
ii
Prob 1 2 3 4 5 I II III Σii
Max 12 12 12 12 12 26 26 26 100(+. . .)ii
Score

iicc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

CSc 520 final exam Wednesday 13 December 2000
TIME = 2 hours

Write all answers ON THIS EXAMINATION, and submit it IN THE ENVELOPE at the end of the
exam.

Do four (4) of the ‘‘short’’ problems (1-5)

Do two (2) of the ‘‘long’’ problems (I-III).

You may doONE AND ONLY ONE additional problem for extra credit. If you do so,circle the
extra credit problem in the table above or else only 6 problems will be counted.

NAME_____Solutions______________________GRADE_________

Short Answer (do 4)

1. Ordinary Variables and Pointer Variables

Consider the following two program fragments:iiic
c
c
c
c
c

iii
c
c
c
c
c
c
x = 6; *p = 6;
y = 7; *q = 7;
foo(x); foo(*p);

Program A Program B
--------- ---------
int x; int y; int *p; int *q;

____________ _____________

where the definition of the called function is:

void function foo(int a) {
printf("output = %d", a);

}

(a) At first sight, one might conclude that the call tofoo in both programs A and B will print the
same value. This is not true. Fill in the blank inProgram B with a statement that will cause
Program A and Program B to print different results.

(b) Explain, in words or using diagrams, what happens in each program to causefoo to print dif-
ferent values.

Solution

(a) p = q

(b) p and q arepointer aliased, so that both assignments write to the same location.*q = 7
makes *p equal to 7 and so the call is tofoo with by-value argument 7. In Program A, this
cannot happen, since separately named variables are bound to separate references (locations).

final

- 2 -

2. Parameter Transmission

Could the instructions a += 2 and a = a + 2 ever behave differently? This question is
explored below.

Consider the following two function definitions:

Program A Program B
--------- ---------
void function increment(int a){ void function assign(int a){

a += 2; a = a + 2;
} }

Consider the possible actual arguments (arg) in a call to each of these functions. Could a call to
increment(arg) have adifferent side-effect from a call toassign(arg)

(a) If parameter transmission usescall by copy-in/copy-out?

(b) If parameter transmission usescall by value/result?

(c) If parameter transmission usescall by reference?

(d) If parameter transmission usescall by name? In each of your answers above, if theycannot have
a different side-effect, explain why not. If theycan have a different side-effect, give an example
and explain.

Solution

(a) No. At call time, the l-value of the actual argument is saved for copy-out, and fixed at this time,
unaffected by any later side-effects. The r-value is copied intoa at call. Local a is updated
by two by either instruction, and this new r-value is copied back to the saved l-value. Since the
effect on a is the same, both give same result.

(b) No. In both cases the value copied back will be incremented by 2, although in some cases the
copy-back will be to a different location: Supposei = 1 in the caller and the actual argument
is a[i++]. When evaluated the first time, this will give the l-value of a[1], and this is what
will be passed by value; call itv. At return time, a[i++] will again be evaluated with the l-
value a[2]; this is the location that will receivev+2.

(c) No. Since both instructions, applied to the same l-value will give the same result, all is well.

(d) Yes. Suppose the call is with argumenta[i++] with i = 1 in caller, and a[1] set to 10.
Then a += 2 references thisonce and so a[1] will get 12, with i = 2 at return.

But a = a + 2 be equivalent to a[i++] = a[i++] + 2. Since the expression is
referencedtwice, the location assigned to will be different; depending on order, this will either
assign 12 to a[2] (different) or a[2]+2 to a[1]; again different.

final

- 3 -

3. Typing in C and ML

The languagesC and ML declare the types associated with names in distinct ways. The table below
compares a type declaration inC with the equivalent declaration inML.

(a) Fill in the blanks in the table below. A few examples have been filled in already to guide you.

C ML
-------------------------- ----------------------------

int x x : int

int *p p : int ref

int **p _______________________

int (*a)(char) a : (char -> int) ref

int *b(char) b : (char -> int ref)

int d(char) _________________________

int (*d)(int (*) (char)) d : ((char -> int) ref -> int) ref

int *e(int (*) (char)) ______________________________

int f(int (*) (char)) ______________________________

(b) In C, a function itself is not a variable, and a function cannot be directly passed to functions or
returned by functions. However, itis possible to define pointers to functions, which can be
passed to functions or returned by functions. Some examples are in (a) above.

For the following ML type declarations, fill in the blank with the correct type declaration inC,
provided such a definition is legal inC. If it is not legal, fill in ‘‘not legal’’.

C ML
-------------------------- ----------------------------

__________________________ q : ((char -> int) ref -> int) ref

__________________________ g : ((char-> int) ref -> int)

int (*(h(int)))(char) h : (int -> (char -> int) ref)

__________________________ j : (int ref -> (char -> int))

__________________________ k : ((char -> int) -> int)

__________________________ l : ((char -> int) ref -> (char -> int) ref)

__________________________ m : ((int -> int) ref -> (int -> int))

final

- 4 -

(a)

int **p __ p : int ref ref

int d(char) __ d : char -> int

int *e(int (*) (char)) __ e : ((char -> int) ref -> int ref)

int f(int (*) (char)) __ f : ((char -> int) ref -> int)

(b)

_ int (*q)(int (*) (char)) q : ((char -> int) ref -> int) ref

__ int g(int (*) (char)) g : ((char-> int) ref -> int)

__ not legal j : (int ref -> (char -> int))

__ not legal k : ((char -> int) -> int)

__ int *l(int (*) char)(char) l : ((char -> int) ref -> (char -> int) ref)

__ not legal m : ((int -> int) ref -> (int -> int))

final

- 5 -

4. Conditional Expressions

We want to add a new kind ofExpression to the language IMP (Watt, Example 3.6, page 67),
called aconditional expression. A conditional expression has the general forme 1? e 2: esub3 where
the e i are expressions of various kinds. The informal meaning of this expression is that, ife 1 evaluates
to true, then this expression takes on the value ofe 2 and otherwise takes on the value ofe 3. The
semantics is supposed to be ‘‘short-circuit evaluation’’, meaning that only one of the expressionse 2, e 3

will be evaluated.

(a) Add the appropriate syntax to the grammar of IMP. Giveonly the syntaxchanges.

(b) Do any of the semantic domainsValue, Storable, and Bindable need to change as a result of
this extension to the language? If so, show the changes, or say ‘‘none’’.

(c) State any new contextual constraints (static semantics) in English, or say ‘‘none’’ if there are
none.

(d) Complete the following semantic equation:

evaluate[[E 1?E 2:E 3]]env sto =

(e) Now suppose expression evaluation can have side-effects, so that the signature ofevaluate is
Environ → Store → Value × Store . Complete the following semantic rule forevaluate
under this new assumption. Do not give any other semantics rules.

evaluate[[E 1?E 2:E 3]]env sto =

Solution

(a)

Expression =:: . . .
| Expression ?Expression :Expression

(b) None.

(c) E 1 has to return type boolean andE 2 andE 3 have to agree in type.

(d)

evaluate[[E 1?E 2:E 3]]env sto =
let truth −value b 1 = evaluate[[E 1]] env sto
in if b 1 = true

then evaluate[[E 2]] env sto
else evaluate[[E 3]] env sto

(e)

evaluate[[E 1?E 2:E 3]]env sto =
let (truth −value b 1 , sto1) = evaluate[[E 1]] env sto
in if b 1 = true

then evaluate[[E 2]] env sto1

else evaluate[[E 3]] env sto1

final

- 6 -

5. Fixpoint Combinator

Define the combinator

Y = (λxy . y(xxy))(λxy . y(xxy))

(a) Show thatYF is a fixed point forF, i.e., prove thefixed point identity:

YF = F(YF)

Show all reductions used and label them by type beta or eta (β or η). HINT: Write Y as AA
and reduceAAF. Also, remember how to parenthesize the expressionuvw.

(b) Discuss the result of applyingY to the identity combinatorI = λx . x.

Solution

(a) First applyY =AA to F, group application left to right, and then use the definition ofA in the left
occurrence ofA:

YF = AAF = (AA) F = ((λxy . y(xxy)) A) F

This is a β-redex with respect toλx, so perform the reduction. This leads to a secondβ-redex
with respect toλy:

→β (λy . y(AAy)) F →β F(AAF) = F(YF)

So YF →∗ F(YF) as required.

(b) Using the result just proved above, withF set to I:

YI →∗ I(YI) →β YI

since Ix = x. Clearly YI has no normal form.

This is consistent with the observation that the programf (x) = f (x) whereτ = I has a minimal
fixpoint that is undefined for all arguments!

final

- 7 -

Long Problems (do 2)

3. Delayed Argument Evaluation

Parameter passing mechanisms in programming languages differ in regard to the time at which argu-
ments (actuals) to procedure/function calls are evaluated. In languages using call-by-value, arguments
are evaluated at the point of call. In languages using call-by-name or various forms of lazy evaluation,
arguments are not evaluated until the corresponding formal is referenced in the procedure/function body.

Consider a languageSloth in which the time of evaluation of each argument is completely under the
programmer’s control. AssumeSloth has a syntax and semantics similar to Pascal. For simplicity,
assume that variables can refer only to integers (there are no arrays, records and no other primitive data
types.) Unlike Pascal, however,Sloth does not have call-by-value and call-by-reference; instead, the
actual/formal association is controlled by thein and out commands described below. The keywordvar
does not appear inSloth parameter lists: only the types of each parameter are given in a
procedure/function definition.

In addition,Sloth has two new statements (commands), described below. These commands can appear
only in procedure/function bodies. HereX refers to any identifier that is a formal parameter that is in
scope.

in X This command causes the argument (actual) corresponding to the parameter (formal)X to
be evaluated in the environment of thecaller. Any side-effects resulting from such an
evaluation are incurred at this point. The value resulting from this evaluation becomes the
r-value ofX.

out X This command updates the location given by thel-value of the argument (actual)
corresponding to the parameter (formal)X. The designated location is updated with the
currentr-value of the parameter (formal)X. Flow of control is not affected.

If a parameterX is referenced in a procedure/function body beforein X has been executed, it is a run-
time error. If X is not a parameter, it is a syntax error.

(a) (8 points). InSloth, complete the definition of the following procedure, which when called will
swap the contents of its two arguments:

procedure swap(X : integer, Y : integer) ;

(b) (10 points). Describe how to implement the parameter passing mechanism ofSloth. In your
answer, address the following points:

(1) For each argument, what is transmitted to the callee’s activation at call time?

(2) What code must be generated for eachin X?

(3) What code must be generated for eachout X?

(4) What code must be generated when parameterX is referenced in the procedure/function
body?

(5) What code must be generated when parameterX is the target of an assignment in the
procedure/function body?

(c) (8 points). Sketch how to simulate the effect of a call-by-name parameter inSloth.

Solution

(a). Sloth is flexible enough to simulate call-by-copy-in/copy-out:

final

- 8 -

procedure swap(X : integer, Y : integer) ;
var T : integer;
begin

in X; in Y;
T←X; X←Y; Y←T;
out X; out Y;

end ;

(b). The key implementation technique is to use a thunk for each argument.

(1) At the time of each call, a thunk is created for each actual; that thunk (or a pointer to it) is
transmitted to the callee. The environment enclosed in the thunk will be the environment of
the caller. When called, the thunk will evaluate the argument expression in the caller’s
environment, and return anl-value. If the actual argument is a simple identifier, the thunk
will return its l-value (part of the caller‘s environment). If the actual argument is an
expression, the thunk will return thel-value of a temporary location in the caller’s activa-
tion that contains the appropriater-value.

(2) Eachin X results in a call to the thunk associated withX. This call returns anl-value that
is dereferenced to obtain anr-value. The resultingr-value is assigned to a memory cell in
the callee’s AR associated with formalX.

(3) Eachout X results in a call to the thunk associated withX. This call returns anl-value,
which is then updated with the contents of the local memory cell associated withX.

(4) A reference toX in the body is simply a reference to ther-value of the local memory cell
associated withX.

(5) An assignment toX in the body is simply an assignment to thel-value of the local memory
cell associated withX.

(c) Whenever a formalX is referred to in the procedure body, replace this reference by the command
in X followed by a reference toX. This might require introduction of new temporaries. For
example, the assignment

Y←2*X + 1/X ;

would result in

in X ;
T1←2*X ;
in X;
T2←1/X ;
Y←T1 + T2 ;

Whenever the formalX appears as the target of an assignment

X←e ;

replace it by the assignment followed immediately byout X:

X←e ;
out X;

final

- 9 -

III. Label Parameters

Some languages (e.g., Algol 60) permit labels to be passed as parameters to procedures. AssumeP is a
statically bound language similar to Pascal, but extended to allow label parameters. To clarify the
meaning of label parameters, consider a procedure declaration:

procedure P(X: integer; L: label);
...
if X = 0 then goto L;
...

end P;

with formal label parameterL. Suppose this procedure is called viaP(3,T) from some executing
environment e caller . The actual label parameterT is resolvable to some "label literal"t (like
"999:") declared in some environmentenvt (note that T might itself be a formal label parameter in
the caller, or it might be a label literal whose declaration is visible to the caller). When execution of
the call to P encounters goto L, control is transferred to the statement labeledt and execution
resumesin the environment of declaration envt of the label t. Some activations on the stack above
envt—in particular that of the activation ofP—will need to be deleted since control can never return
to them.

Describe the important features of the stack implementation ofP that are relevant to the support of
label parameters. Assume thatP is like Pascal, with static binding, and with label literals denoted by
numerals followed by a colon (:), like "123:". For simplicity, assume thatP does not support pro-
cedural parameters. Include in your description

(1) the contents of an activation record,

(2) how a label that is used as an actual is represented (i.e., is it merely an address?)

(3) the implementation of a call having a label as its only actual argument, such asU(999:),
where 999: is a literal of type label whose scope includesU;

(4) the implementation of a call having a formal label parameter as its only actual argument, such as
U(T) where T is a parameter of typelabel in U;

(5) the implementation of agoto to a label formal parameter, such asgoto T, where T is a
parameter of typelabel whose definition is in scope.

Do not discuss issues irrelevant to the implementation oflabel parameters, such as access to integer
variables, etc.

Solution

A label parameter can be thought of as a degenerate case of procedure parameter. However there is an
important difference in that calls to procedure parameters normally return to their caller without the
large-scale deletion of activation records that occurs upon transfer to label formals.

(1) One possible activation record format consists of a control (dynamic) link, an access (static) link,
space for a resumption address and space for parameters, including label parameters.

(2) When a call is made to a procedureP having actual label parameterT, T can be either (i) a
label constant t visible to the caller, or (ii) a formal parameter declared in the caller.

Label constants (but not label parameters) are resolved at code-generation time into fixed
entrypoints into code segments that are accessible through the symbol table.

In case (i), the compiler knows the static distancesd(t) from the caller’s activation to that of the
label constant’s definition. The compiler generates code to trace back alongsd(t) static links and
to set ep to point to the AR of definition. The compiler also knows the codeentrypoint
corresponding to label constantt. The compiler generates code to pass aclosure consisting of
the pair (entrypoint, ep) by copying this pair into the new AR forP, at the appropriate
parameter position. Other code generated for a call consists of the usual: transmission of non-label
parameters into the new AR, saving the resumption point in the caller’s AR, setting the dynamic
link in the new AR to point to the caller’s AR, and setting the static link in the new AR to point to

final

- 10 -

the correct AR for the environment of definition of the nameP. Finally the new AR is pushed,
the current environment pointer is set to the new AR (context switch), and control is transferred to
the (known) entrypoint of P.

The static link is needed to resolve references to names free inP, including possibly non-local
label constants mentioned there ingotos or in calls.

In case (ii), the actualT is represented by a closurecl(T) at a known place in the caller’s AR.
The compiler simply generates code to copy this closure into the appropriate place in the AR of
P. All other code is the same.

(3) In generating code forgoto L where L is a formal label name, the compiler makes use of the
fact that the closurecl(L) for L is at a known location in the current AR. The compiler gen-
erates code to popall ARs above that of cl(L).ep, to set the current environment pointer to
cl(L).ep (context switch), and to transfer control tocl(L).entrypoint. All the ARs are
deleted since control can never resume in any AR above that ofet. This follows since those
environments came into being afteret, and there is no way to transfer control from an environ-
ment to a subsequent one except by procedure call; however a procedure call creates a fresh
environment.

final

