+

+

I

Recursion

• Observe that EXP₁ — as currently defined — has no recursion:

Ex: Let foo be bound to $\lambda x.0$ in the environment $u[foo \mapsto \lambda x.0]$. Consider the evaluation of the following expression:

 $evaluate[[let fun foo(n: int)] = if n=0 then 0 else n + foo(n-1) in foo(3)][(u[foo <math>\mapsto \lambda x.0])$ $= evaluate[[foo(3)]](u[foo <math>\mapsto \lambda x.0, foo \mapsto f])$ where $f = \lambda a. evaluate[[if n=0 then 0 else n + foo(n-1)]](u[foo <math>\mapsto \lambda x.0, n \mapsto a])$ $= \lambda a. if a = 0 then 0 else a + (\lambda x.0)(a-1)$ $= \lambda a. if a = 0 then 0 else a$ $= \lambda a. a$ Thus: $evaluate[[(foo(3)]](u[foo <math>\mapsto \lambda x.0, foo \mapsto f])$ $= evaluate[[(foo(3)]](u[foo <math>\mapsto \lambda x.0, foo \mapsto f])$

 $= f(3) = (\lambda a.a) 3 = 3$

- *First* foo is newly introduced symbol, defined in terms of *second* foo which is a pre-existing symbol in environment with a *different* binding.
- Analogous to let val $x = x * 2in \cdots$ not recursive!

↓ cut ↓

+

L

I

I

+

Recursion (cont.)

- To obtain recursion, have to assure that *both* occurrences of foo are bound to the *same* (not previously defined & as yet unknown) *function*.
- Thus foo will be bound to f * where:

$$f^* = \lambda a. evaluate [[if n=0 then 0 else n + foo(n-1)]]$$
$$(u[foo \mapsto f^*, n \mapsto a])$$

= λa . if a = 0 then 0 else a + f * (a - 1)

• This last equation is is a *fixed point equation* of the form

$$f * = \tau f *$$

where τ is a *functional* given by

Τ

 $\tau = \lambda g \cdot \lambda z \cdot \mathbf{i} \mathbf{f} z = 0$ then 0 else z + g(z - 1)

- Note that the functional τ is a ''function transformer'': $\tau \ : \ (\mbox{int} \ \rightarrow \mbox{int} \) \ \rightarrow \mbox{(int} \ \rightarrow \mbox{int} \)$
- Scott: f * is **defined** by the fixed point equation $f * = \tau f *$, where $\tau = \lambda g. \lambda z. \cdots$ is a *functional* derived from the body of the recursive definition.
- What is f * for this example? What function f * makes the equation f * = τ f * "balance"?

$$f * = \begin{cases} \lambda n. _ & \text{if } n \ge 0\\ \lambda n. \bot & \text{if } n < 0 \end{cases}$$

=

Now what is the value of the program (expression)?
 evaluate [[foo(3)]](u[foo → f*]) = f*(3)

I

+

Recursive Definition

• ML:

Τ

```
- fun fact(n: int) = if n=0 then 1 else n*fact(n-1);
- fact(3);
```

• Scheme:

- Two kinds of let clause in Scheme: (let ...) for non-recursive definition and (letrec ...) for recursive. Top-level definitions (as above) are assumed to be recursive.
- Define EXP₂ \triangleq EXP₁ + recursion + conditional expressions:

```
— Add syntax
Declaration ::=...
| recfun Identifier (Formal-Parameter)
= Expression
```

— example

Ι

- In each case, what is the *meaning* of the "body" or RHS B of the recursive definition?
 - a *functional* that transforms a function to a function
 - $-\tau = \lambda f.evaluate[[B]] (u[fact \mapsto f])$ = $\lambda f.\lambda x.$ if x = 0 then 1 else $x \cdot f(x - 1)$

+

+

I

Recursive Definition (cont.)

Ex:

I

$$\tau (\lambda x.x + 1)$$

$$= \lambda x. \text{ if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda z.z + 1)(x - 1)$$

$$= \lambda x. \text{ if } x = 0 \text{ then } 1 \text{ else } x^{2}$$

$$= (\lambda x.x^{2})[0 \mapsto 1]$$

$$\tau (\lambda x.x)$$

$$= \lambda x. \text{ if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda z.z)(x - 1)$$

$$= \lambda x. \text{ if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda z.1)(x - 1)$$

$$= \lambda x. \text{ if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda z.1)(x - 1)$$

$$= \lambda x. \text{ if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda z.1)(x - 1)$$

$$= \lambda x. \text{ if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda z.1)(x - 1)$$

$$= \lambda x. \text{ if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda z.1)(x - 1)$$

$$= \lambda x. \text{ if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda z.1)(x - 1)$$

$$= \lambda x. \text{ if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda z.2)(x - 1)$$

$$= \lambda x. \text{ if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda z.2)(x - 1)$$

$$= \lambda x. \text{ if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda z.2)(x - 1)$$

$$= \lambda x. \text{ if } x = 0 \text{ then } 1 \text{ else } x \cdot (\lambda z.2)(x - 1)$$

$$= (\lambda x.x)[0 \mapsto 1]$$

- Notice that $\lambda x. x!$ is a *fixed point* of the functional τ
- Meaning of fact in **let recfun** fact(n) = B **in** ···?
 - Want $evaluate[[fact]] = function f * such that <math>f * = evaluate[[B]] (u[fact \mapsto f *])$
 - $\text{ i.e., } f * = (\lambda f. evaluate \llbracket \texttt{B} \rrbracket (u[\texttt{fact} \mapsto f])) f *$

$$-$$
 i.e., $f * = \tau f *$

 \therefore Want a function that is the fixed point of τ

I

+

Recursive Definition (cont.)

• Solution: $f * = \lambda z. z!$

I

- Verify:

$$\tau f * = \tau (\lambda z. z!)$$

 $= \lambda x.$ if $x = 0$ then 1 else $x \cdot *(\lambda z. z!)(x - 1)$
 $= \lambda x.$ if $x = 0$ then 1 else $x \cdot *(x - 1)!$
 $= \lambda x.$ if $x = 0$ then 1 else $x!$
 $= \lambda x. x!$
 $= f *$

 $- \therefore f^* = \lambda z.z!$ is a fixed point

- Questions Remain:
 - Is $\lambda z. z!$ the *right* fixed point ? (there might be several)
 - What is the connection between this fixed point and the function that is actually *computed* by recursion?

Fixed Points

2/26/106 recur5 FOIL 6

I

+

Definition: Let τ : D→D be a mapping from a domain to itself. x* is a *fixed point of D ⇔ x** = τ(x*)

Examples from various domains:

- $D = \mathcal{R}$. To find a root of $x^3 x^2 x 1 = 0$, divide through by x^2 to get $x = 1 + (1/x) + (1/x^2) = \tau(x)$ The positive root $x^* = 1.839 \cdots$ is found by iterating: $x_0 = 1$, $x_{n+1} = \tau(x_n)$
- D =Integer.

Τ

I

- $-\tau = \lambda x \cdot x + 1$ has *no* fixed point (except ∞).
- $-\tau = \lambda x \cdot x^2$ has *two* fixed points.
- $-\tau = \lambda x \cdot x$ has infinitely many fixed points any point in *D*.
- $D = (\text{Integer} \rightarrow \text{Integer}).$
 - $\tau = \lambda f \cdot \lambda x \cdot f(x)$ has any function in *D* as fixed point
 - $-\tau = \lambda f \cdot \lambda x. \text{ if } x = 0 \text{ then } 0 \text{ else } x + f(x 1)$ has fixed point $f^* = \lambda x \cdot x(x + 1)/2$

 $-\tau = \lambda f \cdot \lambda x \cdot x + f(x - 1) \text{ has the fixed points}$ $f_c * = \lambda x \cdot x(x + 1)/2 + c \text{, one for each } c \text{ in } D.$ Note that $f_{\perp} * = \lambda x \cdot \perp = \Omega.$

2/26/106 recur5 FOIL 7

I

- $\tau = \lambda f \cdot \lambda x$. if f(x) = 0 then 1 else 0 has the fixed point $f * = \lambda x \cdot \bot = \Omega$.
- $\tau = \lambda f \cdot \lambda x$. if x = 0 then *a* else f(x) has as fixed point f * any f such that f(0) = a.
- $D = (\text{Integer} \times \text{Integer} \rightarrow \text{Integer}).$

I

Ι

- Consider the fixed point equation

$$f(m, n) = \tau(f)(m, n)$$

= if $m = 0$ then n else $f(m - 1, n + 1)$

$$-g(m, n) = m + n \text{ is a fixed point. Verification:}$$

$$\tau(g)(m, n) = \text{if } m = 0 \text{ then } n \text{ else } g(m - 1, n + 1)$$

$$= \text{if } m = 0 \text{ then } n \text{ else } (m - 1) + (n + 1)$$

$$= \text{if } m = 0 \text{ then } n \text{ else } m + n$$

$$= m + n$$

$$= g(m, n)$$

 Fact: If a fixed point is defined for every element of the source domain, then it is the unique fixed point (McCarthy's Recursion Induction Principle). • $D = (\text{Integer} \rightarrow \text{Integer}).$

I

I

- Let $\tau = \lambda f \cdot \lambda n \cdot f(n + 1)$. Now for every integer $a, g_a = \lambda n \cdot a$ is a fixed point.

2/26/106 recur5 FOIL 8

I

+

- Which one is "correct"?
- What do we get by computing the recursion?

 $f(n) \rightarrow f(n+1) \rightarrow f(n+2) \rightarrow \cdots$

- So the fixed point actually computed is $g_{\perp} = \lambda n. \perp$. This is the *minimal fixed point* of τ in $D = (\text{Integer} \rightarrow \text{Integer})$, i.e., that fixed point of τ that contains the least amount of information.

Semantics of Recursion

2/26/106 recur5 FOIL 9

I

+

• Principle: The function defined by the recursive definition

```
f = \tau(f)
```

I

is the fixed point f * of τ that is minimal in information ordering among all fixed points of τ

- Key Properties:
 - Uniqueness: There is only one such minimal f * for τ .
 - *Existence*: f * always exists: any τ constructible by a syntactic definition in any programming language is monotone and continuous, and hence has such a minimal fixed point.
 - *Correctness*: For every input *n*, *f**(*n*) agrees with the value (possibly ⊥) that is computed by "unwinding the recursion" in the usual way:
 f(*n*) → τ(*f*(*n*)) → τ(τ(*f*(*n*))) →
 - Realized by Successive Approximation. The sequence of functions $f_0 = \Omega$; $f_{n+1} = \tau(f_n)$ forms a monotone chain (nondecreasing sequence) in $Df_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \cdots$ This chain converges to a limit identical to the minimal fixed point: $f^* = \bigcup_i f_i$

I

+

Semantics of Recursion (cont.)

• Main result of fixed point semantics: the notion of "function defined by recursion" has a semantic meaning independent of what is obtained by formal computation, but agreeing with it in all respects.

I

• Ex: $\tau = \lambda f \cdot \lambda x$. if x = 0 then 1 else f(x - 2)

- Fixed points are $g_n = \lambda x.$ if $(x \ge 0) \land even(x)$ then 1 else n

- Minimal fixed point is $g_{\perp} = \lambda x.$ if $(x \ge 0) \land even(x)$ then 1 else \perp because $g_{\perp} \sqsubseteq g_n$ for all n in D.

It is the "most partial" of all the fixed points; i.e., contains the bare minimum of information needed to satisfy the equation $f = \tau(f)$.

I

+

Semantics of Recursion (cont.)

T

I

- Pick values and compute by unwinding the recursion $f(n) = \tau(f)(n) =$ if n = 0 then 1 else f(n-2) $f(3) \rightarrow f(1) \rightarrow f(-1) \rightarrow \cdots$ (diverges) $f(4) \rightarrow f(2) \rightarrow f(0) \rightarrow 1$ (converges) and in general f(n) diverges for n odd or negative and converges to 1 for *n* even and non-negative. Start with "zero-information" approximation Ω , and form a chain by successive application of τ : $= \Omega$ g_0 $= \tau(g_0)$ *g*₁ = λn . if n = 0 then 1 else $\Omega(n - 2)$ $= \lambda n$ if n = 0 then 1 else \perp $= \tau(g_1)$ *8*2 = λn . if n = 0 then 1 else (if (n - 2) = 0 then 1 else \perp) = λn . if $(n = 0) \vee (n = 2)$ then 1 else \perp $= \tau(g_2)$ *g* 3 $= \lambda n.$ if n = 0 then 1 else (if $(n - 2) = 0 \lor (n - 2) = 2$ then 1 else \perp)
 - = λn . if $(n = 0) \lor (n = 2) \lor (n = 4)$ then 1 else \perp

+

$$g_4 \qquad = \tau(g_3)$$

I

It is clear that these functions form a chain, each an extension of its predecessor containing more information (being more defined) than its predecessor. It is also evident that the chain converges to the limit function $g_{\perp} = \lambda n.$ if $(n \ge 0) \land even(n)$ then 1 else \perp .

EXP₂: EXP With Recursive Function Definition

 $(\text{EXP}_2 \stackrel{\Delta}{=} \text{EXP}_1 + \text{recursion} + \text{conditional expressions})$

```
• Extend Syntax:
Declaration ::=...
| recfun Identifier (Formal-Parameter)
= Expression
Expression::=...
| Expression = Expression
| if Expression then Expression
else Expression
```

• Extend Semantics:

L

L

New semantic rule for recursive function definition:

- constuct a functional *abstraction* τ that
 - binds formal parm to λ -variable x
 - binds function name to λ -variable f
 - evaluates body in definition *env* overlain by these bindings
 - . constructs τ from this body by lambda abstraction
- bind *fixed point* of τ to name *I*

I

+

EXP₂ (cont.)

Τ

elaborate [[recfun I(FP) = E]] env = $let \tau = \lambda f \cdot \lambda x \cdot evaluate [[E]] (env[I \mapsto f, FP \mapsto x])$ in $let func = \tau func \qquad -- \text{fixed point}$ in bind(I, function func)

- If *I* does not occur in *E*, then this reduces to $func = \tau func = \lambda x \cdot evaluate[[E]] (env[FP \mapsto x])$ which reduces to the rule for ordinary functions: $elaborate[[fun I(FP) = E]] env = \cdots$
- Add semantics for *if*, relational operators, etc.
- All other semantics (e.g., function calls) stays the same