl = fp; —set callee’s return link
fp->ry = ry ; …; —save caller-save registers
ap = fp; —find AR of argument T’s declaration

for(i = 0; i < sd(T); i++) ap = ap->sl ;

sp->arg[1].ep = ap; —environment of T set in callee
ap = fp; for(i = 0; i < sd(U); i++) ap = ap->sl ;

sp->sl = ap; —set callee’s static link
fp = sp; —switch to new environment
goto entrypoint(U); —from symbol table
resume: …

C SC 520 Principles of Programming Languages 29

Prologue/Epilogue Code
• Same as for ``named’’ calls, since code is generated once

for each possible named actual such as T
• Information for allocation/deallocation known at CT for T

C SC 520 Principles of Programming Languages 30

Calls with Formal Procedures: Cases
• Let F, F’ name formal functional parameters and let U

name a visible, actual proc
• Discuss implementation of calling sequences for each of:

! U(F);

! F(T);

! F(F’);

C SC 520 Principles of Programming Languages 31

Calls with Formal Procedures: F(T)
• Call to a formal proc with an actual visible named proc

sp->arg[1].ip = entrypoint(T);

ap = fp; —find AR of argument T’s declaration

for(i = 0; i < sd(T); i++) ap = ap->sl ;

sp->arg[1].ep = ap; —environment of T set in callee
fp->ra= resume ; —set return point to resume execution
sp->dl = fp; —set callee’s return link
fp->ry = ry ; …; —save caller-save registers

sp####sl = F.ep; —set callee’s static link
fp = sp; —switch to new environment
goto F.ip; —from closure of F
resume: …

ap = fp; for(i = 0; i < sd(F); i++) ap = ap->sl ;
sp->sl = ap; —set callee’s static link

C SC 520 Principles of Programming Languages 32

Challenge
• Can we implement functional parameters using the

display?
! Where does F get its display? (No static chain to unravel given

only a starting environment F.ep)
! How is display restored upon return?

C SC 520 Principles of Programming Languages 33

Blocks
• Extend existing environment: { int x; . . . }

• Special case of subroutine:
! No parameters
! No name
! Called in one place—where defined
! Statically prior env. (surrounding block) == dynamically prior

surrounding … void function B();

{ float x,y; { float x, y;

x = z; y = 3; x = z; y = 3;

w = y; w = y;

} }

… block surrounding …
B();

… block

C SC 520 Principles of Programming Languages 34

Block Activation/Deactivation
• A block is like a procedure, but

! Nameless (because called from only one place)
! Parameterless
! Defined at its point of invocation (inline text)
! Same static binding rules apply (static link == dynamic link)

• Why are references in body of B resolved correctly?
• Can remove need for new AR by allowing caller’s AR to

grow and shrink

sp->sl = fp; —set callee’s return link
fp = sp; —switch to new environment
sp = sp + size(AR of B) ; —push stack frame for block activation

entrypoint(B): …
. . . Body of B . . .

sp = sp - size(AR of B) ; —pop stack frame for current activation
fp = fp->sl; —reactivate containing block

resume: …

C SC 520 Principles of Programming Languages 35

Exercise
! Show how to handle block entry/exit with using the display method

. . .
. . .

D[u]
P

sp

fp
disp

. . .
. . .

D[u]
P

sp

fp

Q

Before block B entry
Executing at snl = u in P

After block B entry
Executing at snl = u + 1
(body of B one level deeper)
D[u+1] overwritten to point to new AR

D[u+1]

B

D[u+1]

C SC 520 Principles of Programming Languages 36

Solution to Exercise:
fp->disp = D[u+1]; —save caller’s display entry
D[u+1] = sp; —set callee’s display
fp = sp; —switch to new environment
sp = sp + size(AR of B) ; —push stack frame for block activation

entrypoint(B): …
. . . Body of B . . .

sp = sp - size(AR of B) ; —pop stack frame for current activation
fp = D[u]; —reactivate containing block

D[u+1] = fp->disp; —restore caller’s display

resume: …

fp = sp - size(AR of P) ; —reactivate containing block
optimization

C SC 520 Principles of Programming Languages 37

Non-local goto’s

• sd(L) = snl(use L)– snl(def L)
= snl(D)+1 – snl(L)

ap = fp;
for(i = 0; i < sd(L); i++)

ap = ap->sl ;

fp = ap;

sp = fp + size(AR of A) ;
goto address(L);
• What if display is used? How

restore environment of A?

label L

B

C

A

B

D
C

D

{

B();

L: print x;

}

{

. . .

goto L;

. . .

}

C();

D();

A

B

C

D

A
⇒⇒⇒⇒

sp

fp

sp

fp

C SC 520 Principles of Programming Languages 38

Label Scope Rules Vary
/* In C, labels have entire function as scope */
#include <stdio.h>
main()
{ int i = 3; int n = 10; printf("before forward jump i = %d\n", i);

goto fore;
back: printf("after back jump i = %d\n", i);

if (n < 3) { int i = 7; int j = 13;
fore: i = i + 1;

printf("after forward jump i = %d\n", i);
printf("after forward jump j = %d\n", j);
goto back;

}
else { int i = 99; printf("after else i = %d\n", i);

}
printf("before return i = %d\n", i);

}

C SC 520 Principles of Programming Languages 39

Label Scope Rules (cont.)
opu> cc labels.c
opu> a.out
before forward jump i = 3
after forward jump i = 1
after forward jump j = 0
after back jump i = 3
after else i = 99
before return i = 3
opu>

C SC 520 Principles of Programming Languages 40

Returned Subroutines
main()

{

int(int) makemult(int n)

{

int t(int x){ return n*x; };

return t;

}

int(int) f;

int y;

f = makemult(3);

y = f(2);

}

C SC 520 Principles of Programming Languages 41

Returned Subroutines (cont.)
• Before call to makemult(3)

! null pointer =

• At prologue of makemult(3)

• At return from makemult(3)

ra

dl

sl

f

y

ra

dl

sl

f

y

ra

dl

sl

n 3

main

main makemult

ep ip
r0 = x

r1 = n

r0 = mul r0 r1

. . .

r0 = makemult(3)

f = r0

. . .

code

code

(closure): typically (closure): typically (closure): typically (closure): typically
in registerin registerin registerin register
▼

fp

fp

fpframe pointer =

C SC 520 Principles of Programming Languages 42

Returned Subroutines (cont.)
• After assignment f = . . .

• At prologue of call f(2)

ra

dl

sl

f

y

main
ra

dl

sl

n 3

makemult

ra

dl

sl

f

y

ra

dl

sl

n 3

main makemult

ep ip

r0 = x

r1 = n

r0 = mul r0 r1

ep ip

r0 = x

r1 = n

r0 = mul r0 r1

ra

dl

sl

x 2

f

Note static and
dynamic links
differ

. . .

r0 = makemult(3)

f = r0

code

r0 = f(2)

fp

fp

C SC 520 Principles of Programming Languages 43

Returned Subroutines (cont.)
• After assignment y = f(2)

• The AR for makemult(3) is never ``popped’’ while
main() is active
! main activation refers to a function value f
! functional value f requires definition of n in makemult AR
! function f in environment can be called again many times

◆ So lifetime of makemult AR is lifetime of main

• ARs now managed on a heap, along with closures

ra

dl

sl

f

y 6

ra

dl

sl

n 3

main makemult

ep ip

r0 = x

r1 = n

r0 = mul r0 r1

fp

