Recursion

- Observe that EXP ${ }_{1}$ - as currently defined - has no recursion:

Ex: Let $f \circ \circ$ be bound to $\lambda x .0$ in the environment $u[$ foo $\mapsto \lambda x .0]$. Consider the evaluation of the following expression:
evaluate[Ilet fun foo(n: int) =
if $\mathrm{n}=0$ then 0 else $\mathrm{n}+$ foo ($\mathrm{n}-1$)
in foo (3) ll $(u[f \circ \circ \mapsto \lambda x .0])$
$=$ evaluate【foo (3)](u[f०० $\mapsto \lambda x .0$, fo○ $\mapsto f])$
where

$$
\begin{aligned}
& f=\lambda \text { a.evaluate } \llbracket \text { if } \mathrm{n}=0 \text { then } 0 \text { else } \mathrm{n}+\text { foo }(\mathrm{n}-1) \rrbracket \\
&(u[\text { foo } \mapsto \lambda x .0, \mathrm{n} \mapsto a]) \\
&=\lambda a . \text { if } a=0 \text { then } 0 \text { else } a+(\lambda x .0)(a-1) \\
&=\lambda a . \text { if } a=0 \text { then } 0 \text { else } a \\
&=\lambda a . a
\end{aligned}
$$

Thus: evaluate [If (foo (3)] (u[fo○ $\mapsto \lambda x .0$, fo○ $\mapsto f])$

$$
\begin{aligned}
& =\text { evaluate }[\text { (foo (} 3)](u[\text { fo० } \mapsto f]) \\
& =f(3)=(\lambda a . a) 3=3
\end{aligned}
$$

- First foo is newly introduced symbol, defined in terms of second foo - which is a pre-existing symbol in environment with a different binding.
- Analogous to let val $x=x$ * 2 in ... - not recursive!

Recursion (cont.)

- To obtain recursion, have to assure that both occurrences of foo are bound to the same (not previously defined $\&$ as yet unknown) function.
- Thus foo will be bound to $f *$ where:

$$
\begin{aligned}
& f *=\lambda \text { a.evaluate } \llbracket \text { if } \mathrm{n}=0 \text { then } 0 \text { else } \mathrm{n}+\mathrm{foo}(\mathrm{n}-1) \rrbracket \\
& (u[\text { foo } \mapsto f *, \mathrm{n} \mapsto a]) \\
& =\lambda a . \text { if } a=0 \text { then } 0 \text { else } a+f *(a-1)
\end{aligned}
$$

- This last equation is is a fixed point equation of the form

$$
f *=\tau f *
$$

where τ is a functional given by

$$
\tau=\lambda g . \lambda z . \text { if } z=0 \text { then } 0 \text { else } z+g(z-1)
$$

- Note that the functional τ is a "function transformer":

$$
\tau:(\text { int } \rightarrow \text { int }) \rightarrow(\text { int } \rightarrow \text { int })
$$

- Scott: $f *$ is defined by the fixed point equation $f *=\tau f *$, where $\tau=\lambda g . \lambda z . \cdots$ is a functional derived from the body of the recursive definition.
- What is $f *$ for this example? What function $f *$ makes the equation $f *=\tau f *$ 'balance'"?
$f *= \begin{cases}\lambda n \cdot & \text { if } n \geq 0 \\ \lambda n \cdot \perp & \text { if } n<0\end{cases}$
- Now what is the value of the program (expression)?

$$
\text { evaluate【fo○ (3) 】(u[fo० } \mapsto f *])=f *(3)
$$

$$
=
$$

\qquad

Recursive Definition

- ML:
- fun fact(n: int) $=$ if $n=0$ then 1 else n *fact ($n-1$);
- fact(3);
- Scheme:
>> (define (fact n) (if $(=\mathrm{n} 0) \quad 1 \quad(* \mathrm{n}($ fact $(-1+\mathrm{n}))))$)
>> (fact 3)
- Two kinds of let clause in Scheme: (let . . .) for non-recursive definition and (letrec . . .) for recursive.
Top-level definitions (as above) are assumed to be recursive.
- Define $\mathrm{EXP}_{2} \triangleq$ EXP $_{1}+$ recursion + conditional expressions:
- Add syntax

```
    Declaration ::=...
        | recfun Identifier (Formal-Parameter)
                        = Expression
```

- example
let recfun fact (n :int) $=$

$$
\text { if } n=0 \text { then } 1 \text { else } n * \text { fact }(n-1)
$$

in fact (3)

- In each case, what is the meaning of the "body" or RHS B of the recursive definition?
- a functional that transforms a function to a function
$-\tau=\lambda f . e v a l u a t e \llbracket B \rrbracket(u[f a c t ~ \mapsto f])$
$=\lambda f \cdot \lambda x$.if $x=0$ then 1 else $x \cdot f(x-1)$

Recursive Definition (cont.)

Ex:

$$
\tau(\lambda x \cdot x+1)
$$

$$
\begin{aligned}
& =\lambda x . \text { if } x=0 \text { then } 1 \text { else } x \cdot(\lambda z \cdot z+1)(x-1) \\
& =\lambda x . \text { if } x=0 \text { then } 1 \text { else } x^{2} \\
& =\left(\lambda x \cdot x^{2}\right)[0 \mapsto 1]
\end{aligned}
$$

$\tau(\lambda x . x)$

$$
\begin{aligned}
& =\lambda x . \text { if } x=0 \text { then } 1 \text { else } x \cdot(\lambda z \cdot z)(x-1) \\
& =\lambda x . \text { if } x=0 \text { then } 1 \text { else } x \cdot(x-1) \\
& =\left(\lambda x \cdot x^{2}-x\right)[0 \mapsto 1]
\end{aligned}
$$

$\tau(\lambda x .1)$

$$
\begin{aligned}
& =\lambda x . \text { if } x=0 \text { then } 1 \text { else } x \cdot(\lambda z .1)(x-1) \\
& =\lambda x . \text { if } x=0 \text { then } 1 \text { else } x \cdot 1 \\
& =(\lambda x . x)[0 \mapsto 1]
\end{aligned}
$$

$$
\tau(\lambda x . x!)
$$

$$
\begin{aligned}
& =\lambda x . \text { if } x=0 \text { then } 1 \text { else } x \cdot(\lambda z \cdot z!)(x-1) \\
& =\lambda x . \text { if } x=0 \text { then } 1 \text { else } x \cdot(x-1)! \\
& =(\lambda x . x!)
\end{aligned}
$$

- Notice that $\lambda x . x$! is a fixed point of the functional τ
- Meaning of fact in let recfun fact $(\mathrm{n})=\mathrm{B}$ in \cdots ?
- Want evaluate \llbracket fact $\rrbracket=$ function $f *$ such that $f *=e v a l u a t e \llbracket \mathrm{~B} \rrbracket(u[$ fact $\mapsto f *])$
- i.e., $f *=(\lambda f$. evaluate $\llbracket В \rrbracket(u[$ fact $\mapsto f])) f *$
- i.e., $f *=\tau f *$
\therefore Want a function that is the fixed point of τ

Recursive Definition (cont.)

- Solution: $f *=\lambda z . z$!
- Verify:

$$
\tau f *=\tau(\lambda z . z!)
$$

$$
=\lambda x . \text { if } x=0 \text { then } 1 \text { else } x *(\lambda z \cdot z!)(x-1)
$$

$$
=\lambda x . \text { if } x=0 \text { then } 1 \text { else } x *(x-1)!
$$

$$
=\lambda x . \text { if } x=0 \text { then } 1 \text { else } x!
$$

$$
=\lambda x . x!
$$

$$
=f *
$$

$-\therefore f *=\lambda z . z!$ is a fixed point

- Questions Remain:
- Is $\lambda z . z!$ the right fixed point ? (there might be several)
- What is the connection between this fixed point and the function that is actually computed by recursion?

Fixed Points

- Definition: Let $\tau: D \rightarrow D$ be a mapping from a domain to itself. x^{*} is a fixed point of $D \Leftrightarrow x^{*}=\tau\left(x^{*}\right)$

Examples from various domains:

- $D=\mathcal{R}$. To find a root of $x^{3}-x^{2}-x-1=0$, divide through by x^{2} to get
$x=1+(1 / x)+\left(1 / x^{2}\right)=\tau(x)$
The positive root $x *=1.839 \cdots$ is found by iterating: $x_{0}=1, x_{n+1}=\tau\left(x_{n}\right)$
- $D=$ Integer .
$-\tau=\lambda x . x+1$ has no fixed point (except ∞).
$-\tau=\lambda x . x^{2}$ has two fixed points.
$-\tau=\lambda x . x$ has infinitely many fixed points - any point in D.
- $D=$ (Integer \rightarrow Integer $)$.
$-\tau=\lambda f . \lambda x . f(x)$ has any function in D as fixed point
$-\tau=\lambda f . \lambda x$. if $x=0$ then 0 else $x+f(x-1)$ has fixed point $f *=\lambda x \cdot x(x+1) / 2$
$-\tau=\lambda f \cdot \lambda x \cdot x+f(x-1)$ has the fixed points $f_{c}{ }^{*}=\lambda x \cdot x(x+1) / 2+c$, one for each c in D.
Note that $f_{\perp}=\lambda x . \perp=\Omega$.
$-\tau=\lambda f . \lambda x$. if $f(x)=0$ then 1 else 0 has the fixed point $f *=\lambda x . \perp=\Omega$.
$-\tau=\lambda f . \lambda x$. if $x=0$ then a else $f(x)$ has as fixed point $f *$ any f such that $f(0)=a$.
- $D=($ Integer \times Integer \rightarrow Integer $)$.
- Consider the fixed point equation

$$
\begin{aligned}
f(m, n)= & \tau(f)(m, n) \\
\quad & \text { if } m=0 \text { then } n \text { else } f(m-1, n+1)
\end{aligned}
$$

$-g(m, n)=m+n$ is a fixed point. Verification:

$$
\begin{aligned}
\tau(g)(m, n)= & \text { if } m=0 \text { then } n \text { else } g(m-1, n+1) \\
& =\text { if } m=0 \text { then } n \text { else }(m-1)+(n+1) \\
& =\text { if } m=0 \text { then } n \text { else } m+n \\
& =m+n \\
& =g(m, n)
\end{aligned}
$$

- Fact: If a fixed point is defined for every element of the source domain, then it is the unique fixed point (McCarthy's Recursion Induction Principle).
- $D=$ (Integer \rightarrow Integer $)$.
- Let $\tau=\lambda f . \lambda n \cdot f(n+1)$. Now for every integer $a, g_{a}=\lambda n . a$ is a fixed point.
- Which one is 'correct''?
- What do we get by computing the recursion?

$$
f(n) \rightarrow f(n+1) \rightarrow f(n+2) \rightarrow \cdots
$$

- So the fixed point actually computed is $g_{\perp}=\lambda n . \perp$. This is the minimal fixed point of τ in $D=$ (Integer \rightarrow Integer), i.e., that fixed point of τ that contains the least amount of information.

Semantics of Recursion

- Principle: The function defined by the recursive definition
$f=\tau(f)$
is the fixed point $f *$ of τ that is minimal in information ordering among all fixed points of τ
- Key Properties:
- Uniqueness: There is only one such minimal $f *$ for τ.
- Existence: $f *$ always exists: any τ constructible by a syntactic definition in any programming language is monotone and continuous, and hence has such a minimal fixed point.
- Correctness: For every input $n, f *(n)$ agrees with the value (possibly \perp) that is computed by "unwinding the recursion" in the usual way:
$f(n) \rightarrow \tau(f(n)) \rightarrow \tau(\tau(f(n))) \rightarrow$
- Realized by Successive Approximation. The sequence of functions $f_{0}=\Omega ; f_{n+1}=\tau\left(f_{n}\right)$ forms a monotone chain (nondecreasing sequence) in $D f_{0} \sqsubseteq f_{1} \sqsubseteq f_{2} \sqsubseteq \cdots$ This chain
converges to a limit identical to the minimal fixed point: $f *=\cup_{i} f_{i}$

Semantics of Recursion (cont.)

- Main result of fixed point semantics: the notion of 'function defined by recursion'" has a semantic meaning independent of what is obtained by formal computation, but agreeing with it in all respects.
- Ex: $\tau=\lambda f . \lambda x$.if $x=0$ then 1 else $f(x-2)$
- Fixed points are

$$
g_{n}=\lambda x \text {.if }(x \geq 0) \wedge \operatorname{even}(x) \text { then } 1 \text { else } n
$$

- Minimal fixed point is
$g_{\perp}=\lambda x$.if $(x \geq 0) \wedge \operatorname{even}(x)$ then 1 else \perp because $g_{\perp} \sqsubseteq g_{n}$ for all n in D.
It is the "most partial" of all the fixed points; i.e., contains the bare minimum of information needed to satisfy the equation $f=\tau(f)$.

Semantics of Recursion (cont.)

- Pick values and compute by unwinding the recursion
$f(n)=\tau(f)(n)=$ if $n=0$ then 1 else $f(n-2)$
$f(3) \rightarrow f(1) \rightarrow f(-1) \rightarrow \cdots$ (diverges)
$f(4) \rightarrow f(2) \rightarrow f(0) \rightarrow 1$ (converges)
and in general $f(n)$ diverges for n odd or negative and converges to 1 for n even and non-negative.
- Start with 'zzero-information" approximation Ω, and form a chain by successive application of τ :

$$
\begin{aligned}
g_{0}= & \Omega \\
g_{1} & =\tau\left(g_{0}\right) \\
= & \lambda n . \text { if } n=0 \text { then } 1 \text { else } \Omega(n-2) \\
= & \lambda n . \text { if } n=0 \text { then } 1 \text { else } \perp \\
= & \tau\left(g_{1}\right) \\
= & \lambda n . \text { if } n=0 \text { then } 1 \\
& \text { else }(\text { if }(n-2)=0 \text { then } 1 \text { else } \perp) \\
= & \lambda n . \text { if }(n=0) \vee(n=2) \text { then } 1 \text { else } \perp \\
= & \tau\left(g_{2}\right) \\
= & \lambda n . \text { if } n=0 \text { then } 1 \\
& \text { else (if }(n-2)=0 \vee(n-2)=2 \text { then } 1 \\
& \text { else } \perp) \\
= & \lambda n . \text { if }(n=0) \vee(n=2) \vee(n=4) \text { then } 1 \\
& \text { else } \perp
\end{aligned}
$$

$g_{4}=\tau\left(g_{3}\right)$
It is clear that these functions form a chain, each an extension of its predecessor containing more information (being more defined) than its predecessor. It is also evident that the chain converges to the limit function $g_{\perp}=\lambda n$.if $(n \geq 0) \wedge \operatorname{even}(n)$ then 1 else \perp.

EXP $_{2}$: EXP With Recursive Function Definition

$\left(\mathrm{EXP}_{2} \triangleq \mathrm{EXP}_{1}+\right.$ recursion + conditional expressions $)$

- Extend Syntax:

Declaration ::=...

> recfun Identifier (Formal-Parameter)
> $=$ Expression

Expression::=...
Expression $=$ Expression
if Expression then Expression else Expression

- Extend Semantics:

New semantic rule for recursive function definition:

- constuct a functional abstraction τ that
- binds formal parm to λ-variable x
- binds function name to λ-variable f
- evaluates body in definition env overlain by these bindings
- constructs τ from this body by lambda abstraction
- bind fixed point of τ to name I

EXP_{2} (cont.)

elaborate \llbracket recfun $I(F P)=E \rrbracket e n v=$

$$
\text { let } \tau=\lambda f . \lambda x . \text { evaluate } \llbracket E \rrbracket(e n v[I \mapsto f, F P \mapsto x])
$$

in
let func $=\tau$ func \quad - fixed point
in
bind (I, function func)

- If I does not occur in E, then this reduces to func $=\tau$ func $=\lambda x$. evaluate $\llbracket E \rrbracket(e n v[F P \mapsto x])$ which reduces to the rule for ordinary functions: elaborate \llbracket fun $I(F P)=E \rrbracket e n v=\cdots$
- Add semantics for if, relational operators, etc.
- All other semantics (e.g., function calls) stays the same

